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Abstract: Prostate cancer (PCa) is the most prevalent cancer (20%) in males and is accountable for
a fifth (6.8%) cancer-related deaths in males globally. Smoking, obesity, race/ethnicity, diet, age,
chemicals and radiation exposure, sexually transmitted diseases, etc. are among the most common
risk factors for PCa. However, the basic change at the molecular level is the manifested confirmation
of PCa. Thus, this study aims to evaluate the molecular signature for PCa in comparison to benign
prostatic hyperplasia (BPH). Additionally, representation of differentially expressed genes (DEGs)
are conducted with the help of some bioinformatics tools like DAVID, STRING, GEPIA, Cytoscape.
The gene expression profile for the four data sets GSE55945, GSE104749, GSE46602, and GSE32571
was downloaded from NCBI, Gene Expression Omnibus (GEO). For the extracted DEGs, different
types of analysis including functional and pathway enrichment analysis, protein–protein interaction
(PPI) network construction, survival analysis and transcription factor (TF) prediction were conducted.
We obtained 633 most significant upregulated genes and 1219 downregulated genes, and a sum
total of 1852 DEGs were found from all four datasets after assessment. The key genes, including
EGFR, MYC, VEGFA, and PTEN, are targeted by TF such as AR, Sp1, TP53, NF-KB1, STAT3, RELA.
Moreover, miR-21-5p also found significantly associated with all the four key genes. Further, The
Cancer Genome Atlas data (TCGA) independent database was used for validation of key genes
EGFR, MYC, VEGFA, PTEN expression in prostate adenocarcinoma. All four key genes were found
to be significantly correlated with overall survival in PCa. Therefore, the therapeutic target may be
determined by the information of these key gene’s findings for the diagnosis, prognosis and treatment
of PCa.

Keywords: prostate cancer; benign prostate hyperplasia; differentially expressed genes; key
genes; bioinformatics

1. Introduction

Prostate cancer (PCa) is the most prevalent cancer (20%) in males and accountable
for a fifth (6.8%) cancer-related deaths in males globally [1]. According to the World
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Cancer Survey Statistics (GLOBOCAN), the number of newly diagnosed cases of PCa was
~1.41 million in 2020, with ~375 thousand new deaths [2,3]. By 2040, the global PCa burden
is expected to increase to 2.43 million new cases and 740 thousand new deaths due to
population growth and ageing [2,3]. On the other hand, PCa incidence has been steadily
increasing in India. According to India’s population-based cancer registries, PCa is the
second most common cause of cancer in men living in metropolitan areas [4,5].

Smoking, obesity, race/ethnicity, diet, age, chemicals and radiation exposure, sexually
transmitted diseases, etc., are among the most common risk factors for prostate cancer [6].
However, the basic change at the molecular level is the manifested confirmation of PCa.
Although prostate specific antigen (PSA) level is the most frequently used screening tool
for prostate cancer detection, it doesn’t stand as an absolute method to predict disease
malignancy. Furthermore, the use of genetic profiling may provide additional benefits for
early PCa detection [7–10]. Prostate cancer may be rectified at an early stage of cancer by
surgery or radiation therapy, but patients with advanced or metastatic disease may have no
curative therapeutic options [11,12]. Consequently, there is an urgent need for treatments
capable of preventing or combating PCa.

Currently, gene expression data mining and bioinformatics microarray analysis are
widely used to find key genes for disease severity, pathogenesis, complexity, recognition of
suitable biomarkers, miRNA targets, transcription factor (TF) recognition and drug targets.
The gene expression is a molecular signature used as a diagnostic and prognostic marker
in cancer research. Gene expression profiling reveals several differentially expressed genes
(DEGs) in patient samples, but many genes cannot be related by the prevailing methods.
Protein-protein interaction (PPI) network research plays a great role in understanding the
molecular function; and any malfunctioning pathway linked to the disease network may
result from changes in the PPI network locality. PPI gives elaboration on protein function,
molecular magnitude, gene ontology (GO), disease regulator genes, miRNA and novel
drug targets.

