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Identifyingwhoareunlikely tobenefit from
total knee arthroplasty using machine
learning models

Check for updates

Xiaodi Liu 1,4 , Yingnan Liu1,2,4, Mong Li Lee1,2, Wynne Hsu1,2 & Ming Han Lincoln Liow 3

Identifying and preventing patients who are not likely to benefit long-term from total knee arthroplasty
(TKA) would decrease healthcare expenditure significantly. We trained machine learning (ML) models
(image-only, clinical-data only, and multimodal) among 5720 knee OA patients to predict
postoperative dissatisfaction at 2 years. Dissatisfaction was defined as not achieving a minimal
clinically important difference in postoperative Knee Society knee and function scores (KSS), Short
Form-36HealthSurvey [SF-36, divided into aphysical component score (PCS) andmental component
score (MCS)], andOxford Knee Score (OKS). Compared to image-onlymodels, both clinical-data only
and multimodal models achieved superior performance at predicting dissatisfaction measured by
AUC, clinical-data onlymodel: KSS0.888 (0.866–0.909), SF-PCS 0.836 (0.812–0.860), SF-MCS0.833
(0.812–0.854), and OKS 0.806 (0.753–0.859); multimodal model: KSS 0.891 (0.870–0.911), SF-PCS
0.832 (0.808–0.857), SF-MCS 0.835 (0.811–0.856), and OKS 0.816 (0.768–0.863). Our findings
highlighted that ML models using clinical or multimodal data were capable to predict post-TKA
dissatisfaction.

Knee osteoarthritis (OA) is the most common degenerative joint disease
which leads to significant disability in the elderly, with a global prevalence of
around 23% in individuals aged over 40 years1. Total knee arthroplasty
(TKA) is recommended for advanced knee OA based on its capacity to
reduce pain, improve functional status and quality of life2. Despite extensive
development and optimization of TKA techniques, it is estimated that
15–20% patients remained dissatisfied after the surgery3. Identifying
patients who are at risk of dissatisfactionwill support better clinical decision
making prior to surgery. By proposing alternative management strategies,
reduction of outpatient attendances and minimizing unwarranted surgical
intervention for this group of patients, we can provide more cost-effective
and patient-centered care for patients with knee OA.

The outcome of TKA is commonly assessed objectively with patient-
reported outcome measures (PROMs) to measure baseline function pre-
operatively and patient improvement postoperatively. Several PROMs have
been developed and validated worldwide, including Knee Society knee and
function scores (KSS)4, Short Form-36 Health Survey (SF-36)5 and Oxford
Knee Score (OKS)6. These PROMs have corresponding minimal clinically
important difference (MCID) thresholds that can be used to determine if a
patient achieves perceivable benefits or remains dissatisfied postoperatively.

Machine learning has been applied to predict patient dissatisfac-
tion after TKA. Several studies have used clinical data to predict dis-
satisfaction by applying tree-basedmodels, achieving an area under the
receiver operating characteristic curve (AUC) ranging from 0.60 to
0.957. However, these studies consisted of small sample size, hetero-
geneous MCID cutoffs and follow-up periods, and used singular
functional or mental questionnaires. Mostly notably, no studies have
included anterior-posterior (AP) knee radiographs which are used by
surgeons to determine disease severity and patient counseling prior to
surgery.

