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Purpose: To explore the clinical significance of copper-dependent-related

genes (CDRG) in female breast cancer (BC).

Methods: CDRG were obtained by single-cell analysis of the

GSE168410 dataset in the Gene Expression Omnibus (GEO) database.

According to a 1:1 ratio, the Cancer Genome Atlas (TCGA) cohort was

separated into a training and a test cohort randomly. Based on the training

cohort, the prognostic model was built using COX and Lasso regression. The

test cohort was used to validate the model. The GSE20685 dataset and

GSE20711 dataset were used as two external validation cohorts to further

validate the prognostic model. According to the median risk score, patients

were classified as high-risk or low-risk. Survival analysis, immune

microenvironment analysis, drug sensitivity analysis, and nomogram analysis

were used to evaluate the clinical importance of this prognostic model.

Results: 384 CDRG were obtained by single-cell analysis. According to the

prognostic model, patients were classified as high-risk or low-risk in both

cohorts. The high-risk group had a significantly worse prognosis. The area

under the curve (AUC) of the model was around 0.7 in the four cohorts. The

immunological microenvironment was examined for a possible link between

risk score and immune cell infiltration. Veliparib, Selumetinib, Entinostat, and

Palbociclib were found to bemore sensitivemedications for the high-risk group

after drug sensitivity analysis.

Conclusion: Our CDRG-based prognostic model can aid in the prediction of

prognosis and treatment of BC patients.
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Introduction

As the most common malignancy, BC accounts for 15.5% of

female cancer deaths worldwide, which poses a heavy burden on

global health (Sung et al., 2021). Based on genomic and

transcriptomic sequences, BC can be classified into five

molecular subtypes (Rainey et al., 2020). However, due to the

heterogeneity of BC, although multiple prognostic tools have

been developed, none of them can predict the prognosis of all

types of BC (Krop et al., 2017; Faria et al., 2021). Moreover, the

overall prognosis of BC is poor, especially for advanced patients

(Tao et al., 2015). Advanced BC with distant organ metastases is

considered incurable (Harbeck et al., 2019). Therefore, finding

novel prognostic factors and treatment targets for BC to guide

clinical practice is critical.

Multiple cells in BC now can be studied accurately due to the

advances in single-cell sequencing, which is a strong method for

characterizing diverse cell types, and has been used to study a

variety of cancers (Treutlein et al., 2016; Ziegenhain et al., 2017).

At the same time, through cell clustering and annotation, we can

understand the cellular differentiation and immune mechanisms

of BC better (Hwang et al., 2018). Defects in the execution of cell

death by tumor cells are one of the main reasons for their

resistance to therapy (Hassannia et al., 2019).

As a form of regulated cell death, copper-dependent death

occurs through the direct binding of copper to fatty acylation

components of the tricarboxylic acid cycle (TCA) (Tsvetkov et al.,

2022). Copper has two roles in carcinogenesis: it promotes tumor

developmentwhile also causing redox stress in cancer cells (Maung

et al., 2021). High levels of copper promote drug resistance and

repair of damaged DNA in cancer cells through the induction of

MDC1 expression by copper chaperones (Jin et al., 2022). It has

been shown that reducing copper uptake by knocking out human

copper transporter protein 1 can inhibit prostate cancer cell

proliferation and tumor growth (Xie and Peng, 2021). The

study by Teng et al. also confirmed that copper deficiency may

be a novel approach to the treatment of pancreatic cancer (Yu et al.,

2019). Besides, copper can also regulate proteins involved in

evading immune responses, such as the transmembrane protein

programmed death ligand 1. Interaction between PD-L1 and PD-1

receptors on cytotoxic T lymphocytes prevents immune cells from

attacking cancer cells (Voli et al., 2020). Therefore, limiting the

availability of copper during carcinogenesis may be one way to

slow cancer progression (Shanbhag et al., 2021). It is crucial to

explore the role of CDRG in cancer. Nevertheless, whether these

CDRG are associated with the prognosis of BC patients is

uncertain.

Herein, we first identified CDRG in BC by single-cell sequencing.

Based on these CDRG, we constructed a prognostic model which

could evaluate the prognosis of BC patients accurately. At the same

time, the immune microenvironment and medication sensitivity of

BC are likewise linked to CDRG. This study informed the treatment

strategy for BC.

