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Simple Summary: Preclinical studies suggest that interactions between granulocyte colony-stimulating
factor (G-CSF) and hypoxia-induced carbonic anhydrase IX regulate the trafficking and function of
immune cells in the tumour microenvironment. We investigated the clinical significance of this crosstalk
by analyzing the protein expression of G-CSF and macrophage markers by immunohistochemistry on a
well-characterized tissue microarray series of invasive breast cancers. We report that high expression of
G-CSF on breast carcinoma cells is linked with significantly improved survival in an important group
of breast cancers that do not respond to hormonal therapy. These tumours were infiltrated by immune
cells expressing biomarkers that can be targeted with immune checkpoint inhibitor drugs. In contrast,
carbonic anhydrase IX expression was associated with unfavourable outcomes.

Abstract: Purpose: Granulocyte colony-stimulating factor (G-CSF) and hypoxia modulate the tumour
immune microenvironment. In model systems, hypoxia-induced carbonic anhydrase IX (CAIX) has
been associated with G-CSF and immune responses, including M2 polarization of macrophages. We
investigated whether these associations exist in human breast cancer specimens, their relation to
breast cancer subtypes, and clinical outcome. Methods: Using validated protocols and prespecified
scoring methodology, G-CSF expression on carcinoma cells and CD163 expression on tumour-
associated macrophages were assayed by immunohistochemistry and applied to a tissue microarray
series of 2960 primary excision specimens linked to clinicopathologic, biomarker, and outcome
data. Results: G-CSFhigh expression showed a significant positive association with ER negativity,
HER2 positivity, presence of CD163+ M2 macrophages, and CAIX expression. In univariate analysis,
G-CSFhigh phenotype was associated with improved survival in non-luminal cases, although the
CAIX+ subset had a significantly adverse prognosis. A significant positive association was observed
between immune checkpoint biomarkers on tumour-infiltrating lymphocytes and both G-CSF- and
CAIX-expressing carcinoma cells. Immune checkpoint biomarkers correlated significantly with
favourable prognosis in G-CSFhigh/non-luminal cases independent of standard clinicopathological
features. Conclusions: The prognostic associations linking G-CSF to immune biomarkers and CAIX
strongly support their immunomodulatory roles in the tumour microenvironment.

Keywords: granulocyte colony-stimulating factor; carbonic anhydrase IX; hypoxia; tumour-associated
macrophages; tumour-infiltrating lymphocytes; invasive breast cancer; prognosis
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1. Introduction

Granulocyte colony-stimulating factor (G-CSF) is a member of the colony-stimulating
factor superfamily and exerts its biological effects by binding to the G-CSF receptor (G-
CSFR). The archetypal G-CSF/G-CSFR signalling pathway is critical for proliferation and
survival of myeloid precursors and their subsequent differentiation into neutrophils with
augmentation of their effector functions [1]. Recognition of these biological functions led
to the establishment of G-CSF as a prophylactic and therapeutic agent for chemotherapy-
induced febrile neutropenia [2]. Considering the robust relationship between inflammation
and cancer, the role of G-CSF- and G-CSF-mobilized immune cells has been investigated
in preclinical models of several non-hematopoietic malignancies, including breast can-
cer [3,4]. These studies have implicated aberrant G-CSF/G-CSFR signalling with altered
hematopoiesis, leading to the recruitment of immunosuppressive cells in the tumour mi-
croenvironment that potentiate migration, invasion, angiogenesis and metastasis [5–13].
In line with preclinical data, clinical studies evaluating G-CSF expression on tumour cells
have also shown an association with aggressive clinicopathological features and poor
prognosis in solid organ malignancies such as clear cell renal cell carcinomas and cervical
cancers [14,15].

Tumour hypoxia is a hallmark of invasive tumours and is associated with genomic
instability, the emergence of therapy-resistant clones, inhibition of anti-tumour immune
responses, and cancer progression [16,17]. Carbonic anhydrase IX (CAIX) is a cell surface
membrane-bound enzyme expressed by hypoxic tumours. CAIX catalyzes the reversible
hydration of CO2 into bicarbonate ions and protons. The bicarbonate is transported into
the cells via bicarbonate transporters, thereby aiding in the buffering of intracellular pH,
whereas the protons remain in the extracellular space, contributing to extracellular acidifi-
cation [18]. We and others have previously shown that immunohistochemical expression
of CAIX is frequently associated with features of aggressive disease and adverse survival
in breast cancer [19–21]. In preclinical models of breast cancer, G-CSF production by
the hypoxic tumour cells, in a CAIX-dependent manner, facilitated the formation of a
lung premetastatic niche by recruiting myeloid-derived suppressor cells [22]. Further-
more, in the same model, CAIX inhibition enhanced the efficacy of immune checkpoint
blockade [23]. Thus, there is strong evidence to support that the hypoxic, acidic microenvi-
ronment of the tumours is immunosuppressive and enriched in a range of cells, including
myeloid-derived suppressor cells, T lymphocytes, and tumour-associated macrophages
(TAMs), all of which contribute to immune tolerance by dampening anti-tumour effector
cell functions [16,24–26].