The aim of this study was to develop and compare the performance
of ML models using image only (AP knee radiographs), clinical data
only, and multimodal data to predict postoperative dissatisfaction,
defined as not meeting PROMMCID thresholds after TKA at 6-month
and 2-year follow-ups, respectively. Specifically, the input included one
AP knee radiograph and clinical data per knee collected at preoperative
assessment visit of the corresponding patient, and the output was the
probability that the patient would not achieve MCID, i.e., dissatisfied
with the surgical outcome, measured by various PROMs after TKA at
follow-up visits.
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Results
We included a total of 7224 knee radiographs from 5720 subjects with
corresponding clinical data available at baseline and follow-up visits for
model development (see Supplementary Figure 1). Details of baseline
characteristics are shown in Table 1. The baseline mean age was 67.0
(standard deviation, SD = 7.6) years, 21% (N = 1513) of them were males.
The majority of our patients were Chinese (87%, N = 6288), followed by
Malay (6.9%, N = 500), Indian (5.1%, N = 370) and other races (0.9%,
N = 66). Seventy-nine percent of them were overweight to severely obese,
the prevalent comorbidities including hypertension (62%, N = 4501),
hyperlipidaemia (49%, N = 3515) and diabetes (18%, N = 1332). The par-
ticipants had a mean follow-up of 1.9 years (SD = 0.4).

In the internal testing set, the image-onlymodel achieved fairAUCs for
the prediction at 2-year follow-up: not achieving MCID in KSS 0.577 [95%
confidence interval (95%CI) 0.540–0.612], SF-PCS 0.542 (0.510–0.574), SF-
MCS 0.486 (0.455–0.519), and OKS 0.617 (0.557–0.677). Similar model
performance was observed in the prediction of 6-month outcomes (see
Supplementary Table 1, Supplementary Figure 2).

The clinical-data only model outperformed image-only model for the
prediction at 2-year follow-up: not achieving MCID in KSS 0.888
(0.866–0.909), SF-PCS 0.836 (0.812-0.860), not achieving SF-MCS MCID
0.833 (0.812–0.854), and OKS 0.806 (0.753–0.859) (DeLong Test, all
p < 0.001); as well as at 6-month follow-up: KSS 0.895 (0.873–0.913), SF-
PCS 0.835 (0.810–0.859), SF-MCS 0.830 (0.807–0.852), OKS 0.809
(0.763–0.853) (DeLong Test, all p < 0.001) (Fig. 1, Table 2).

When concatenating image features with clinical data in the multi-
modal model, its performance was equivalent but did not reach statistically
significance as compared to clinical-data only model at 2-year follow-up:
KSS 0.891 (0.870–0.911), SF-PCS 0.832 (0.808–0.857), SF-MCS 0.835
(0.811–0.856), and OKS 0.816 (0.768–0.863) (DeLong test, all p> 0.05)
(Fig. 1, Table 2). Similar results were observed in the prediction of 6-month
outcomes: KSS 0.898 (0.876–0.916), SF-PCS 0.832 (0.808–0.856), SF-MCS
0.835 (0.812–0.857), and OKS 0.802 (0.753–0.848). (see Supplementary
Table 1, Supplementary Figure 2) (DeLong Test, all p> 0.05).

To interpret the results from image-only model, we selected random
cases who underwent bilateral TKA from the testing set (see Supplementary
Figure 3). Although models incorporating images can identify pathological
changes such as narrowed joint space and osteophytes, it was unable to use
these features (presence/severity) to predict patient dissatisfaction. For
example, a subject demonstrating similar severity of radiographic features in
both knees was satisfied with only one side, while the contralateral side,
which presented higher preoperative PROMs, resulted in dissatisfaction
after TKA.

Since clinical-data only model achieved equivalent performance with
multimodal model, we evaluated the feature importance in the clinical-data
onlymodel to determine themost importance contributors. Of the 60 input
features, the preoperative score emerged as the most important input
variable for predicting postoperative dissatisfaction. The top three features
for eachPROMare as follows:KSS: preoperativeKSS score, preoperative SF-
MCS score and height; SF-PCS: preoperative SF-PCS score, age, pre-
operative SF-35Q2; SF-MCS: preoperative SF-MCS score, preoperative SF-
36 Q6 and preoperative SF-PCS score; OKS: preoperative OKS score; pre-
operative terminal knee extension and age. The direction of association
between each input variables and outcomes at 2-year follow-up is shown in
Fig. 2, with similar relationships observed at 6-month follow-up (see Sup-
plementary Figure 4).