Methods

A flow chart of our work was shown in Figure 1.

Data collection

The “TCGAbiolinks” R package was used to download

TCGA data (TCGA-BRCA; URL: https://portal.gdc.cancer.

gov/; data: 31 May 2022; Version: v33.1). The TCGA database

was used to download transcriptome and clinical data. The

workflow type we used was Counts. 10 copper-dependent

genes (Negative hits: MTF1, GLS, CDKN2A; Positive hits:

FDX1, LIAS, LIPT1, DLD, DLAT, PDHA1, PDHB) were

obtained from the study by Tsvetkov et al. (2022). We

downloaded the BC single-cell sequencing dataset GSE168410

(Kester et al., 2022) from the GEO database (https://www.ncbi.

nlm.nih.gov/geo/). We also downloaded two databases

GSE20685 (Kao et al., 2011) and GSE20711 (Dedeurwaerder

et al., 2011) from the GEO database as the external validation

cohorts to validate our model.

Data processing of the GSE168410

First, we performed quality control on the data. As patient10 had

less single-cell sequencing data, we excluded patient10 and used

single-cell sequencing data from the remaining 11 patients for

subsequent analysis. Cells with fewer than 5% mitochondrial

genes and a total amount of genes over 300 were kept. Genes

expressed in at least three cells were kept. Stacked histograms

were used to show the proportion of cells in each sample. We

screened out the 6,000 most fluctuating genes according to their

fluctuating degrees in all samples. We used the “CellCycleScoring”

function to judge the selected cell cycle and used the “ScaleData”

function to eliminate the effect caused by the cell cycle. The

LogNormalize method was used to normalize and integrate the

samples. After the data was corrected, principal component

analysis was used for dimensionality reduction of the data, and

TSNEwas used for cluster analysis.We annotated cell types using the

“SingleR” package. We download the singler database, load

“ref_Human_all.Rdata” into the environment, and define cell

subsets according to the singler algorithm. And after annotating

the cells, the differential genes of each cluster were obtained by

FindAllMarkers detection. After importing copper-dependent genes,

the proportion of them in each cell was calculated by the

PercentageFeatureSet function. According to the median ratio of

copper-dependent genes, we divided the cells into low_cuproptosis

and high_cuproptosis cells. Then, we use the FindMarkers function

to find the differential genes of low_cuproptosis and

high_cuproptosis cells, and filter the genes to screen out the genes

whose p-value is less than 0.05. We defined these genes as copper-

dependence-related genes (CDRG).
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Data processing of the TCGA

First, the data downloaded were preprocessed and combined

using the Perl language to access the count file. The gene symbol

was also transformed with Perl. Then, the corresponding gene

expression was acquired by matching the transcriptome data

from TCGA with CDRG. We excluded patients with incomplete

clinical data and those with 0 days of follow-up. We then

performed a subgroup analysis of the patients. We matched

the CDRG expression data with the survival data, performed a

univariate COX analysis, and screened out genes with a p-value

less than 0.05, which were prognostically significant genes. The

forest diagram was used to show the prognostic genes.

Construction of the prognostic model and
nomogram

We used the “caret” package to randomly split the matched

cohort into a training cohort and a test cohort in a 1:1 ratio.

Subsequently, the prognostic CDRG were selected by the least

absolute and selection operator (LASSO) regression. We then

FIGURE 1
The flow chart of data collection and analysis in this study.
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calculated the risk score for each patient and built a prognostic

model. We divided BC patients into high- and low-risk groups

based on median score. Between the two groups, we utilized a

clinical correlation heatmap to analyze differences in clinical

features and examined disparities in patient outcomes. The

survival differences were then verified using a log-rank test.

Thereafter, univariate and multivariate cox analyses were

performed with the risk score and different clinical

information. Subsequently, we plotted the time-dependent

receiver operating characteristic (ROC) plots and calculated

the area under the curve (AUC) to validate the predictive

power of the constructed prognostic model. We combined

clinical data and patient risk scores to construct a nomogram

to further analyze the prognosis of BC patients. Finally, the

nomogram’s accuracy in estimating patient outcomes was

evaluated by prognostic ROC curves.