Previous PCa meta-analysis studies have revealed mostly one type of molecular
markers, like genetic molecular markers by Zhao et al., (2014) who reported Ki-67, Bcl-2,
CD147, COX-2, ALDH1A1 and FVIII genes [13]. Or miRNAs as reported by Song et al.,
(2017) of up/down regulated miRNAs like miR-18a, miR-34a, miR-129, miR-145, etc. [14]
However, limited studies have reported different types of biomarkers in the same study [15].
This study aims to evaluate the molecular-signature for PCa in comparison to benign
prostatic hyperplasia (BPH). Additionally, in this study, identification and classification of
DEGs were conducted with the help of some bioinformatics tools like DAVID (to know
about the functional annotation of a gene), STRING (to find out PPI network functional
enrichment analysis), GEPIA (to find differential gene expression analysis and profiling
plotting), and Cytoscape (to make an interaction map). Furthermore, to find key genes
associated with pathogenesis, the degree of network interaction as well as the module
of the most related gene; are used to discover hub genes that may work as key targets
for treatment.

2. Materials and Methods
2.1. Microarray Data Extraction

The National Centre for Biotechnology Information (NCBI)-Gene Expression Omnibus
(GEO) (https://www.ncbi.nlm.nih.gov/geo/, accessed on 11 March 2022) [16] is a global
public domain for gene expression database from which we have retrieved the four data
sets (GSE55945, GSE104749, GSE46602, GSE32571) belonging to the prostate tumor (n = 112)
and the BPH tissue (n = 65). Only datasets that met the following inclusion and exclusion
criteria for PCa datasets were incorporated in this study. First, inclusion criteria take in
(i) datasets with expression data for PCa tissue and BPH tissue samples; (ii) datasets with at
least four samples’ gene expression data (both PCa tumor and BPH) and (iii) homo sapiens
datasets. Table 1 summarizes all of the information regarding the datasets that were chosen.
The matrix files of GSE55945, GSE104749, GSE46602, GSE32571 were obtained by GEO2R,
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and the raw data of the datasets were downloaded by the GEO query package of the
R language.

Table 1. Information about the included GSEs in this study.

Sample
(Accession

No.)