Tumour-associated macrophages comprise heterogeneous populations of cells that
exhibit remarkable plasticity and play an important role in modulating adaptive immune
responses [27]. However, their biological role and prognostic significance are dependent
upon phenotype and localization, which can be assessed using biomarkers. The classi-
cally activated M1 macrophages are characterized by the production of proinflammatory
cytokines, enhanced antigen presentation, tumouricidal effects and improved cancer out-
comes [28,29]. In contrast, alternatively activated M2 macrophages are associated with
anti-inflammatory cytokines, immunosuppressive responses and protumoural properties.
M2 macrophages are reliably identified by the expression of CD163, which is a cell surface
glycoprotein and a member of the scavenger receptor superfamily class B [27]. Tumour
infiltration with CD163+ M2 macrophages is associated with features of aggressive disease
and poor outcomes in breast cancer patients, notably those diagnosed with HER2 and basal
subtypes [30,31]. Preclinical studies have shown that G-CSF secretion by triple-negative
breast cancer cell lines potentiates macrophage differentiation into an immunosuppressive
phenotype associated with enhanced migratory capacity [32]. In addition, it has been
shown that hypoxic tumour cells also promote M2-like polarization of tumour-infiltrating
macrophages [33].

Thus, existing data from preclinical studies highlight hypoxia and inflammation as
critical modulators of the immune microenvironment of solid tumours where a significant
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interplay between G-CSF and CAIX has been found to play a role. Presently, it is not
known whether there is an association amongst G-CSF, CAIX, and immune biomarkers in
breast cancer clinical samples. Furthermore, to date, only limited studies (with insufficient
statistical power) have evaluated the prognostic significance of G-CSF expression in breast
cancer [32]. Hence, we hypothesized that high expression of G-CSF would correlate with
features associated with breast cancer aggressiveness, including CAIX expression, and
provide prognostic information across breast cancer subtypes. The objectives of this study
were to investigate the immunohistochemical expression of G-CSF in a large series of breast
cancers powered for correlation with clinicopathological features, CAIX expression, and
immune checkpoint biomarkers; and to examine the prognostic significance of G-CSF in
relation to CAIX and CD163+ M2 macrophages using breast cancer-specific survival as the
primary endpoint, and overall survival and relapse-free survival as secondary endpoints.

2. Materials and Methods
2.1. Study Cohorts

We first established the immunohistochemical (IHC) staining procedure, scoring
methodology, and interpretation of G-CSF protein expression on a series of female breast
cancer patients diagnosed with stage I–III disease during 1998–2002 (cohort I: n = 330). The
clinicopathological characteristics, adjuvant treatments, and inclusion/exclusion criteria
have been described previously [34]. The median follow-up of this cohort was 13 years.
We conducted validation and exploratory analyses on an independent, much larger series
(cohort II: n = 2960) of female patients diagnosed with stage I–III breast cancer in the
province of British Columbia at the British Columbia Cancer Agency between 1986–1992,
for which formalin-fixed paraffin-embedded tumour blocks were accessible. The adjuvant
systemic and endocrine therapies recommended in the specified years were in accordance
with the provincial standards. No patients received immune checkpoint inhibitor therapy.
The clinicopathological characteristics of this cohort have been formerly described [35,36].
All cases diagnosed with ductal carcinoma in-situ only, stage IV disease at presentation,
and those receiving neoadjuvant chemotherapy regimens were excluded from this study.

The Clinical Research Ethics Board of the University of British Columbia and the
Breast Cancer Outcomes Unit of BC Cancer approved access to the clinical samples and
to corresponding deidentified clinical data. The study was conducted in accordance
with the Reporting Recommendations for Tumor Marker Prognostic Studies (REMARK)
guidelines [37].

2.2. Tissue Microarrays and Immunohistochemistry

The construction of the tissue microarrays used in this study has been described
previously [34,38,39]. In all, there were 20 tissue microarray blocks (0.6 mm cores) built
from paraffin-embedded primary surgical specimens. Of these, 3 blocks represented cohort
I (2 cores per case), and 17 were built from cohort II (1 core per case). Other biomarkers
included in studies of cohort II (ER, PR, HER2, Ki-67, CK5/6, EGFR, CD8, FOXP3, LAG3,
TIM3, PD-L1, PD-1, CAIX) and IHC-based intrinsic breast cancer subtyping have been
described in previous publications [19,34,36,40–43]. The assessment criteria for stromal
tumour-infiltrating lymphocytes (sTILs) on hematoxylin- and eosin-stained sections was
in accordance with the recommendations of the International TIL Working Group [44]
and the cases were categorized into two groups using <10% vs. ≥10% score as described
previously [45].

The IHC protocols are detailed in Supplementary Table S1. The stained slides were
digitally scanned using a BLISS system (Bacus Laboratories/Olympus America, Lombard,
IL, USA) and visually scored by the pathologists (DG, AFL, CHL) who were blinded to the
clinical characteristics and outcome data.

The scoring of G-CSF expression was adapted from Hollmen et al. [32]. The intensity of
cytoplasmic expression in breast carcinoma cells was classified into four categories: score 0,
no reactivity; score 1, weak cytoplasmic reactivity; score 2, moderate cytoplasmic reactivity;
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score 3, strong cytoplasmic reactivity. For cohort I, the mean intensity score of the duplicate
cores was estimated. Cases scored as ≤ 1 were considered low expressors of G-CSF, >1 high.
For CD163 and CAIX, we used previously published criteria as follows. Membranous
or cytoplasmic expression of CD163 was scored on tumour-associated macrophages as
previously described [46] and was classified into three categories: score 1 (sparse infiltrates,
≤5 stained macrophages); score 2 (moderate infiltrates, >5 but ≤25 positively stained
macrophages); and score 3 (dense infiltrates, >25 positively stained macrophages). For
CAIX, membranous expression on carcinoma cells was scored as 1 (any reactivity) and 0
(no reactivity), as described previously [19]. Cores with insufficient diagnostic material
or with equivocal staining results were omitted from further analysis. Images from these
slides are available for public access via the website of the Genetic Pathology Evaluation
Center (http://www.gpec.ubc.ca/gcsf accessed on 1 January 2021), and representative
images are shown in Figure 1. Representative images from serial section of a single core
are shown in Supplementary Figure S1.
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Figure 1. Representative photomicrographs for immunohistochemical staining of G-CSF, CD163, and carbonic anhydrase 
IX (CAIX) in breast carcinoma tissue microarray (cohort II) (Images acquired at 200X). (A) Cytoplasmic expression of G-
CSF on breast carcinoma cells; (A-i) low (≤1); (A-ii) high (>1); (B) Membranous or cytoplasmic expression of CD163 on 