External validation of the prognostic
model

GSE20685 cohort and GSE20711cohort were selected as two

external validation cohorts. In both external validation cohorts,

risk scores for each sample were calculated according to the

formula of the model, and patients were divided into high- and

low-risk groups based on the median. Next, survival analysis was

performed to determine whether there was also a difference in

prognosis between the two groups in the external validation

cohorts. The ROC curve was used to evaluate the accuracy of the

model.

Functional enrichment analysis

We performed the Gene Ontology (GO) analysis and the

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway

analysis by the “clusterProfiler” package. We also performed the

gene set variation analysis (GSVA) by the “GSVA” package. The

results were kept if the p-value < 0.05. The bar charts were used to

represent the results of the analysis.

Immunoassay and m6A analysis

To investigate the correlation between our risk model and

the level of tumor infiltration, we designed the immune

infiltration heatmap and the correlation map to visualize

our data. The tumor infiltration methods we used were

TIMER, CIBERSORT, QUANTISEQ, MCPCOUNTER,

XCELL, and EPIC. The literature provided us with a list of

m6a-related (Huang et al., 2020; Tang et al., 2020; Li et al.,

2021) and immune checkpoint-related genes (Tian et al.,

2020; Jiang et al., 2021; Shimada et al., 2021; Song et al.,

2021). Boxplots were used to display the results of the

analysis.

Drug sensitivity analysis

We used the expression matrix and drug processing

information from the “Cancer Genome Project” (CGP, https://

www.cancerrxgene.org/) to obtain the drugs associated with the

model genes using the “pRROpheticPredict” function (Geeleher

et al., 2014).

Results

Analysis of the GEO dataset

Supplementary Figure S1A shows the amount of gene

expression per cell, the ratio of mitochondrial genes and CDRG

in 11 samples. Cells were evenly distributed among the 11 samples.

The number of genes and their expression levels are positively

correlated (Supplementary Figure S1B). We marked the top

10 genes out of 6,000 hypervariable genes in red

(Supplementary Figure S1C). We then integrated the

11 samples. The result showed that the integration could be

used for subsequent analysis. After PCA dimensionality

reduction, using the TSNE clustering technique, we divided all

cells into 13 groups and annotated all cells. According to the

surfacemarker genes of different cell types, the cells were annotated

as Fibroblasts, MSC, Epithelial_cells, Tissue_stem_cells, Monocyte,

Endothelial_cells, and T_cells (Figure 2A). Figure 2B shows the

ratio of different cells in each patient. Then after using the

“PercentageFeatureSet” function to input 10 copper-dependent

genes, the proportion of them in each cell was obtained.

According to the median ratio of copper-dependent genes, we

divided the cells into low_cuproptosis and high_cuproptosis cells

(Figures 2C,D). The cut-off value we used was 0.04336513. We

found that the distribution of low_cuproptosis cells and

high_cuproptosis cells in each cell cluster was relatively uniform

(Figure 2E). Finally, between the two groups, we analyzed the

differentially expressed genes and identified 384 CDRG.

Analysis of the TCGA dataset

After subgroup analysis, the patients were divided into five

subgroups (Figure 2F), including luminal A (46.86%), luminal B

(17.62%), Her2-enriched (6.73%), basal-like (15.96%), and

normal-like (12.82%). After matching transcriptomic and

clinical data of CDRG in the TCGA database, we performed

independent prognostic analysis, resulting in 47 genes with

prognostic significance. Figure 2G shows the CDRG associated

with prognosis.
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Construction and evaluation of prognostic
model

After performing the Lasso regression analysis, we screened

16 genes from CDRG associated with prognosis in the training

cohort (Figures 3A,B). At the same time, we calculated and

recorded the risk score for each patient. The risk score =

DLAT*0.070163 + SNX3*0.488279 + TTC3*0.028921 +

PHF20*0.107077 + RTN4*0.126126 + SURF4*0.084301 +

SDC1*0.155383 + KDELR2*0.366251 + BAMBI*0.037788-

ANXA5*0.47211-RBP1*0.1076-TPT1*0.07754 + MARVELD1*

0.198669—MDK*0.05575-RPLP1*0.07644-ETV6*0.09076. BC

patients were divided into high-risk and low-risk groups based

on the median risk score (54.869275). Table 1 showed the

screened genes and their coefficients.