Prostate
Cancer

Benign
Prostate

Hyperplasia
Organism Sample Type Platform Reference Included/

Excluded

GSE55945 13 8 Homo
sapiens

Radical
prostatectomy

tissue

Affymetrix
GPL570 [17] Included

GSE104749 4 4 Homo
sapiens

Fine-Needle
Aspiration tissue

Affymetrix
GPL570 [18] Included

GSE46602 36 14 Homo
sapiens

Laser micro
dissected tissue

Affymetrix
GPL570 [19] Included

GSE32571 59 39 Homo
sapiens

Fresh frozen
tissue

Illumina
GPL6947 [20] Included

GSE142288 48 Nil Homo
sapiens Tissue Agilent

GPL13264 [21] Excluded

GSE155792 1 Nil Homo
sapiens Tissue Agilent

GPL28148 NA Excluded

GSE113153 10 Nil Homo
sapiens Tissue GPL21825 [22] Excluded

GSE134160 164 Nil Homo
sapiens

Fresh frozen
tissue

Agilent
GPL26898 [23] Excluded

2.2. Differentially Expressed Genes Identification

The study was carried out in accordance with the flowchart shown in Figure 1. The
differentially expressed genes (DEGs) in GSE55945, GSE104749, GSE46602, and GSE32571
were obtained with GEO2R analysis of the GEO database. In brief, the GEO2R tool of the
GEO database was used to extract the matrix files for GSE55945, GSE104749, GSE46602, and
GSE32571 from their respective GSE databases. There were 13 prostate tumor and 8 BPH
tissue samples for GSE55945, 4 prostate tumor and 4 BPH tissue samples for GSE104749,
36 prostate tumor and 14 BPH tissue samples for GSE46602, 59 prostate tumor and
39 BPH tissue samples for GSE32571. These four datasets were chosen for further GEO2R
investigation. Moreover, mRNAs having an adjusted p-value < 0.05 and [log2FC] > +1,
[log2FC] < −1 were chosen as significant DEGs. The DEGs were visualised in a volcano
plot using the R package “ggplot2” (https://cran.r-project.org/web/packages/ggplot2/
accessed on 18 February 2022). The BRCW computing website (http://jura.wi.mit.edu/
bioc/tools/compare.php, accessed on 18 March 2022) was used to choose unique DEGs
that were shared by at least two gene expression profile datasets. As a result, we were able
to be more precise in our DEG selection, and the possibility of biassed data compilation
was reduced to a negligible level. The Venn Diagram was used to visualise the upregulated,
downregulated, and unique DEGs identified from four datasets.

2.3. Gene Ontology and Pathway Enrichment Analysis

The DEGs functional interpretation was evaluated and visualized in web resource
such as DAVID (DAVID; version 6.7, http://david.abcc.ncifcrf.gov, accessed on 18
February 2022) [24] as per the molecular function, biological process and cellular com-
ponent of DEGs. For the metabolic pathway enrichment study, the Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathways (http://www.genome.jp/kegg, accessed on
18 February 2022) [25] tool was used. The adjusted p-value < 0.05 cutoff score was taken
into consideration for obtaining significant expressed genes.

https://cran.r-project.org/web/packages/ggplot2/
http://jura.wi.mit.edu/bioc/tools/compare.php
http://jura.wi.mit.edu/bioc/tools/compare.php
http://david.abcc.ncifcrf.gov
http://www.genome.jp/kegg
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Figure 1. Flowchart of methodology containing sorting of GEO datafile, selection of DEGs, GO
annotation analysis, and identification of key genes. DEGs (differentially expressed genes), GEO
(gene expression omnibus), GO (gene ontology).

2.4. Protein-Protein Network Screening (PPI), Key Genes Identification and Module
Network Construction

The online program STRING (http://www.string-db.org/, accessed on 18 February
2022) was used to extract interconnected genes to create a network of PPI [26]. To visualize
PPI, the tool Cytoscape version 3.8.2 (http://www.cytoscape.org/, accessed on 18 February
2022) [27] was introduced. To identify significant genes in the subnetwork, a Cytoscape

http://www.string-db.org/
http://www.cytoscape.org/
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plugin Molecular Complex Detection (MCODE) was implemented with the parameters
K-score (2), degree cutoff score (2), node cutoff score (0.2) and 100 maximum depths. To
find the most intersected key genes and modules, the Cytohubba plugin tool (http://hub.
iis.sinica.edu.tw/cytohubba/, accessed on 18 February 2022) [28] was used in Cytoscape
and the PPI-MCODE modules were also merged. Multiple topological characteristics such
as Maximal Clique Centrality, Density of Maximum Neighborhood, Betweenness Centrality,
Closeness Centrality, Degree, Stress and Bottleneck were also added to the network for
identification of key genes and modules.

2.5. Genetic Alteration and Validation of Key Genes Expression Paradigm

As per the manual, examination of genetic alteration for key genes was performed by
the cBioportal for Cancer Genomics [29]. The oncoplot for key genes was created by the
cBioPortal for Cancer Genomics. Further, the GEPIA (Gene Expression Profiling Interactive
Analysis) online software (http://gepia.cancer-pku.cn, accessed on 18 February 2022)
was used for investigation of key genes expression in PCa. The verification of key gene
expression was conducted by GEPIA between 492 PCa and 152 non-cancer tissues. GEPIA
has synergetic and adjustable features such as analysis of differential expression, analysis of
correlation and analysis of patient survival and can provide rapid results from The Cancer
Genome Atlas (TCGA) data [30]. The values greater than the transcripts median were
classified as increased expressions, and the values lower than the transcripts median were
classified as decreased expressions.