Discussion
To our knowledge, we presented the first and largest interpretable machine
learning study comparing three machine learning models that utilized AP
knee radiographs only, clinical data only, and multimodal data to predict
postoperative dissatisfaction using validated PROMS. Our machine learning
models were built, validated, and tested in 5720 subjects at 6-month and
2-year follow-ups, respectively. Among the three models, both clinical-data
only and multimodal model obtained excellent performance that

outperformed the image-only model, measured by AUC and its 95% CI,
indicating that incorporation of AP knee radiographs commonly used by
surgeons to monitor disease progression and preoperative TKA candidacy
counseling could only add limited values on predicting postoperative dis-
satisfaction.We also identified that preoperative function scores are themost
important clinical features that correlate with postoperative dissatisfaction.

Table 1 | Baseline characteristics of thepatients in training and
testing dataset

Cohorts Knee dataset Training set Testing set

Number of images 7224 5778 1446

Number of
participants

5720 4575 1145

Demographics

Male 1513 (21) 1232 (21) 281 (19)

Age, year 67.0± 7.6 67.2± 7.5 67.0± 7.7

BMI

Normal (BMI<24) 1462 (21) 1151 (20) 311 (22)

Overweight
(24�BMI<28)

2693 (37) 2138 (37) 555 (38)

Obese
(28�BMI<32)

1954 (27) 1609 (28) 345 (24)

Severely
obese (BMI�32)

1115 (15) 880 (15) 235 (16)

Ethnicity

Chinese 6288 (87) 5024 (87) 1264 (87)

Malay 500 (6.9) 410 (7.1) 90 (6.2)

Indian 370 (5.1) 295 (5.1) 75 (5.2)

Others 66 (0.9) 49 (0.8) 17 (1.2)

Clinical characteristics

Hypertension 4501 (62) 3,619 (63) 882 (61)

Diabetes 1332 (18) 1094 (19) 238 (16)

Hyperlipidemia 3515 (49) 2828 (49) 687 (48)

Ischemic heart
disease

596 (8.3) 483 (8.4) 113 (7.8)

Arthritis other than
knee OA

240 (3.3) 188 (3.3) 52 (3.6)

Depression 66 (0.9) 43 (0.7) 23 (1.6)

Outcomes at 6 months

Not achieve
KSS MCID

2035 (28) 1631 (28) 404 (28)

Not achieve
OKS MCID

857 (12) 556 (9.6) 134 (9.3)

Not achieve
SF-MCS MCID

5309 (73) 4262 (74) 1047 (72)

Not achieve
SF-PCS MCID

2734 (38) 2196 (38) 538 (37)

Outcomes at 2 years

Not achieve
KSS MCID

1808 (25) 1432 (25) 376 (26)

Not achieve
SF-MCS MCID

5172 (72) 4137 (72) 1035 (72)

Not achieve
SF-PCS MCID

2320 (32) 1841 (32) 479 (33)

Not achieve
OKS MCID

559 (7.7) 346 (6.0) 88 (6.1)

Data are mean (SD) or n (%).
BMIbodymass index,KSSKneeSociety knee and function scores,MCIDminimal clinical important
difference,MCSmental component score, OA osteoarthritis, OKS Oxford Knee Score, PCS
physical component score, SD, standard deviation, SF Short Form-36 Health Survey.
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A recent review has summarized the existing evidence and develop-
ments of machine learning models in the prediction of postoperative
satisfaction7, showing that weakness of previous studies included incon-
sistent performance (AUC 0.60–0.95), limited sample size (around
400–6400), various clinical outcomes, used only clinical data as the input

data, and heterogonous follow-up period. For instance, one cross-sectional
NHS-based study involving 34,100 observations reported J-statistic (sensi-
tivity+ specificity −1) of 0.31 for predicting postoperative OKS score and
0.57 for quality of life8, the other study following 6480 patients who received
TKA at 2-year visit demonstrated an AUC of 0.6–0.899. Our findings have

Fig. 1 | Receiver operating characteristic curves for the internal testing set on
predicting patient dissatisfaction at 2-year follow-up. ROC curves of image-data
only model, clinical-data only model and multimodal model for predicting each
PROM MCID: a Not achieve KSS MCID. b Not achieve SF-PCS MCID. c Not

achieve SF-MCS MCID. d Not achieve OKS MCID. KSS Knee Society knee and
function scores, MCS mental component score, OKS Oxford Knee Score, PCS
physical component score, SF Short Form-36 Health Survey.