We then evaluated the prognostic model. We performed

survival analysis to explore the prognostic value of this feature.

As can be seen, in both cohorts, the prognosis for patients in

the high-risk group was much poorer (Figures 4A,B). The

AUC at 1, 2, 3, 4, and 5 years of the training cohort were 0.645,

0.713, 0.764, 0.798, and 0.739, respectively (Figure 4C). The

AUC at 1, 2, 3, 4 and 5 years of the test cohort were 0.722,

0.771, 0.708, 0.699, and 0.674, respectively (Figure 4D).

Similarly, in both external validation cohorts, we also

observed that patients with high-risk scores had a

significantly worse prognosis than those with low-risk

scores (Figures 4E,F). In order to further explore the

accuracy of the prognostic model in the evaluation of the

prognosis of BC patients, we conducted the ROC curve

analysis in both external validation cohorts. The AUC at 1,

2, 3, 4, and 5 years of the GSE20685 cohort were 0.776, 0.747,

0.658, 0.621, and 0.637, respectively (Figure 3G). The AUC at

1, 2, 3, 4, and 5 years of the GSE20711 cohort were 0.977, 0.679,

0.742, 0.734, and 0.719, respectively (Figure 3H). The AUC in

the four cohorts was greater than or near 0.7, demonstrating

that the prognostic model was accurate and stable.

We then analyzed the distribution of gene expression and

patient survival in the models between the high - and low-risk

groups in training and test cohorts (Figures 5A,B).We found that

with the increase in risk value, the proportion of BC patients who

died increased (Figures 5C,D). Moreover, we found that genes

ANXA5, RBP1, TPT1, MDK, RPLP1, and ETV6 were highly

expressed in the low-risk group, while DLAT, SNX3, TTC3,

PHF20, RTN4, SURF4, SDC1, KDELR2, BAMBI, and

MARVELD1 were highly expressed in the high-risk group

(Figures 5E,F).

FIGURE 2
Single-cell sequencing analysis (A,B), distribution of high_cuproptosis cells and low_cuproptosis cells (C,D,E), subgroup analysis (E), and
univariate COX analysis (G). (A) Single-cell sequencing analysis of the GSE168410 dataset (n = 11). According to the surface marker genes of different
cell types, the cells were annotated as Fibroblasts, MSC, Epithelial_cells, Tissue_stem_cells, Monocyte, Endothelial_cells, and T_cells. (B) The cell
ratios of every sample at the single-cell level after quality control. (C,D)Distribution of high_cuproptosis cells and low_cuproptosis cells. (E) The
distribution of high_cuproptosis cells and low_cuproptosis cells in each cell cluster was relatively uniform. (F) The BC patients were divided into five
subgroups, including luminal A (46.86%), luminal B (17.62%), Her2-enriched (6.73%), basal-like (15.96%), and normal-like (12.82%). (G)Univariate COX
analysis of the TCGA cohort. We selected 47 genes with prognostic significance (p < 0.05). Blue represented low-risk CDRG and red represented
high-risk CDRG.
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Exploration of independent prognostic
significance of the signature

Subsequently, to see if risk score and other clinical features were

independent prognostic predictors of BC, we employed univariate

and multivariate COX regressions. First, univariate COX regression

revealed that age (Hazard Ratio (HR) = 1.033, p< 0.001), stage (HR=

1.860, p < 0.001), and risk score (HR = 1.012, p < 0.001) were

independent prognostic indicators of BC in the training cohort.

Multivariate COX regression showed that age (HR= 1.031, p = 0.002,

stage (HR = 2.159, p < 0.001), and risk score (HR = 1.012, p < 0.001)

were independent prognostic indicators of BC. In the test cohort,

univariate COX regression showed that age (HR = 1.037, p < 0.001),

stage (HR = 2.530, p < 0.001), and risk score (HR = 1.011, p < 0.001)

were independent prognostic indicators of BC. Multivariate COX

regression showed that age (HR = 1.037, p = 0.001), stage (HR = 2.68,

p = 0.05), and risk score (HR = 1.010, p = 0.037) were independent

prognostic indicators of BC.

Enrichment analysis

Then, we performed the enrichment analysis. The results

of GO enrichment analysis showed that these genes were

FIGURE 3
LASSO regression analysis. (A,B) Lasso regressionwas used to construct prognostic signatures in the training cohort (n = 525). When Lamdawas
16, the curve converged.