2.6. Survival Analysis of Key Genes

The online web UALCAN based on the TCGA database was used for the survival
analysis of key genes expression in PCa [31]. The transcript per million (TPM) enrichment
analysis was used for classification of PCa patients’ expression into high and medium/low
expression. The Kaplan-Meier (KM) survival analysis (p < 0.05) was used for the evaluation
of key genes prognostic value along with Gleason Score.

2.7. miRNA and Transcription Factor Associated Network with Key Genes

Multiple experimentally verified online miRNA network software’s are available
to estimate the miRNA interaction with genes. The miRNA selection was done through
Enrichr (https://maayanlab.cloud/Enrichr/, accessed on 18 February 2022) [32] and the
TRRUST online database (https://www.grnpedia.org/trrust/, accessed on 18 February
2022) [33] was used to identify transcription factors. Selection of putative target miRNA
and transcription factor of key genes was done on the basis of a selected online tool.
Additionally, the TransmiR v2.0 database (http://www.cuilab.cn/transmir, accessed
on 18 February 2022) [34] was used to see the association between transcription factors
and miRNAs. Further validation of miRNA along with TF for key genes was done by
the online public database miRNet (https://www.mirnet.ca/, accessed on 18 February
2022) visual interaction platform [35]. The Cytoscape was used for the formation of an
integrative network of key genes, miRNAs, and transcription factors on the basis of
source and target association.

3. Result
3.1. Deferentially Expressed Genes Discovery

A total number of 164,526 annotated transcripts were obtained from the included
GSEs evaluated in the study, 132 upregulated and 387 downregulated DEGs were se-
lected in the GSE55945 data files on the basis of selection criteria (adjusted p-value < 0.05
and [log2FC] > +1, [log2FC] < −1) as compared between prostate cancer and BPH pa-
tients. Subsequently, 98 upregulated and 122 downregulated DEGs were identified
in the GSE104749 data files, 501 upregulated and 892 downregulated DEGs in the
GSE46602 data files, 60 upregulated and 166 downregulated DEGs in the GSE32571 data
files from the same criteria selection. The most significant upregulated and downregu-

http://hub.iis.sinica.edu.tw/cytohubba/
http://hub.iis.sinica.edu.tw/cytohubba/
http://gepia.cancer-pku.cn
https://maayanlab.cloud/Enrichr/
https://www.grnpedia.org/trrust/
http://www.cuilab.cn/transmir
https://www.mirnet.ca/
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lated genes for the GSE55945, GSE46602, GSE104749, GSE32571 data set are shown in
the Supplementary file S1. The Volcano plots showed upregulated and downregulated
genes for all datasets by implementing upper and lower limit criteria [logFC] > +1,
[logFC] < −1 (Figure 2). Pre raw value and post normalized value is indicated by all
four-dataset box plots (Supplementary file S2). A comparison of the complete gene
and top 100 genes expression profile of prostate cancer versus benign prostate hyper-
plasia (BPH) was further demonstrated in a graded manner by heatmap construction
(Supplementary file S3).
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Figure 2. (A–D) Volcano plots showing DEGs between prostate cancer and benign prostate
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value > 1, log2FC value < −1 and p < 0.05 are the cutoff value for significant upregulated (red
color), non-significant (black color) and downregulated (cyan color) DEGs.

3.2. DEGs Functional Annotation and KEGG Pathway Analysis

To classify unique upregulated and downregulated of all four data sets GSE55945,
GSE104749, GSE46602 and GSE32571 the bioinformatics and research computing online tool
(http://barc.wi.mit.edu/tools/, accessed on 18 March 2022) was used. We obtained 633 most
significant unique upregulated genes and 1219 unique downregulated genes from all four
datasets after assessment (Figure 3). In order to evaluate the gene-ontology functional analysis
of selected DEGs for biological process (BP), cellular process (CC), molecular function (MF) and