Table 2 | Model performance for the internal testing set on predicting patient dissatisfaction at 2-year follow-up

Outcomes Models AUC F1 score Precision Recall

Not achieve KSS MCID Image-only 0.577 (0.540–0.612) 0.393 (0.355–0.432) 0.311 (0.276–0.346) 0.535 (0.483–0.588)

Clinical-data only 0.888 (0.866–0.909) 0.713 (0.676–0.748) 0.685 (0.640–0.730) 0.744 (0.700–0.790)

Multimodal 0.891 (0.870–0.911) 0.697 (0.658–0.730) 0.674 (0.627–0.717) 0.721 (0.672–0.769)

Not achieve SF-36
PCS MCID

Image-only 0.542 (0.510–0.574) 0.333 (0.290–0.373) 0.366 (0.315–0.414) 0.306 (0.263–0.350)

Clinical-data only 0.836 (0.812–0.860) 0.676 (0.638–0.711) 0.717 (0.672–0.761) 0.639 (0.593–0.684)

Multimodal 0.832 (0.808–0.857) 0.659 (0.623–0.696) 0.694 (0.648–0.737) 0.627 (0.583–0.676)

Not achieve
SF-36 MCS MCID

Image-only 0.486 (0.455–0.519) 0 (0–0) 0 (0–0) 0 (0–0)

Clinical-data only 0.833 (0.812–0.854) 0.788 (0.765–0.810) 0.910 (0.888–0.932) 0.695 (0.665–0.724)

Multimodal 0.835 (0.811–0.856) 0.770 (0.746–0.793) 0.912 (0.889–0.932) 0.667 (0.636–0.698)

Not achieve OKS MCID Image-only 0.617 (0.557–0.677) 0.138 (0.101–0.177) 0.081 (0.058–0.107) 0.441 (0.349–0.544)

Clinical-data only 0.806 (0.753–0.859) 0.367 (0.287–0.434) 0.267 (0.201–0.332) 0.590 (0.479–0.685)

Multimodal 0.816 (0.768–0.863) 0.424 (0.329–0.511) 0.459 (0.349–0.573) 0.397 (0.293–0.494)

Data are mean (95% CI).
AUC area under the receiver operating characteristic curve,CI confidence interval,KSSKneeSociety knee and function scores,MCIDminimal clinical important difference,MCSmental component score,
OKS Oxford Knee Score, PCS physical component score, SF Short Form-36 Health Survey.
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Fig. 2 | Feature importance plots on predicting patient dissatisfaction at 2-year
follow-up. SHAP explanation of clinical-data onlymodel for predicting each PROM
MCID: a Not achieve KSS MCID. b Not achieve SF-PCS MCID. c Not achieve SF-
MCSMCID. dNot achieve OKSMCID. KSS Knee Society knee and function scores,

MCIDminimal clinically important difference,MCSmental component score, OKS
Oxford Knee Score, PCS physical component score, PREOP preoperative, rome
terminal flexion, roms terminal extension.
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addressed the issues of inconsistentmodel performance, limited sample size,
and heterogeneous follow-up periods, offering valuable and interpretable
evidence by incorporating AP knee radiograph for identifying patients who
are unlikely to benefit from TKA, therefore provide precise management in
the clinical settings.