TABLE 1 Genes used for model building and their Coefficients.

Gene Coefficients

DLAT 0.070163

SNX3 0.488279

TTC3 0.028921

PHF20 0.107077

RTN4 0.126126

SURF4 0.084301

SDC1 0.155383

KDELR2 0.366251

BAMBI 0.037788

ANXA5 −0.47211

RBP1 −0.1076

TPT1 −0.07754

MARVELD1 0.198669

MDK −0.05575

RPLP1 −0.07644

ETV6 −0.09076

Genes and their coefficients used to construct prognostic models. The risk score =

DLAT*0.070163 + SNX3*0.488279 + TTC3*0.028921 + PHF20*0.107077 + RTN4*

0.126126 + SURF4*0.084301 + SDC1*0.155383 + KDELR2*0.366251 + BAMBI*

0.037788-ANXA5*0.47211-RBP1*0.1076-TPT1*0.07754 + MARVELD1*0.198669–

MDK*0.05575-RPLP1*0.07644-ETV6*0.09076.
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mainly related to the extracellular matrix organization,

extracellular framework components, and protein

expression (Figure 6A). The results of the KEGG

enrichment analysis showed that these genes were mainly

related to the TCA cycle, ribosome, and protein metabolism

(Figure 6B). GSVA analysis was used to further explore the

differences in KEGG pathways involved between high and

low-risk groups. The results showed that ribosome-related

pathways, cell adhesion molecule-related pathways, and

glycolysis and gluconeogenesis-related pathways had

significant differences between high and low-risk groups

(Figure 6C).

Immunoassay and m6A analysis

In tumor development, the immunological

microenvironment is critical. T cells, B cells, and Macrophage

tended to be highly expressed mainly in the high-risk group

(Figure 7A).

To further understand the differences in immune

microenvironments to guide immunotherapy, the

immunological function of high-risk and low-risk

populations was discussed. The results show that high-risk

groups have a more active immune function (Figure 7B). In

the high-risk group, the majority of immunological

checkpoint genes were up-regulated (Figure 7C). Immune

checkpoint blockade may be more beneficial to them.

Meanwhile, between the two groups, Results showed that in

high-risk groups, most m6a-related genes were upregulated

(Figure 7D).

Drug sensitivity analysis

To target treatment, drug sensitivity analyses were

performed to identify drugs that were more effective in

the high-risk group. Figure 8 illustrated that the

candidates were Veliparib, Selumetinib, Entinostat, and

Palbociclib.

Construction of the nomogram

To further apply this prognostic model to BC prognostic

assessment, we combined TCGA BC transcriptome data and

clinical data to construct a nomogram related to the risk

score. The prognostic model estimated that the 1, 3, and 5-

years mortality of a BC patient was 0.0117, 0.0737, and

0.153, respectively (Figure 9A). The nomogram can better

assess patient risk and guide subsequent clinical decisions.

The ROC curves showed that the AUC at 1, 3 and 5 years of

the training cohort were 0.741, 0.761, and 0.638,

respectively (Figure 9B), and the AUC at 1, 3, and 5 years

of the test cohort were 0.881, 0.745 and 0.714, respectively

(Figure 9C).

FIGURE 4
Evaluation of prognostic model. (A,B) In both training (A) and test cohorts (B, n = 525), the high-risk patients had a worse prognosis (p < 0.05).
(C,D) We found that the AUC in both training (C) and test (D) cohorts were greater than or close to 0.7. (E,F) In both GSE20685 [(E), n = 382] and
GSE20711 [(F), n = 89] cohorts, patients with high-risk scores had a significantly worse prognosis than those with low-risk scores (p < 0.05). (G,H) The
AUC of the GSE20685 (G) and GSE20711 (H) cohorts was basically between 0.6 and 0.8.
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Discussion

We performed an extensive bioinformatics analysis to

explore the significance of copper-dependent-related genes in

BC in this study. Using the GEO and TCGA datasets, a predictive

model based on copper-dependent-related genes was effectively

built in this study. By calculating the risk score, patients with BC

could be classified into high-risk and low-risk groups. The high-

risk group showed worse outcomes in both TCGA and GEO

cohorts. Besides, the ROC curves showed that this signature

showed high accuracy in evaluating the prognosis of BC patients

at 1, 2, 3, 4, and 5 years. In addition, we also confirmed the roles

of copper-dependent-related genes in the immune

microenvironment were significantly different between them,

which may provide new predictors for immunotherapy in BC

patients. Drug sensitivity analysis identifies more sensitive drugs

for high-risk groups, which can be valuable in stratifying

treatment for BC.