http://barc.wi.mit.edu/tools/
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KEGG pathway significance, DAVID online software was used. The most significant biological
process for upregulated genes involved in cell proliferation (FDR:0.003528782), mitotic nuclear
division (FDR:0.005441812), G1/S transition of mitotic cell cycle (FDR:0.007227173) and most sig-
nificant biological process for downregulated genes involved in angiogenesis (FDR:7.53× 10−6),
cell adhesion (FDR:7.53 × 10−6), response to hypoxia (FDR:0.001023707). The most significant
upregulated genes were available in the portion of the spindle microtubule (FDR:0.012514875),
cytoplasm (FDR:0.093997223), mitotic spindle (FDR:0.093997223), and the most significant
downregulated genes were available in the area of focal adhesion (FDR:2.39 × 10−9), plasma
membrane (FDR:5.86 × 10−8), caveola region (FDR:2.95 × 10−7) under the cellular component
category. Molecular function enrichment assessment for most significant upregulated genes
included ATP binding activity (FDR:0.149334827), structural constituent of ribosome activity
(FDR:0.704002703), protein serine/threonine kinase activity (FDR:0.704002703) and for most
significant downregulated genes included calcium ion binding (FDR:0.002557467), protein ho-
modimerization activity (FDR:0.042898325), glutathione transferase activity (FDR:0.042898325).
The most significant upregulated genes under KEGG pathway analysis are involved in Cell cy-
cle signaling (FDR:0.74589722), Mucin type O-Glycan biosynthesis pathway (FDR:0.74589722),
ECM-receptor interaction pathway (FDR:0.74589722) and in the case of the most significant
downregulated genes under KEGG pathway analysis, they are involved in Focal adhesion
(FDR:2.42 × 10−7), Dilated cardiomyopathy (FDR:4.04 × 10−5), Hypertrophic cardiomyopathy
(HCM) signaling pathway (FDR:1.94 × 10−4) (Figures 4 and 5, Supplementary files S4–S11).
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3.3. Protein-Protein (PPI) Network and Module Analysis

In the Cytoscape platform for up regulated and downregulated genes, we found
1572 nodes, 11,279 edges and 13.8 mean node degree after topological property analysis of
the PPI network (Figure 6A). After topological enrichment, the most connected upregulated
genes MYC, CDK1, CCNB1 etc. and the most connected downregulated genes EGFR,
VEGFA, STAT3 etc. were categorized according to their highest degree count associated
with prostate cancer (Figure 6B and Table 2). The characterization of this newly synthesized
PPI with MCODE score ≥ 3 and nodes ≥ 3 in the retrieval of two modules. Module A had
92 nodes, 580 edges with an MCODE score of 12.747 and module B had 45 nodes, 153 edges
with an MCODE score of 6.955 (Figure 7A,B).
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Status Gene
Symbol Degree Status Gene

Symbol Degree

Upregulated MYC 166 Downregulated EGFR 190
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CCNB1 97 STAT3 117
EZH2 95 CD44 113
AURKA 89 PTEN 110
UBE2C 82 VCL 86
AURKB 80 IGF1 84
COL1A1 76 CAV1 82
MKI67 76 KDR 79
TOP2A 75 PIK3R1 72
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3.4. Hub-Bottle Neck Genes and Key Genes Identification

A Cytoscape plug-in, Cytohubba was applied to the established PPI network together
with the decreasing score of the Degree algorithm to deduce the top most hub genes. The
shortest path, centrality algorithm along with bottle neck score were used in Cytohubba
software to discover the top most bottle neck genes. For further investigation, the top
10 hub genes (Figure 6C) and the top 10 bottle neck genes were selected (Figure 6D). After
study, EGFR, MYC, VEGFA, PTEN, STAT3, CDK1, a total of six were found common in both
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hub and bottleneck genes, along with the most connected genes were EGFR and VEGFA.
There were four unique hub genes including CCNB1, EZH2, AURKA and CD44, and four
unique bottleneck genes, including PIK3R1, GART, PITGS2 and RHOC (Supplementary file
S12). After taking certain topological algorithms such as betweenness centrality, closeness
Centrality, degree score, stress, bottleneck score, we identified four key regulator genes
including EGFR, MYC, VEGFA, PTEN. According to our findings, common TFs such AR,
Sp1, TP53, NF-KB1, STAT3, and RELA are targeted by all identified four key genes. Also,
miR-21-5p has a strong connection to each of the four key genes investigated in this study
(Figure 6E). The genes follow more than one criterion such as (or including?) STAT3, CAT,
VCL, EZH2, CD44, CAV1; unique genes C11or f96, TMEM106C, DMKN, PRELID2, UBXN10,
ZNF613, CCNB1, AURKA, GART, PTGS2, RHOC, PIK3R1 were revealed after integrated
analysis (Supplementary file S12).