Over 700000TKAare performed every year in theUnited States10, with
around 15–20% of patients would be dissatisfied postoperatively for
unknown reasons. The recommendation for TKA relies fundamentally on
medical history of chronic mechanical knee pain which limits function,
physical examination suggesting internal derangement of the knee and
severe pathological changes on preoperative knee radiographs. Radiographs
remain themost widely used tool to assess the severity of structural damage
such as joint narrowing space and osteophytes. However, the relationship
between radiographic findings with PROMs are inconsistent in previous
studies. One study identified that increased Kellgren–Lawrence (KL) score
was associated with worsen general health, physical function and pain11,
while other two studies found weak or no relationship between KL grading
withPROMs12,13, indicating the severity of radiographic features cannot fully
reflect patient’s functional, mental or quality of life status. Our study, from a
machine learning standpoint, shows that although the model can identify
pathological patterns such as narrowed joint space in the AP knee images, it
inadequately associates with the clinical outcomes as measured by PROMs
after TKA.

Although standard knee radiographs includeAPview, lateral view, and
theMerchant view,most of the orthopedicmachine learning studies to date
mainly used theAP view for joint segmentation, early detection and severity
classification, with only two studies exploring the feasibility of using the
lateral view for early detection of OA knee14,15. Emerging evidence has
shown the patellofemoral joint space narrowing, assessed by a lateral or
Merchant view, is associated with poorer PROMs16. In concordance with
previous findings, our study suggests that although the machine learning
modelswere capable to learn certain pathological patterns from theAPknee
radiograph, the image alone only offered limited information on predicting
patient dissatisfaction after TKA, highlighting that surgeons should not
solely use AP knee radiographs when indicating patients for TKA. One of
the possible explanations is that the two-dimensional bony knee structure in
the AP view, without information on the actual degree of cartilage loss, is
incapable of reflecting preoperative function17 that is highly associated with
postoperative dissatisfaction. Future studies incorporating the lateral or the
Merchant view are warranted to improve the accuracy of model prediction.

The postoperative dissatisfaction is a multifactorial outcome that cor-
relates with patient expectation, medical history, female sex, ethnicity, and
functional status18. Recent studies have raised concerns that patients’mental
health before surgery may be negatively associated with the postoperative
dissatisfaction. In a longitudinal prospective study following over 1200
patients who received TKA over a mean of 5 years, patients with a higher
preoperativemental health score presented better physical functions scores at
pre- and post-operative visits19. In another pilot randomized controlled trial,
preoperative psychological intervention improved patient satisfaction at
2-year follow-up after TKA among patients with depression20. Our results
showed that preoperativemental health statuswas rankedas a top4 feature in
predicting dissatisfactionmeasured byKSS, SF-PCS, and SF-MCS, indicating
psychological distress may play an important role on patient dissatisfaction.
Assessment of both functional and mental health status coupled with timely
intervention may be beneficial in the clinical management of OA knee.

Several clinical rating systems have been widely used to describe the
outcome of TKA, among which KSS is the most utilized scoring system21.
The KSS objectively assesses functional status, whereas SF-36 measures
quality of life, and OKS evaluates patient’s opinion on their outcome that is
more correlated with pain but less with the functional status22. In addition,
the concepts of measuring satisfaction, expectation fulfillment, patient
acceptable symptoms state (PASS) and MCID are not equivalent. Unfor-
tunately, none of these PROMs can comprehensively address the changes in
pain, physical, function, andmental status after TKA. Future studies should

be directed toward designing a comprehensive scoring system in order to
understand patient-oriented outcomes.

Our study has identified top performing features, namely preoperative
PROM scores, range of motion, and age from validated PROMs that can
predict patient dissatisfaction. These clinical parameters could form the
basis of machine learning models used in either primary care or specialist
care to select or indicate patients for TKA. These novel models, instead of a
single-view AP knee radiograph can be used to predict patient dissatisfac-
tion and counsel patients on the probability of a favorable postoperative
outcome. Through careful patient selection, this will lead to improved
overall outcomes for TKA patients and enhance cost-effectiveness of the
procedure.