Female breast cancer is the most common cancer worldwide

(Sung et al., 2021). Surgery, chemotherapy, radiotherapy,

targeted therapy, and hormone therapy have become the main

treatment strategies (Ferreira et al., 2019; Hirukawa et al., 2019;

Kim et al., 2020). However, the overall prognosis of BC patients

remains poor, especially for advanced patients (Tao et al., 2015).

Meanwhile, despite the development of various prognostic

indicators to aid clinical decision-making in BC patients, the

application of predictors has been limited. The proposal of

CDRG provides a novel approach to the treatment of BC.

FIGURE 5
Evaluation of prognostic model. (A,B) The risk score of both cohorts. The patients were divided into high-risk and low-risk groups based on the
median risk score. (C,D) The correlation of risk score and survival status of patients in both cohorts. With the increase in risk value, the proportion of
BC patients who died increased. (E,F) Heat map of expression of 16 model genes in high-risk and low-risk in both cohorts. The genes ANXA5, RBP1,
TPT1, MDK, RPLP1, and ETV6 were highly expressed in the low-risk group, while DLAT, SNX3, TTC3, PHF20, RTN4, SURF4, SDC1, KDELR2,
BAMBI, and MARVELD1 were highly expressed in the high-risk group.
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These CDRG are significant. Copper is a cofactor for a

number of essential enzymes, while copper-induced cytotoxic

mechanisms can also lead to cell death (Ge et al., 2022). Studies

have demonstrated that copper-induced cell death is mediated by

lipid acylation of proteins that are concentrated in the TCA cycle,

where lipid acylation is required for enzyme function

(Solmonson and DeBerardinis, 2018; Tsvetkov et al., 2022).

Copper-dependent genes are regulators of copper death

(Tsvetkov et al., 2022). In this study, the results of KEGG

enrichment analysis showed that the copper-dependent genes

we screened were mainly associated with the TCA cycle, and

GSVA analysis also showed that glycolysis and gluconeogenesis-

related pathways were significantly different between high-risk

and low-risk groups, confirming that our screening for copper-

dependent genes is meaningful. In addition, GO enrichment

analysis, KEGG enrichment analysis and GSVA analysis showed

that the differential functions and pathways between the high-

risk group and the low-risk group were also concentrated in

extracellular matrix organization and ECM receptor interaction

pathways. Therefore, we further explored the content of immune

matrix components in the tumor microenvironment. The results

of immune analysis confirmed that T cells, B cells and

macrophages were mainly highly expressed in high-risk

groups, and the high-risk groups had more active immune

functions and up-regulated expression of most immune

checkpoint genes. This suggests that there are more immune

matrix components in the tumor microenvironment of high-risk

individuals.

Sixteen genes in the prognostic model have been initially

elucidated in the pathogenesis and progression of the disease.

DLAT is involved in pyruvate metabolism and the TCA cycle

(Chen et al., 2021). Goh et al. (2015) found that DLAT was up-

regulated in gastric cancer cells and may be one of the potential

drug targets in mitochondria. SNX3 is involved in intracellular

protein trafficking and acts as a key factor driving tumor

progression and metastasis in triple-negative breast cancer

(Cicek et al., 2022). TTC3 is a ubiquitin E3 ligase that

promotes the degradation of Akt ubiquitination and

phosphorylation (Suizu et al., 2009). The study by Wu et al.

(2021) constructed a 4-gene prognostic marker to evaluate and

predict patients with soft tissue sarcoma, in which TTC3 is a key

molecule. PHF20 is a multi-domain protein that regulates the

activity and gene expression of P53 (Cui et al., 2012). Ma et al.

(2020) identified PHF20 as a key driver of glioblastoma

malignant behavior. RTN4 belongs to the reticulin-encoding

gene family and is involved in the membrane trafficking of

neuroendocrine cells (Wang et al., 2021a). Pathak et al.