Figure 1. Representative photomicrographs for immunohistochemical staining of G-CSF, CD163, and carbonic anhydrase
IX (CAIX) in breast carcinoma tissue microarray (cohort II) (Images acquired at 200X). (A) Cytoplasmic expression of G-CSF
on breast carcinoma cells; (A-i) low (≤1); (A-ii) high (>1); (B) Membranous or cytoplasmic expression of CD163 on tumour-
associated macrophages; (B-i) sparse infiltrates, ≤5 stained macrophages; (B-ii) moderate infiltrates, >5 but ≤25 positively
stained macrophages; (B-iii) dense infiltrates, >25 positively stained macrophages; (C) Membranous expression of CAIX on
breast carcinoma cells; (C-i) negative; (C-ii) positive.

2.3. Statistical Analysis

IBM® SPSS software (version 25) and R (v 3.3.2) were used for statistical analyses.
Relevant descriptive statistics were computed for continuous and categorical variables.
The correlation of G-CSF with clinicopathological factors and key biomarkers was assessed
by chi-square. The primary endpoint for the clinical outcome was breast cancer-specific

http://www.gpec.ubc.ca/gcsf
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survival (BCSS), specified as the time interval between the date of diagnosis and the date
of breast cancer-associated mortality. Patients who were alive at the end of follow-up
or died due to non-breast cancer-related causes were censored. Overall survival (OS)
and relapse-free survival (RFS) were used as secondary endpoints. OS was defined as
the time period from the date of diagnosis till the date of last follow-up or death due
to any cause, whereas RFS was defined as the time period from the date of diagnosis
until any breast cancer-related relapse, whether local, regional, distant, or contralateral.
Univariate analysis for survival probabilities was computed by the Kaplan–Meier method,
and differences in the survival rates between analyzed groups were estimated by log-rank
test. Cox proportional hazard modelling was used for multivariable analysis, and adjusted
hazard ratios with 95% confidence intervals were reported for each variable included in
the model. A p-value of <0.05 was considered statistically significant. To address the
concerns of multiple comparisons while assessing associations between G-CSF expression
and clinicopathological features, a Bonferroni correction was applied, making the criterion
for statistical significance p < 0.003.

3. Results
3.1. Correlation of G-CSF Expression with Clinicopathological Features and Survival

Cohort I was used to evaluate the performance of G-CSF immunostaining, finalize the
scoring methodology, and explore cut points such that these could be locked down prior to
assessment of the main study cohort II. The correlative analyses with clinicopathological
features and association with primary and secondary endpoints for cohort I are presented
in supplementary data (Supplementary Tables S2–S3 and Supplementary Figure S2). On
this smaller series, no significant clinicopathologic associations were observed. On multi-
variable analysis, after adjusting for standard clinicopathological features, high expression
of G-CSF was significantly associated with better prognosis (Supplementary Table S3).

We describe hereafter the results of our detailed analysis on cohort II (n = 2960), data
from which has been previously published for expression of immune biomarkers and
CAIX [19,40,42,43].

For cohort II, the mean age of the patients at the time of diagnosis was 58.9 years (range:
23–95 years), and the median duration of follow-up was 12.5 years (range: 0.1–18.5 years).
A total of 1956 deaths were recorded in the entire cohort, of which 58.4% were attributed to
breast cancer. The clinicopathological characteristics of the study cohort are summarized
in Table 1.

Of the 2960 cores, high expression of G-CSF was observed in 46.7% of tumours. After
correcting for multiple comparisons, these cases demonstrated significantly higher rates
of estrogen receptor (ER) negativity, HER2 positivity, CD163+ M2 macrophages, CAIX
expression, and (IHC-defined) HER2 and basal intrinsic breast cancer subtypes, relative to
the expression of these biomarkers among the G-CSFlow cases that comprised 53.3% of the
study population (Table 1).

In univariate analysis, G-CSF expression was not prognostically informative on the
whole cohort (HR 0.95, CI 0.83–1.08; p = 0.43) nor when the analysis was restricted to
the luminal subtype, which comprised 74% of the G-CSF interpretable cases (HR 0.99,
CI 0.84–1.16; p = 0.90). In contrast, amongst the non-luminal subtype, high expression
of G-CSF correlated with a significantly improved BCSS (HR 0.74, CI 0.58–0.95; p = 0.02)
(Figure 2). Similarly, high G-CSF was also associated with significantly improved OS and a
trend toward a better RFS in non-luminal cases (Supplementary Figure S3).
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Table 1. Correlation of G-CSF expression with clinicopathological features and other biomarkers.