3.5. Genetic Alteration and Validation of Four Key Genes Expression Paradigm

After statistical analysis by cBioPortal for Cancer Genomics, we observed that 1766
(26%) of the 6875 prostate cancer patients documented genetic alteration in the four key
genes. Deletion and amplification were the utmost prevalent genetic variations. (Figure 8A).
Further, the GEPIA tool (http://gepia.cancer-pku.cn, accessed on 18 February 2022) was
used for the evaluation of key genes EGFR, MYC, VEGFA, PTEN expression in The Cancer
Genome Atlas data. As per the GEO dataset findings, the key genes EGFR, VEGFA, PTEN
expression level in prostate adenocarcinoma (PRAD) was significantly lower (p < 0.05)
compared to non-tumor prostate tissue and the MYC expression level was significantly
higher (p < 0.05) in prostate adenocarcinoma (PRAD) compared to non-tumor prostate
tissue verified by the TCGA database (Figure 8B–E).

3.6. Survival Analysis of Key Genes

The TCGA based UALCAN transcriptomic cancer data was used for the survival
assessment of PCa patients and gene expression analysis. The four key regulator genes
expression were analyzed in the UALCAN database using the Kaplan Meier method. The
classification of PCa tumor tissue is based on the Gleason Score (GS) method, according
to this grading system, gleason score GS ≤ 6, 3 + 4, 4 + 3, 8, 4 + 5, 5 + 4, 10 is related to
Gleason Grading Group 1, 2, 3, 4, and 5 respectively [36]. It was noted that all the four
key genes were found significantly correlated with overall survival in PCa. The overall
survival of the low/medium expression group was observed to be significantly lower
than the high expression group for EGFR, VEGFA, PTEN genes and the overall survival of
the high expression group was observed to be significantly lower than the low/medium
expression group for MYC genes in PCa patients after integrated analysis with the Gleason
Score system (Figure 8F–I).

3.7. miRNA and Transcription Factor Associated Network with Key Genes

The miRNAs play an important role in gene expression regulation at multiple stages
after RNA synthesis. miRNA up and downregulation defects are linked with prostate can-
cer and they have an ability to differentiate between benign and malignant tumors [37]
and the disease complexity can be more readable by miRNA changes. The four key iden-
tified genes were connected to approximately 394 miRNAs (Supplementary file S13) and
233 transcription factors (Supplementary file S14), which could be responsible for control-
ling key genes. Further results demonstrated EGFR-associated 38 miRNAs, MYC-associated
115 miRNAs, VEGFA-associated 121 miRNAs, PTEN-associated 120 miRNAs. Moreover, TF
analysis revealed the following: EGFR-associated 32 transcription factors, MYC-associated
95 transcription factors, VEGFA-associated 83 transcription factors and PTEN-associated
23 transcription factors. In addition, the AR transcription factor associated with 13111 miR-
NAs possible binding sites, STAT3 transcription factor associated with 72 miRNAs and RELA
transcription factor associated with 227 miRNAs in PCa (Supplementary file S15).

http://gepia.cancer-pku.cn
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4. Discussion