(Pathak et al., 2018) found that RTN4 is involved in

carcinogenesis, and the knockdown of RTN4 enhanced the

toxic effect of paclitaxel on cancer cells. SURF4 encodes a

conserved integral membrane protein that interacts with ER-

Golgi intermediate compartment proteins (Yan et al., 2022). Kim

et al. (2018) found that SURF4 exhibited abnormal amplification

and increased expression in tumor tissues. SDC1 mediates cell

binding, cell signaling, and cytoskeletal organization (Jenkins

et al., 2018). Yao et al. (2019) found that SDC1 is essential for

pancreatic cancer maintenance and progression by regulating

micropinocytosis. KDELR2 is a transmembrane protein (Wang

et al., 2011). Mao et al. (2020) discovered that elevated KDELR2

expression in glioma patients was linked to a poor prognosis.

BAMBI is a transmembrane glycoprotein whose overexpression

performs an important part in the pathogenesis and development

of osteosarcoma (Zhou et al., 2013). ANXA5 is a calcium-

dependent phospholipid-binding annexin (Bouter et al., 2015).

FIGURE 6
GO enrichment analysis (A), KEGG enrichment analysis (B), and GSVA analysis (C) of CDRG. (A) The results of GO enrichment analysis showed
that these genes were mainly related to the extracellular matrix organization, extracellular framework components, and protein expression. (B) The
results of the KEGG enrichment analysis showed that these genes were mainly related to the TCA cycle, ribosome, and protein metabolism. (C) The
results showed that ribosome-related pathways, cell adhesion molecule-related pathways, and glycolysis and gluconeogenesis-related
pathways had significant differences between high and low-risk groups.
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Yang et al. (2021) showed that ANXA5 is associated with

chemoresistance in B-cell acute lymphoblastic leukemia. RBP

is a carrier protein involved in the transport of retinol (Napoli,

2017). Gao et al. (2020) found that the RBP1-CKAP4 axis is a key

regulator of autophagy machinery in oral squamous cell

carcinoma. TPT1 is a protein involved in cell growth and

proliferation (Bae et al., 2017). Li et al. (2019) found that the

up-regulation of TPT1 can promote the metastasis of colorectal

cancer.MARVELD1 is a nuclear protein (Wang et al., 2009). The

study by Li et al. (2016) showed that gefitinib’s therapeutic

efficacy in lung cancer can be improved by interfering with

MARVELD1. MDK is a heparin-binding growth factor

(Filippou et al., 2020). Yuan et al. (2015) found that lung

cancer patients with high levels of MDK have a bad

prognosis. RPLP1 is a ribosomal protein (Campos et al.,

2020). Xie et al. (2021) found that liver cancer patients with

high levels of RPLP1 have a bad prognosis. ETV6 encodes an ETS

family transcription factor and is associated with susceptibility to

acute lymphoblastic leukemia (Nishii et al., 2021). Our study,

combining these 16 genes to construct a prognostic model, could

improve our understanding of tumor cells.

Programmed cell death is gaining increasing attention in the

study of tumor therapy and the immune microenvironment

(Wang et al., 2021b; Niu et al., 2022). Copper-dependent

death is a newly proposed concept that occurs through the

direct binding of copper to fatty acylation components of the

tricarboxylic acid cycle (Tsvetkov et al., 2022). Tumor growth

and metastasis have a high demand for metallic nutrients such as

copper, which represents a metabolic vulnerability that can be

exploited by limiting the availability of copper (Brewer, 2014; Ge

et al., 2022). There are also studies that suggest copper

consumption may play a role in cancer prevention (Pan et al.,

2009). Tetrathiomolybdate, a less toxic copper chelator, is the

primary drug used in copper depletion experiments in cancer

models. It has achieved impressive results in a clinical trial

(https://www.cancer.org/cancer/breast-cancer/understanding-a-

FIGURE 7
Immunoassay and m6A analysis. (A) Immune cell infiltration distribution. T cells, B cells, and Macrophage tended to be highly expressed mainly
in the high-risk group. (B) Immune-related functions. The high-risk groups have a more active immune function. (C) The expression of immune
checkpoint-related genes. The majority of immunological checkpoint genes were up-regulated. (D) the expression of m6A-related genes. In high-
risk groups, most m6a-related genes were upregulated.
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breast-cancer-diagnosis/types-of- breast-cancer/triple-negative.

html) in advanced breast cancer, with event-free survival rates

of 90% (stage II/III) and 50% (stage IV) in patients with triple-

negative breast cancer. However, studies of genes related to

copper dependence in BC are lacking. For the first time, we

provide the prognostic features of BC CDRG, which have crucial

consequences for BC prognosis.