Our study has some limitations. We performed internal validation
within one institution, further external validation with multi-ethnicity
cohorts is desirable. Second, our study may have selection bias since we
excluded patients with surgical history. Third, our model is a classification
one that cannot estimate the exact postoperative PROM scores. Fourth, the
models did not take into account postoperative radiographic assessments
where poorly positioned components may affect outcomes.

In summary, we developed and evaluated three machine learning
models utilizing image-data only, clinical-data only, andmultimodal data
to predict patient dissatisfaction at 6-month and 2-year follow-ups. This
machine learning study is the first to utilize and compare whether
incorporatingAP knee radiograph can predict patient dissatisfaction after
TKA. We showed that both clinical-data only and multimodal model
presented excellent performance on predicting postoperative dissatisfac-
tion. Our model could serve as a valuable evaluation tool to differentiate
patients with knee OAwho will not benefit from TKA in order to achieve
the precisionmedicine in the clinical settings. Future work to incorporate
multi-view knee radiographs to enhance the model performance is
warranted.

Methods
Study design and participants
In this longitudinal, retrospective, single-center study, we trained, validated,
and tested machine learning models using AP knee radiographs only,
clinical data only, and multimodal data for predicting postoperative dis-
satisfaction from a retrospective joint replacement registry in Singapore
General Hospital, Singapore. Patients who underwent either TKA or
minimally-invasive TKA (MIS-TKA) for diagnoses of knee OA from 2006
to 2016were included. Exclusion criteria were: (1) prior surgery of the knee;
(2) underwent non-TKA procedure; (3) incomplete clinical data.

We collected anonymized preoperative clinical assessments, PROMs,
andweight-bearingAP knee radiographs at baseline, with PROMs repeated
at 6 months and 2 years postoperatively. The ethics approval was obtained
from the SingHealth centralized institutional review board (Reference
number: CIRB 2019/2878), informed consent was waived by the ethics
committee since all the data were extracted anonymously from routine
clinical practice. We followed the TRIPOD guideline to report our study.

Data preparation
For clinical data, all continuous variables were normalized, and categorical
variables were one-hot encoded.

For each AP knee radiograph in digital imaging and communications
in medicine (DICOM) format, we extracted a region of interest of the knee
joint using BoneFinder@ tool (http://bone-finder.com/)23. Subsequently, we
used contrast-limited adaptive histogram equalization24 to enhance the
image contrast.We horizontally flipped all right knee radiographs to have a
similar view with the left knee radiographs and rescaled all the images to
224 × 224 pixels.

Weperformed thedataset splitting to ensureno samplesoverlapping at
the patient level in training and testing sets (80:20). We used the balanced
sampling to handle class imbalance between dissatisfied versus satisfied
patients.
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Outcomes
Themain goal of this studywas to develop and compare the performance of
machine learning models using image data only, clinical data only, and
multimodal data to predict postoperative dissatisfaction. Several PROMs
were recordedby thephysiotherapists at preoperatively, at 6months andat 2
years postoperatively: KSS4 [ranging from 0 (extreme knee problem) to 100
(no knee problem)], SF-365, and OKS6 [ranging from 0 (most severe
symptoms) to 48 (least severe symptoms)]. The SF-36 score was aggregated
into a physical component summary (PCS) [ranging from 0 (worst health
status) to 100 (best health status)] and a mental component summary
(MCS) [ranging from 0 (worst health status) to 100 (best health status)].

We calculated the difference of each PROM between follow-up visits
and preoperative assessment, and dichotomized patients into two groups:
dissatisfied (did not achieve MCID) versus satisfied (achieved MCID)
according to each PROM MCID. We used published MCID values as the
cutoff: KSS (34.5 points)25, SF-36 (PCS: 10 points andMCS: 10points)26, and

OKS (5 points)27. The primary outcomes were patient dissatisfaction
quantified by eachMCID at 2-year follow-up, and the secondary outcomes
were patient dissatisfaction at 6-month follow-up.

We used the area under the received operating characteristic
curve (AUC) as the main model-discriminative performance metric.
We also report other clinically relevant metrics: F1 score, precision,
and recall.