Clinicopathological Variables
G-CSF Expression

p-Value
Low (≤1) High (>1)

Age at diagnosis
0.02<50 452 (28.7) 451 (32.6)

≥50 1125 (71.3) 932 (67.4)

Menstrual status
0.02Premenopausal 434 (28.1) 434 (32)

Postmenopausal 1111 (71.9) 922 (68)

Tumour size (cm)
0.06≤2 784 (50) 736 (53.4)

>2 785 (50) 641 (46.6)

Tumour grade
0.921 & 2 683 (45.5) 606 (45.3)

3 818 (54.5) 731 (54.7)

Axillary lymph node status
0.91Negative 888 (56.5) 783 (56.7)

Positive 684 (43.5) 598 (43.3)

Lymphovascular invasion
0.31Negative 837 (55.5) 714 (53.6)

Positive 671 (44.5) 618 (46.4)

ER expression
<0.001 *Negative 359 (22.8) 449 (32.5)

Positive 1213 (77.2) 932 (67.5)

PR expression
0.57<1% 699 (47.1) 642 (48.2)

≥1% 785 (52.9) 691 (51.8)

HER2 overexpression/amplification
<0.001 *Negative 1392 (90.5) 1125 (82.6)

Positive 146 (9.5) 237 (17.4)

CK5/6 expression
<0.001 *Negative 1301 (93.2) 1112 (89.2)

Positive 95 (6.8) 135 (10.8)

EGFR expression
<0.001 *Negative 1281 (90.3) 1059 (83.2)

Positive 137 (9.7) 214 (16.8)

Ki-67 proliferation index
0.03<14% 800 (56.2) 672 (52)

≥14% 624 (43.8) 621 (48)

CAIX expression
<0.001 *Negative 1271 (86.5) 1066 (81)

Positive 199 (13.5) 250 (19)

CD163+ TAMs

<0.001 *
Sparse (≤5) 567 (41.4) 431 (34)

Moderate (>5 ≤ 25) 443 (32.4) 417 (32.9)
Dense (>25) 359 (26.2) 419 (33.1)

Treatment

0.001 *

No systemic therapy 659 (41.8) 594 (43)
Tamoxifen only; no chemotherapy 536 (34) 407 (29.4)
Chemotherapy only; no hormonal

therapy 260 (16.5) 292 (21.1)

Chemotherapy + Tamoxifen 110 (7) 88 (6.4)
Others 12 (0.8) 2 (0.1)
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Table 1. Cont.

Clinicopathological Variables
G-CSF Expression

p-Value
Low (≤1) High (>1)

Breast cancer subtypes (IHC-based)

<0.001 *

Luminal-NOS 96 (6.1) 38 (2.7)
Luminal A 680 (43.1) 523 (37.8)
Luminal B 380 (24.1) 302 (21.8)

Luminal/HER2+ 82 (5.2) 97 (7)
HER2 61 (3.9) 135 (9.8)
Basal 106 (6.7) 168 (12.1)

Unassignable 61 (3.9) 36 (2.6)
Additional Basal if by TNP 111 (7) 84 (6.1)

* Denotes differences between low and high G-CSF groups that are significant at the Bonferroni-corrected p-value of <0.0031 (=0.05/16).
G-CSF, granulocyte colony-stimulating factor; ER, estrogen receptor; PR, progesterone receptor; EGFR, epidermal growth factor receptor;
HER2; human epidermal growth factor receptor 2; CK, cytokeratin; CAIX, carbonic anhydrase IX; TAMs, tumour-associated macrophages;
TNP, triple-negative phenotype (ER-, PR- and HER2-); NOS, not otherwise specified; IHC, immunohistochemistry.
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Consistent with the univariate analysis, G-CSF expression was not an independent
prognostic indicator in the whole cohort (n = 2960) using Cox proportional hazards model
for multivariate analysis (HR 0.92, CI 0.80–1.06; p = 0.26). However, within the non-
luminal cases (n = 665), G-CSFhigh tumours correlated with a 28% reduced risk of breast
cancer-related deaths compared to G-CSFlow tumours, independent of the standard clini-
copathological factors including age, tumour size, grade, lymphovascular invasion, and
axillary lymph node metastasis (HR 0.72, CI 0.55–0.93; p = 0.01) (Figure 3). Within non-
luminal subgroups, G-CSFhigh expression was significantly associated with better BCSS in
HER2 subtype (n = 196); triple-negative subgroup (n = 469) and basal (n = 274) subgroups
of non-luminal breast cancers did not generate hazard ratios that remained significant in
multivariable analysis (data not shown).
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3.2. Correlation and Prognostic Significance of G-CSF and CAIX with CD163+ M2 Macrophages
and Immune Biomarkers

Non-luminal breast cancers contain regions of hypoxia and acidosis [47,48]. Preclinical
studies have shown that G-CSF derived from the hypoxic tumour cells is crucial for
mobilization of myeloid-derived suppressor cells to visceral organs, thus increasing the
metastatic potential of breast cancer cells [22]. In line with this preclinical evidence, we
observed a significant positive correlation between expression of G-CSF and CAIX (Table 1).
Amongst non-luminal cases with a G-CSFhigh phenotype, significantly adverse BCSS (HR
1.74, CI 1.18–2.56; p = 0.004) was observed in CAIX-expressing tumours (Figure 4A). Similar
results were observed for OS and RFS (Figure 4B,C), indicating that the expression of
hypoxia-induced CAIX adversely impacted the prognosis of patients with non-luminal
breast cancer with high tumoural expression of G-CSF. G-CSFhigh phenotype was associated
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with significantly better BCSS in CAIX-negative non-luminal cases expressing moderate to
high CD163+M2 macrophages; however, no significant difference in survival was observed
when analysis was restricted to CAIX-positive cases (Supplementary Figure S4).
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Figure 4. Kaplan–Meier curves for association of CAIX expression in non-luminal cases with G-CSFhigh phenotype.
Expression of CAIX is associated with adverse breast cancer-specific survival (A), overall survival (B), and relapse-free
survival (C).