Research has confirmed that cancer must evade anti-tumor

immune responses in order to grow gradually (Gajewski et al.,

2013). Tumor immune evasion has been recognized as a

hallmark of cancer progression (Batlle and Massagué, 2019).

Immunotherapy for cancer has recently advanced in the

treatment of advanced tumors, however, a significant

proportion of patients do not respond (Pardoll, 2012; Di

Giacomo et al., 2013). BC is considered to be immunologically

quiescent tumors, which greatly hinders their therapeutic

response to immunotherapy. However, recent studies have

shown that immune infiltration in the tumor immune

microenvironment plays a decisive role in predicting the

prognosis of BC (Baxevanis et al., 2021). Tumor

microenvironment structure in selected BC correlates with

genomic profiles indicative of immune escape (Danenberg

et al., 2022). The results of pre-clinical trials suggest that

immunotherapy may be a new approach to the clinical

management of BC (Adams et al., 2019). Therefore, it is

important to understand the immune microenvironment of

BC. Our study found that the high-risk group is associated

with immune cell infiltration and high expression of immune

checkpoint genes, and therefore the high-risk group is more

likely to benefit from immunotherapy.

Immune checkpoint blockade (ICB) is expected to be a

treatment modality for cancer patients (El-Khoueiry et al.,

FIGURE 8
Drug sensitivity analysis. The candidates are Veliparib (A), Selumetinib (B), Entinostat (C), and Palbociclib (D).
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2017). However, many patients who receive immunotherapy do

not respond to ICB, or patients initially respond to ICB but

gradually become insensitive as the disease progresses (Pitt et al.,

2016; Marin et al., 2022). M6A is considered to be the most

significant and important modification of mRNA and noncoding

RNA (He et al., 2019). The m6A regulators that regulate m6A

modification may be involved in the growth, invasion, and

metastasis of various cancers, as well as abnormal immune

regulation (Gu et al., 2021; Uddin et al., 2021). Several studies

have shown that the tumor microenvironment is closely linked to

m6Amodifications (Tang et al., 2020; Xu et al., 2020; Zhang et al.,

2020). Our study found significant differences in the expression

of m6a-related genes in high-risk and low-risk groups, which

could help to screen patients for the benefits of immunotherapy.

Drug-resistant treatment is a major challenge in the current

treatment of BC (Bai et al., 2018). Our study screens drug

candidates relevant to prognostic models. In addition, between

high and low-risk groups, m6A-related gene expression varies

substantially, which has implications for our further breast

cancer treatment.

FIGURE 9
The construction of a nomogram. (A) The nomogram. The mortality rate of the patient in 1, 3, and 5 years was estimated to be 0.0117, 0.0737,
and 0.153. (B) ROC curve of the nomogram in the training cohort. The AUC in 1, 3, and 5 years were 0.741, 0.761, and 0.638, respectively. (C) ROC
curve of the nomogram in the test cohort. The AUC in 1, 3, and 5 years were 0.881, 0.745, and 0.714, respectively.
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However, our study has some limitations. Firstly, our model

was constructed and validated based on retrospective data.

Prospective clinical validation is needed henceforth. Secondly,

The research data comes from the TCGA and GEO public

databases. In the future, in vivo or in vitro basic experiments

will be performed to confirm our findings, and we will further

refine them in the future.

This is the first copper-dependent-related gene prognostic

model of breast cancer utilizing single-cell cluster analysis that we

are aware of, and it informs the study of BC programmed deaths

and also contributes to the treatment of BC patients.

Conclusion

Based on copper-dependent-related genes, the prognostic

model was built in BC. We can accurately estimate the

prognosis and immunological microenvironment of BC

patients using this model. In addition, Our findings might

lead to new approaches to BC therapy.
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