Prostate cancer is a widely spread one across the world among males. PCa can
metastasize through the circulatory system reaching distant parts of the body [38]. The
disease’s pathogenicity, magnitude detection, ambiguity, predictive and clinical biomarker
scarcity are the main barriers in the path of PCa care [6,39]. As a result, the integrated
PCa key regulatory genes profiling may help to achieve more successful treatment of PCa
patients. This research has highlighted the DEGs related to PCa out of 112 tumor samples
and 65 BPH tissues, pooled from GSE 55945, GSE 104749, GSE46602, GSE32571 datasets,
with the help of bioinformatic techniques. As a result, a total number of 1866 significantly
DEGs were found, in which there were 638 up and 1228 downregulated genes. In order to
demonstrate the relationship between up and down DEGs with PPI network formation,
two modules were found to be significantly crucial in this PPI network study. Taking this
into the account, the highest ranked genes were screened by Cytohubba in terms of hub and
bottle neck genes. These techniques of gene ontology (GO) and KEGG pathways were used
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to describe the role of DEGs. The top characterized and screened genes including EGFR,
MYC, VEGFA, PTEN which are involved in prostate cancer progression, cell proliferation
and division, cell cycle signaling, metabolic and signaling pathway regulation, angiogenesis,
focal adhesion etc. [40–44] Which makes them further as molecular candidates involved
in treatment. Furthermore, various hub genes and bottle neck genes linked to prostate
cancer were uncovered through this study. In addition to that, identification of miRNAs
and screening of the transcription factors revealed molecular markers for prostate cancer
progression control.

The Epidermal Growth Factor Receptor (EGFR) is involved in many biological pro-
cesses, such as proliferation, vitality, migration, progression and cell signaling [40,41]. By
contrast, EGFR under expression has been reported with tumor progression [42]. In the Pak-
istani population, Hashmi and his colleagues have shown that EGFR under expression was
linked to prostatic adenocarcinoma, suggesting it as clinical biomarker in cases with higher
Gleason score, high grade and perineural association with prostate carcinoma [43]. Recent
evidence has shown that EGFR and the related AKT pathway are effectively associated
with AR phosphorylation [44], but it has been observed in PCa that an inverse relationship
has been seen in terms of EGFR and AR protein/expression [45]. The regulators for EGFR,
TF and microRNAs included miRNA-145 which is boosted by TF p53 (TP53) and inhibits
EGRF expression [46–48]. Also, miR-199a-3p which targets EGFR as well as c-Myc [49,50].

In the light of PCa progression, MYC is another significant gene. C-Myc, N-myc
and L-myc are MYC subtypes that encode similar MYC protein which have the same
function [51,52]. The level of expression is contrasted in various tissues, such as N-myc
upregulated in solidified tumor glioma and neuroblastoma, c-Myc upregulated in solidified
cancer and blood-related cancer, acting as proto-oncogene as well as transcription factor
while L-myc upregulated in lung carcinoma [53]. C-Myc is a critical factor in PCa progression
and related to cell expansion [54,55] which goes together with our findings. Inhibition
of c-Myc could be carried by multiple miRNAs, including miR-let-7a which also has a
tumor suppression function in PCa cells through downregulating AR expression [56].
Also, miRNA-34a plays a critical role as a tumor suppressor along with p53 arbitrator
activity, which has been down expressed in PCa; it lacks the capability to suppress c-Myc
in PCa cells [57]. Also, miR-23b can play the same role as miR-34a, but other oncogenic
transcription factors like NF-KB and Sp1 can activate the alternative way in MYC-dependent
miR-23b inhibition, for cell survival and growth [58] which is shown in our TF data.

The VEGF family’s key role is to facilitate angiogenesis in malignant cancer, making
it an effective therapeutic candidate for tumor disease cure. Bender and co-workers spec-
ulated that primary prostate tumors experiencing VEGFA (vascular endothelial growth
factor-A) low expression [59,60]. The VEGF level could be regulated by EGFR’s action via
the signaling network of mitogen-activated protein kinase (MAPK) as well as phosphoinosi-
tide 3-kinase (PI3K) [61] which has been observed in our finding for EGFR. In this study,
the obtained final TFs and microRNAs have a direct connection with VEGFA, like AR, TP53,
SP1, miR-299-3p [62,63] which have been found and reported in our supplementary file.