Model development and test
We developed three machine learning models to predict patient dis-
satisfaction after TKA: (a) amodel that used knee radiograph only (Fig. 3a),
(b) a model that utilized clinical data only (Fig. 3b), (c) a model that inte-
grated both knee radiograph and clinical data for its predictions (Fig. 3c).

For the image-only model, we used a convolution neural network
(CNN) to extract features for classification. The ConvNeXt-Tiny28 (the best
model among ResNet101, ResNeXt, ConvNeXt, and Vision Transformer

Fig. 3 | Overview of the proposed machine learning models. a The image-only
model feeds with AP knee radiographs. b The clinical-data only model feeds with
clinical data. c The multimodal model incorporating the information from both AP

knee radiographs and clinical data. CNN convolutional neural network, MLP
multilayer perceptron, XGB Extreme Gradient Boosting.
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based on the training set) pretrained with the ImageNet dataset (http://
www.image-net.org/) was used as the CNN backbone.

We trained clinical-data only model by Extreme Gradient Boosting
(XGB) algorithm29 [the best model among XGB, Random Forest, Support
Vector Machine, decision tree and multilayer perceptron (MLP) based on
the training set], which comprised demographics, medical history, pre-
operative assessments and preoperative PROM scores (see Supplementary
Table 2).We applied 5-fold internal cross validation (4 folds for training and
1 fold for validation, in turn) in the training set for hyperparameter tuning.
Once the optimal hyperparameter values were selected, the actual XGB
model was trained on the whole training set. The hyperparameters were
optimized for the number of estimators,maximumdepth, learning rate, and
subsample strategies (see Supplementary Table 3). We selected the best
hyperparameter and epoch achieved the highest average performance of
AUC on the validation fold for final training, then evaluated on the test-
ing set.

For the multimodal model, after the same CNN architecture was
trained to extract image features, we concatenated the image features with
clinical features and used them to train a XGB classifier via a joint training
approach. Specifically, the CNN was jointly trained with MLP-extracted
clinical features to extract complementary image features for further pre-
diction. We used Adam optimizer to update each CNN architecture. In
image-only and multimodal models, we used the same 5-fold cross vali-
dation as previously described within the training set for hyperparameter
tuning in CNN (learning rate, weight decay, batch size, and best epoch) and
XGB (same hyperparameters searched in clinical-data only model),
respectively. The model was trained for 10 epochs. We used the cross-
entropy loss function, learning rate of 5× 10−5, batch size of 32,weight decay
of 0, and a balanced class sample for training.

Our models were implemented using PyTorch and xgboost. We
conducted all the training on a machine equipped with a NVDIA A100
SXM4 Tensor Core graphics processing unit and 80 GB available video
random-access memory.

Model interpretation
We used SHAP30 to identify the key clinical features and gradient-weighted
class activation mapping (Grad-CAM)31 to visualize where the model is
focusing when making predictions on patient dissatisfaction.

Statistical analysis
To estimate the confidence interval (CI) for each performance metric, we
used n-out-of-n bootstrap with replacement, repeating it for 1000 times to
calculate the 95%CI.Weestimated95%CIusing the2.5 and97.5percentiles
of the empirical distribution of the correspondingmetric.We compared the
model performance in three models: (1) image-only, (2) clinical-data only,
(3)multimodal using the DeLong’smethod as well as the overlap of 95%CI
of mean AUC scores in each model. P values < 0.05 were considered as
statistically significance.

Data analysis and modeling were performed using Python 3.9.17
(Python Software Foundation, Wilmington, DE, USA), the Anaconda
Distribution (Anaconda, Inc., Austin, TX, USA), and R software 4.2.2 (R
Foundation for Statistical Computing, Vienna, Austria, 2022).

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

Data availability
The dataset used in this study are protected patient information that only
restricted access is allowed.

Code availability
The source code for training themachine learningmodels used in this study
is available at: https://github.com/NancyQuris/OAKneeML.
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