Tumour-associated macrophage infiltration in invasive breast cancer is associated
with adverse prognostic parameters. In agreement with previous reports [49], we also
found that the presence of moderate to dense infiltrates of CD163+ M2 macrophages was
associated with poor prognosis (Supplementary Figure S5).

Hypoxic and acidic tumour microenvironments are host to immunosuppressive cells
including CD163+ M2 macrophages. Moreover, it has been shown that lactic acidosis
induces a phenotypic switch from M1 to M2 macrophages, which supports tumour cell
proliferation [33]. Considering the association of CAIX with hypoxia and acidosis, we
performed an exploratory analysis to assess the prognostic significance of combinatorial
expression of CAIX, CD163+ M2 macrophages, and G-CSF in non-luminal cases. We
found that compared to the expression of all three biomarkers, the CAIXnegative/G-CSFhigh
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phenotype was associated with significantly improved relapse-free survival (HR 0.59,
CI 0.4–0.86; p = 0.007), with a similar favourable trend observed for breast cancer-specific
and overall survival (Figure 5), suggesting that hypoxia and acidosis are influential to the
prognostic association of M2 macrophages in non-luminal breast cancer.
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Exhausted T cells either overexpress inhibitory receptors (including programmed
death receptor-1 (PD-1), lymphocyte activation gene-3 (LAG-3), and T-cell immunoglob-
ulin domain and mucin domain-3 (TIM3)) or downregulate normal T-cell responses by
increasing FOXP3 regulatory T cells [50]. To address this relationship in our cohort, we
evaluated the correlation of CAIX and G-CSF with the above immune biomarkers, which
have been previously assessed in this tissue microarray series [40–43]. We found that tu-
mours with G-CSFhigh and CAIX+ phenotypes independently displayed highly significant
positive correlations with the presence of intratumoural lymphocytes expressing CD8,
PD-1, FOXP3, TIM3, and LAG3, with carcinoma cells expressing PD-L1, and with CD163+
M2 macrophages (Table 2).
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Table 2. Correlation of immune biomarkers with G-CSF and CAIX expression (whole cohort).

Variables
G-CSF Expression

p-Value
CAIX Expression

p-Value
Low (≤1) High (>1) Negative Positive

H & E sTIL count
(%)

<0.001 <0.001<10 1244 (85.7) 1029 (79) 2539 (83) 170 (71.4)
≥10 207 (14.3) 274 (21) 520 (17) 68 (28.6)

CD8 iTIL count
<0.001 <0.001<1 1058 (70) 830 (62) 2001 (67.9) 128 (56.1)

≥1 454 (30) 508 (38) 945 (32.1) 100 (43.9)

PD-1 iTIL count
<0.001 <0.001<1 1337 (94.1) 1161 (88.2) 2346 (92.4) 146 (75.6)

≥1 84 (5.9) 155 (11.8) 192 (7.6) 47 (24.4)

PDL1+ tumour cells
(%)

<0.001 <0.0010 1332 (94.2) 1166 (88.9) 2367 (92.4) 150 (79.8)
≥1 82 (5.8) 146 (11.1) 194 (7.6) 38 (20.2)

FOXP3 iTIL count
<0.001 <0.001<2 1087 (71.9) 831 (61.6) 1951 (68.4) 133 (59.9)

≥2 425 (28.1) 518 (38.4) 900 (31.6) 89 (40.1)

TIM3 iTIL count
<0.001 <0.001<1 1360 (90) 1182 (87.4) 2453 (89.8) 165 (79.3)

≥1 151 (10) 171 (12.6) 279 (10.2) 43 (20.7)

LAG3 iTIL count
<0.001 <0.001<1 1297 (91.1) 1136 (85.9) 2283 (89.4) 148 (75.5)

≥1 126 (8.9) 186 (14.1) 271 (10.6) 48 (24.5)

CD163+ TAMs

<0.001 <0.001
Sparse (≤5) 567 (41.4) 431 (34) 1048 (37.8) 44 (21.1)

Moderate (>5 ≤ 25) 443 (32.4) 417 (32.9) 907 (32.7) 64 (30.6)
Dense (>25) 359 (26.2) 419 (33.1) 820 (29.5) 101 (48.3)

H & E, hematoxylin and eosin-stained; sTIL, stromal tumour-infiltrating lymphocytes; iTIL, intratumoural tumour-infiltrating lymphocytes;
CD, cluster of differentiation; PD-1, programmed cell death protein-1; PD-L1, programmed death ligand-1; FOXP3, forkhead box protein P3;
TIM3, T-cell immunoglobulin and mucin domain-containing molecule 3; LAG-3, lymphocyte activation gene 3; TAMs, tumour-associated
macrophages.

Considering the immune-modulating role of G-CSF, we performed a multivariable analy-
sis to investigate the individual prognostic significance of immune checkpoint biomarkers in
G-CSF-expressing non-luminal cases. We found that intratumoural lymphocytes expressing
CD8, PD-1, FOXP3, TIM3, and LAG3, as well as PD-L1-expressing carcinoma cells, were each
associated with better survival, independent from standard clinicopathologic factors (Table 3).
Similarly, most immune biomarkers maintained prognostic significance when the analysis was
restricted to CAIX-expressing non-luminal cases (Supplementary Table S4).