PTEN (Phosphatase and Tensin Homolog) belongs to the phosphatase group that
regulates the signaling pathway of PI3K as well as AKT [64]; PTEN has tumor suppressor
activity and is generally found idle connected to PCa [65]. Downregulated PTEN expression
in our findings goes in line with the previously reported results in Iranian PCa patients [66].
PTEN plays a reverse role in the signaling effect of PI3K/AKT and dephosphorylates
PIP3 [64,67]. Also, PTEN has the capability to inhibit AR in a clinical manner through AR
nuclear translocation blocking as well as depletion of AR protein, and this matches AR over
expression as per our findings [68–70]. Regulation of PTEN was targeted by miRNA-let-7b
and miR-548 and down expression of miR-let-7b (tumor suppressor) was detected in our
findings, but PTEN was not correlated with miR-548 in terms of expression [62]. Another
finding indicated that miR-21 and miR-181b-1 both repressed PTEN as well as CYLD, which
were subsequently turned on by STAT3 in the signaling [71].
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In addition, the examined PPI network was strongly correlated with the rest of the
hub and bottleneck genes which are essential genes in the network pathway operations.
In this study, DEGs were obtained through a comparison between PCa and BPH samples.
After that, the PPI network was established and chosen for further analysis. The signifi-
cance of this study lies in detecting and revealing unique key hub genes including EGFR,
MYC, VEGFA, PTEN from different sources collectively and their regulation by common
transcription factors. Besides, Androgen receptor (AR), Sp1, TP53, NF-KB1, STAT3, RELA
and signature microRNAs such as miR-21-5p, miR-125a-5p, miR145-5p and miR-155-5p
have been reported jointly in the same study for the first time in PCa tissue samples as
tumor markers and clinical targets.

5. Conclusions

In comparison to BPH, our bioinformatics combined enrichment analysis revealed that
key genes EGFR, MYC, VEGFA, and PTEN were identified as potent molecular biomarkers
of PCa from gene expression profiling. We found that all four key genes are targeted by
common transcription factors such as AR, Sp1, TP53, NF-KB1, STAT3 and RELA. Moreover,
MYC as a transcription factor has a target for TP53 and shares a target with it as well.
MYC shares a target with other transcription factors such as NF-KB1, STAT3 and RELA.
Additionally, our analysis determined that miR-21-5p was significantly associated with
all four key genes while miR-125a-5p and miR145-5p were significantly associated with
EGFR, MYC, VEGFA, but not with PTEN; and miR-155-5p was significantly associated with
EGFR, MYC, PTEN. Furthermore, we found that miR-21 is also connected with AR, STAT3
transcription factor and miR-155 is connected with AR. The clinical therapeutic target of
PCa can be determined by the information in these findings as well as by giving clinical
insight clues for the development of new novel PCa therapies. However, this study has
a limitation of absent confirmatory experimental validation but provides a new door for
future study.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.339
0/genes13040655/s1, Supplementary file S1: List of the most significant upregulated and downregulated
genes for the GSE55945, GSE46602, GSE104749, GSE32571 dataset. Supplementary file S2: GEO dataset
processing. Boxplots show the expression intensity of each sample for the dataset GSE55945, GSE46602,
GSE104749, GSE32571 before (upper panel) and after (lower panel) normalization. Supplementary file S3:
The heatmap of gene expression depicts the expression levels of several genes that have undergone
considerable up- or down-regulation. Upregulation (red) and down-regulation (green) are indicated by
the colour. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article). Supplementary files S4–S7: Significant upregulated differentially expressed
genes involved in GO Biological Process, Cellular Component, Molecular Function, KEGG Pathway.
Supplementary files S8–S11: Significant downregulated differentially expressed genes involved in GO
Biological Process, Cellular Component, Molecular Function, KEGG Pathway. Supplementary file S12:
List of the key genes, hub genes, bottleneck genes, hub & bottleneck genes, unique genes, genes with more
than one criterion. Supplementary file S13: List of the key genes connected to miRNAs. Supplementary
file S14: List of the key genes connected to transcription factor. Supplementary file S15: List of the
transcription factor connected to miRNAs.
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