Taken together, our results demonstrate that the prognostic value of G-CSF in non-
luminal breast cancers is influenced by tumour microenvironmental features associated
with CAIX positivity.
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Table 3. Multivariable analysis for prognostic significance of immune biomarkers in
non-luminal cases with G-CSFhigh phenotype.

Covariates

BCSS

Non-Luminal Cases/G-CSFhigh

HR (95% CI) p-Value

Age at diagnosis
0.16<50 1

≥50 0.76 (0.52–1.12)
Tumour size (cm)

0.004≤2 1
>2 1.82 (1.22–2.71)

Tumour grade
0.041 & 2 1

3 1.80 (1.02–3.17)
Axillary lymph node status

0.04Negative 1
Positive 1.59 (1.03–2.46)

LVI
0.58Negative 1

Positive 1.14 (0.73–1.77)
H & E stromal TILs (%)

0.001<10 1
≥10 0.48 (0.31–0.72)

Age at diagnosis
0.06<50 1

≥50 0.69 (0.48–1.01)
Tumour size (cm)

0.01≤2 1
>2 1.72 (1.17–2.55)

Tumour grade
0.021 & 2 1

3 2.06 (1.15–3.70)
Axillary lymph node status

0.10Negative 1
Positive 1.43 (0.93–2.19)

LVI
0.07Negative 1

Positive 1.49 (0.97–2.31)
CD8 iTIL count

0.01<1 1
≥1 0.59 (0.40–0.90)

Age at diagnosis
0.17<50 1

≥50 0.77 (0.52–1.12)
Tumour size (cm)

0.05≤2 1
>2 1.50 (1.01–2.23)

Tumour grade
0.021 & 2 1

3 2.03 (1.13–3.64)
Axillary lymph node status

0.05Negative 1
Positive 1.55 (0.99–2.43)
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Table 3. Cont.

Covariates

BCSS

Non-Luminal Cases/G-CSFhigh

HR (95% CI) p-Value

LVI
0.18Negative 1

Positive 1.37 (0.87–2.16)
PD1 iTIL count

<0.001<1 1
≥1 0.36 (0.20–0.63)

Age at diagnosis
0.08<50 1

≥50 0.71 (0.49–1.04)
Tumour size (cm)

0.02≤2 1
>2 1.59 (1.08–2.33)

Tumour grade
0.011 & 2 1

3 2.13 (1.19–3.83)
Axillary lymph node status

0.02Negative 1
Positive 1.64 (1.08–2.50)

LVI
0.18Negative 1

Positive 1.35 (0.88–2.07)
FOXP3 iTIL count

0.002<2 1
≥2 0.55 (0.37–0.80)

Age at diagnosis
0.12<50 1

≥50 0.75 (0.51–1.08)
Tumour size (cm)

0.01≤2 1
>2 1.67 (1.14–2.46)

Tumour grade
0.031 & 2 1

3 1.85 (1.05–3.24)
Axillary lymph node status

0.04Negative 1
Positive 1.57 (1.03–2.40)

LVI
0.2Negative 1

Positive 1.33 (0.86–2.05)
TIM3 iTIL count

0.01<1 1
≥1 0.48 (0.28–0.84)

Age at diagnosis
0.16<50 1

≥50 0.76 (0.52–1.12)
Tumour size (cm)

0.01≤2 1
>2 1.69 (1.14–2.51)
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Table 3. Cont.

Covariates

BCSS

Non-Luminal Cases/G-CSFhigh

HR (95% CI) p-Value

Tumour grade
0.011 & 2 1

3 2.09 (1.16–3.75)
Axillary lymph node status

0.04Negative 1
Positive 1.58 (1.02–2.44)

LVI
0.23Negative 1

Positive 1.31 (0.84–2.04)
LAG3 iTIL count

0.001<1 1
≥1 0.45 (0.28–0.73)

Age at diagnosis
0.05<50 1

≥50 0.67 (0.46–0.99)
Tumour size (cm)

0.01≤2 1
>2 1.68 (1.13–2.50)

Tumour grade
0.031 & 2 1

3 1.92 (1.07–3.45)
Axillary lymph node status

0.03Negative 1
Positive 1.62 (1.04–2.51)

LVI
0.27Negative 1

Positive 1.29 (0.82–2.01)
PD-L1+ tumour cells (%)

0.010 1
≥1 0.46 (0.26–0.83)

Age at diagnosis
0.79 (0.54–1.15) 0.21<50

≥50
Tumour size (cm)

0.01≤2 1
>2 1.17 (1.16–2.53)

Tumour grade
0.041 & 2 1

3 1.85 (1.03–3.30)
Axillary lymph node status

0.11Negative 1
Positive 1.42 (0.92–2.19)

LVI
0.15Negative 1

Positive 1.39 (0.89–2.16)
CD163+ M2 macrophages

Sparse 1
Moderate 1.12 (0.63–2.0) 0.70

Dense 0.78 (0.44–1.35) 0.37

4. Discussion

We herein report the prognostic significance of G-CSF expression on breast carcinoma
cells in a large population-based cohort of stage I–III invasive breast cancers. The most
salient findings of our study were (a) a survival advantage associated with high expression
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of G-CSF in non-luminal subtypes of breast cancer; (b) a novel association between G-CSF,
CAIX, and markers of immune exhaustion on tumour-infiltrating lymphocytes, which
is consistent with the presence of an immune-suppressive hypoxic and acidic tumour
microenvironment; (c) the identification of a patient subset among non-luminal breast
cancers with high G-CSF and CAIX expression that is associated with worse survival
compared to those that did not express CAIX; and (d) a positive correlation between
tumour-infiltrating lymphocytes expressing immune checkpoint biomarkers and carcinoma
cells expressing G-CSF, such that their concurrent presence is associated with a survival
advantage in non-luminal immune-enriched subtypes.

The G-CSF/G-CSFR signalling axis has been implicated in stimulating neoangiogene-
sis, tumour cell proliferation, enhanced migratory and metastatic potential, and expansion
of the cancer stem cell pool in preclinical models of several solid organ malignancies [51].
Additionally, there is an abundance of evidence to support that bidirectional signalling
cues between G-CSF-mobilized immune cells and tumour-infiltrating lymphocytes can
either inhibit or stimulate tumour progression by modulating both the innate and adaptive
immune responses. For instance, using transgenic mouse models, it has been shown that
mammary tumour-derived cytokines upregulate G-CSF production and facilitate tumour
dissemination through expansion and reprogramming of neutrophils, which in turn re-
strain the effector functions of CD8+ cytotoxic T cells through production of inducible
nitric oxide synthase [3]. Likewise, in co-culture experiments, G-CSF secretion by MDA-
MB-231 breast cancer cells induces a phenotypic switch in peripherally derived monocytes
toward immunosuppressive TAMs with enhanced migratory and metastatic potential,
which could be abrogated by anti-G-CSF antibodies [32]. In another independent study,
using 4T1 murine breast cancer cells, tumour-derived G-CSF was instrumental in promot-
ing hematopoietic stem cell differentiation toward myeloid lineages, with expansion and
activation of CD11b+ Ly6G+ neutrophils, which induce T-cell suppression through the
production of reactive oxygen species [52]. Our data on clinical specimens confirms that
G-CSF is associated with immune infiltration and supports an immunomodulatory role of
G-CSF in the breast tumour microenvironment.

It is well documented that tumour hypoxia and ensuing acidification of the microen-
vironment promote immunological escape and resistance to immunotherapy by several
mechanisms [53,54]. Firstly, hypoxic stress creates nutrient competition between the tumour
cells and T lymphocytes such that the resulting nutrient deficit profoundly suppresses the
T-cell effector functions leading to a state of hyporesponsiveness even in highly antigenic
tumours [55]. Secondly, hypoxia-induced chemokine (CCL28) production [56] and FOXP3
transcriptional upregulation enriches for FOXP3+ T regulatory cells, which play a crucial
role in self-tolerance [57]. Thirdly, hypoxic stress, via induction of hypoxia-inducible factor
1-α, increases the expression of exhaustion markers such as PD-L1 on the tumour cells,
which bind to the PD-1 receptor on the surface of T cells, causing effector cell dysfunc-
tion and apoptosis [58]. Moreover, hypoxia-induced CAIX expression has been found
in tumours resistant to anti-PD-1 therapy [59]. Consistent with this, we have previously
demonstrated, in preclinical models of basal-like breast cancer and malignant melanoma,
that CAIX expression is associated with an altered anti-tumour immune response and that
its inhibition enhances the efficacy of immune checkpoint blockade [23]. Our data here
reinforces our previous findings by identifying that CAIX expression at the protein level is
associated with the expression of immune checkpoint molecules by the carcinoma cells and
by infiltrating immune cells. Furthermore, the hypoxia and acidosis commonly associated
with CAIX expression, and the immune modulation associated with these features, may
be critical factors driving the prognostic dichotomization of G-CSFhigh and CD163+ M2
macrophage-infiltrated non-luminal breast cancers.

The identification of a soluble marker, G-CSF, whose expression is associated with the
expression of CAIX in a clinical cohort, is an important finding. Our preclinical findings
linked CAIX and G-CSF through the NF-κB signalling pathway [22]. Non-luminal breast
cancers are known to rely on an active NF-κB signalling pathway; it is therefore plausible
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that this relationship exists in clinical samples to a certain degree [60,61]. Furthermore,
several studies have described a role of G-CSF in tumour progression using the same
hypoxic, CAIX-expressing 4T1 model [62–64] or additional models containing significant
levels of hypoxia such as Lewis lung carcinoma [65] and MMTV-PyMT [66], suggesting a
critical role of hypoxia in regulating G-CSF biology in these models. Importantly, cytokine
networks in the hypoxic tumour microenvironment, including those orchestrated by TGF-β,
may cooperate with G-CSF to potentially influence neutrophil polarization [67]. However,
further experimental work is needed to fully elucidate these mechanisms [68].

Differences between the prognostic significance of G-CSF in our study and those
previously reported in other tumour types may be attributed to fundamental differences
in the underlying tumour biology. For example, inactivation of tumour suppressor pVHL
is observed in up to 80% of clear cell renal cell carcinomas, yet this is rare in breast
carcinomas [69,70]. The association of G-CSF with poor prognosis in these tumours [14] may
be related to a predominant acidotic microenvironment due to constitutive activation of
hypoxia-inducible factor 1-α and upregulation of CA9, which encodes CAIX [69]. Similarly,
tumour hypoxia and CAIX expression are critical drivers [71,72] of the aggressive biology in
patients diagnosed with cervical cancer and are likely to influence the prognostic capacity of
G-CSF [15]. Hence, it is plausible that in the context of low hypoxic stress and consequently
low CAIX, high tumoural G-CSF confers a survival advantage in breast cancer, as observed
in our non-luminal cohort (Figure 5).

To date, limited studies have investigated the significance of G-CSF protein expres-
sion in breast cancer. Considering the strong association with neutrophilic mobilization and
recruitment in carcinomas, serum G-CSF has been evaluated as a surrogate biomarker for prog-
nostication. In this context, a few studies have shown a higher plasma level of G-CSF in breast
cancer patients compared to healthy controls and post-surgical wound-healing fluids [73–75].
Since these studies were limited to smaller cohorts, meaningful associations with breast cancer
subtypes or prognosis could not be addressed. To the best of our knowledge, only a single
study has examined the immunohistochemical expression of G-CSF in a reasonably large
breast cancer cohort (548 cases), reporting a significant positive correlation between G-CSF
expression and CD163+ tumour-associated macrophages [32]. In a further subgroup analysis,
it was shown that triple-negative breast cancer cases (n = 127) with high G-CSF expression
were associated with poor overall survival [32]. Though the prognostic significance of G-CSF
in this study is opposite of our observation, these discrepancies may be attributed to the small
sample size of the earlier study, differences in the endpoints for survival analysis, the IHC
protocols, and perhaps the level of CAIX expression in their cohort.

In a recent study, using publicly available data sets, CSF3R was identified as one of the
differentially expressed genes in a subset of immune-rich ER+ breast cancers [76]. Although
expression analysis of G-CSFR was not included in our study, we performed an exploratory
analysis to address whether G-CSF expression contributed to prognostication in a subset
of ER+ breast cancers with ≥10% TIL count (n = 284), and we observed no significant
difference in survival between G-CSFhigh and G-CSFlow tumours (data not shown).

Our study has major strengths, including the use of analytically validated antibod-
ies, predefined scoring criteria (CD163 and CAIX), and the use of an independent cohort
(cohort I) to confirm the performance of G-CSF as a biomarker on breast cancer tissue
microarrays. However, there are some important limitations worthy of mention. First, we
had hoped to see significant findings in cohort I (which, being a training set, is at risk for
overfitting) that could guide prespecified formal hypotheses testing using cohort II as an
independent validation set. However, the results on the training set were not significant
for our primary endpoint in univariable analysis. Instead, we were able to use the findings
from cohort I to lock down the staining methodology, interpretation, and cutpoints, but
our observations using the more powered cohort II with longer-term follow-up will need
independent validation. Secondly, we did not evaluate the presence of tumour-associated
neutrophils or myeloid-derived suppressor cells, which are the two major immune cell
types mobilized and recruited to the tumour site by G-CSF. Instead, we took into consid-
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eration the expression of immune checkpoints on tumour-infiltrating lymphocytes as a
related biomarker, hypothesizing that G-CSF mobilizes immune infiltrates and promotes
an immune exhaustion phenotype on tumour-infiltrating lymphocytes. Thirdly, we limited
our analysis to G-CSF expression by the carcinoma cells, and these results do not take
into account the expression of G-CSF on immune cells, such as macrophages, endothelial
cells, or other stromal cells that are part of the tumour immune microenvironment. The
use of tissue microarrays may be considered a potential limitation of our study. While
there are more than a few studies showing considerable agreement between cores derived
from source tumour blocks and the full-face sections [77,78], this may not be the case for
biomarkers that show high intratumoural heterogeneity and/or predominant expression
in the tumour’s microenvironment. Furthermore, this study preceded the time when
HER2-targeted therapies and taxanes were routinely used in adjuvant settings. This may
limit the extrapolation of prognostic associations to patients receiving the current standard
of care therapeutics and merits validation on a more contemporary or prospective series.

5. Conclusions

In conclusion, our results demonstrate the prognostic significance of G-CSF in inva-
sive breast cancer, whereby high expression serves as an indicator of better survival in
aggressive non-luminal subtypes of breast cancer in the absence of CAIX. Our identified
associations between CAIX, G-CSF, and immune biomarkers provide a rationale for addi-
tional prospective investigations to understand the underlying mechanisms and their role
as potential biomarkers for predicting responses to immune checkpoint inhibitor therapy.

Supplementary Materials: The following are available online at https://www.mdpi.com/2072-669
4/13/5/1022/s1, Figure S1: Representative photomicrographs for immunohistochemical staining of
G-CSF, CD163 and CAIX in serial sections in core # 1715 from breast carcinoma tissue microarray
(cohort II). Black arrows indicate (A) cytoplasmic expression of G-CSF (>1) on breast carcinoma cells;
(B) membranous or cytoplasmic expression of CD163 on tumor associated macrophages (>5 but ≤25);
and (C) membranous expression of CAIX on breast carcinoma cells (Images acquired at 200X),
Figure S2: Cohort I: Kaplan Meier curves: Association of G-CSF expression with breast cancer
specific survival (A) and overall survival (B), Figure S3: Cohort II: Kaplan Meier curves: Association
of G-CSF expression with overall survival (A) and relapse free survival (B) in non-luminal cases,
Figure S4: Kaplan Meier curves for association of G-CSF in CD163+ non-luminal tumors with
positive (A) and negative (B) expression of CAIX, Figure S5: Kaplan Meier curves: Presence of
moderate and dense infiltrates of CD163+ M2 tumor associated macrophages is associated with
poor breast cancer specific survival, Table S1: Details of the antibodies and staining protocols, Table
S2: Cohort I: Correlation of G-CSF expression with clinicopathological features & other biomarkers,
Table S3: Cohort I: Multivariable analysis for breast cancer specific survival and overall survival,
Table S4: Cohort II: Multivariable analysis for prognostic significance of immune biomarkers within
non-luminal cases with CAIX positive expression.
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