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Abstract: DNA binding with one finger (DOF) proteins are plant-specific transcription factors that
play roles in diverse plant functions. However, little is known about the DOF protein repertoire of
the allopolyploid crop, Brassica napus. This in silico study identified 117 Brassica napus Dof genes
(BnaDofs) and classified them into nine groups (A, B1, B2, C1, C2.1, C2.2, C3, D1, and D2), based
on phylogenetic analysis. Most members belonging to a particular group displayed conserved
gene structural organisation and protein motif distribution. Evolutionary analysis exemplified that
the divergence of the Brassica genus from Arabidopsis, the whole-genome triplication event, and
the hybridisation of Brassica oleracea and Brassica rapa to form B. napus, followed by gene loss and
rearrangements, led to the expansion and divergence of the Dof transcription factor (TF) gene family
in B. napus. So far, this is the largest number of Dof genes reported in a single eudicot species.
Functional annotation of BnaDof proteins, cis-element analysis of their promoters, and transcriptomic
analysis suggested potential roles in organ development, the transition from the vegetative to
the reproductive stage, light responsiveness, phytohormone responsiveness, as well as potential
regulatory roles in abiotic stress. Overall, our results provide a comprehensive understanding of the
molecular structure, evolution, and possible functional roles of Dof genes in plant development and
abiotic stress response.

Keywords: Dof ; Brassica napus; canola; transcription factor; polyploidy; abiotic stress

1. Introduction

Brassica napus, the second-largest economically important oilseed crop, is used as
edible oil and livestock forage, and in the pharmaceuticals, cosmetics, and biofuel indus-
tries [1]. The yield of B. napus is constrained by harsh environmental conditions such as
drought, extreme temperature, and salinity [2]. Dissecting the evolution and function
of diverged plant-specific transcription factor (TF) families such as DNA binding with
one finger (DOF) is required for gaining fundamental knowledge about the mechanisms
underlying stress responses in B. napus and for developing stress-tolerant varieties for
climate-smart agriculture.

The DOF TFs are plant-specific transcription factors, first identified in maize in 1995,
and were shown to play an essential role in regulating carbon metabolism-related and light-
regulated genes [3–5]. Subsequently, a diverse number of DOF TFs have been identified in
several plants, including 36, 30, and 96 in Arabidopsis, rice, and wheat, respectively [6–8].
In Arabidopsis, the first protein–protein interaction of DOF domain protein with bZIP
protein associated with the stress response was reported, indicating the potential role of
DOF TFs in complex regulatory networks [9].

DOF TFs are typically composed of 200–400 amino acid residues with a variable
C-terminal region and are mainly characterised by a highly conserved DNA-binding
domain, i.e., the DOF domain, located towards the N-terminal of the protein [10,11]. The
DOF domain consists of only one Cys2/Cys2 zinc finger structure, which includes about
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52 amino acid residues, that specifically recognises and binds a cis-regulatory element
(5′-T/AAAAG-3′) in the gene promoters [12]. Another specific feature of DOF TFs is a
bipartite nuclear localisation signal (NLS) comprised of two short basic flanking regions
(B1 and B2) with a 17 amino acid spacer. The bipartite NLS is highly conserved and plays a
vital role in directing DOF TFs to the cell nucleus [13].

Phylogenetic studies suggest a common ancestor (conserved as a single copy in
Chlamydomonas) of Dof genes, which through numerous rounds of gene duplication drove
the structural and functional diversification of the Dof gene family [12]. This evolutionary
diversification may be related to acquiring new specialised functions needed to adjust and
adapt to diverse and complex plant growth conditions. Brassica napus, an amphidiploid
(AACC, 2n = 4x = 38), originated from a natural crossing between two ancestral diploid par-
ents, Brassica oleracea (CC, 2n = 2x = 18) and Brassica rapa (AA, 2n = 2x = 20), approximately
7500 years ago [14]. Brassica species belonging to the Brassica genus and Brassicaceae
family offer a valuable model for studying polyploid genome evolution, mechanisms
associated with gene duplications, loss of duplicated genes and gene neo- and sub- func-
tionalisation [15,16]. The availability of B. napus, B. rapa, and B. oleracea genome sequences
has provided an exceptional opportunity to identify and characterise key genes from a
genome-wide perspective [14,16,17].

This study aims to provide a complete description of the Dof gene family in B. napus by
performing a genome-wide in silico identification, characterisation, and evolutionary and
functional analysis of the Dof gene family. We report identifying one hundred seventeen
genes as members of the Dof transcription factor family from B. napus, belonging to nine
groups. We also performed a detailed analysis of the Dof genes in terms of physical prop-
erties of proteins, chromosomal location, gene structure, motif analysis and phylogenetic
relationships, and gene duplication. Orthology and synteny analysis was also carried
out to explore the evolutionary history and divergence of the Dof TFs family in B. napus,
B. rapa, B. oleracea, and Arabidopsis. Furthermore, functional annotation and cis-acting
regulatory element analysis of BnaDof gene promoters and their expression profiles high-
lighted their potential roles in regulating distinct and diverse developmental processes and
stress responses.

2. Results
2.1. Identification and Characterisation of BRASSICA Napus Dof Gene Family

To identify the Dof TF family genes in B. napus, we carried out BLASTP searches using
DOF-domain search model accession (Pfam: PF02701), searched the PlantTFDB4.0, and fi-
nally retrieved and analysed 156 amino acid sequences using the SMART8.0 database [18–20].
We identified 117 full-length B. napus genes as putative members of the Dof gene fam-
ily from the Brassica napus reference genome (Brassica_napus. annotation_v5). We as-
signed new identifiers to the 117 B. napus Dof genes by using the prefix “Bna” for B. na-
pus, followed by “Dof ” and a number based on their chromosomal locations (Figure 1).
Thus, the identified B. napus Dof family members were named BnaDof01 to BnaDof117
(Table S1). The BnaDofs were distributed on all 19 chromosomes, with 60 BnaDofs lo-
cated on A genome (48 on chromosomes A01–A10), 56 situated on C genome (40 on
chromosomes C01–C09), and one gene placed on an unknown chromosome (BnaDof117;
BnaUnng03510D). Chromosome C03, being the largest, included the most BnaDofs (11 BnaD-
ofs), followed by A09 with 10 BnaDofs. Out of 117 BnaDof genes, the exact chromo-
somal location was unknown for the 58 genes located on A03_random, A04_random,
A05_random, A07_random, A09_random, A10_random, Ann_random, C01_random,
C03_random, C05_random, C06_random, Cnn_random, and Unn_random chromosomes.
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Figure 1. Chromosomal mapping and frequency distribution of Brassica napus DNA binding with one finger (DOF)
transcription factors (BnaDofs01–117).
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The physical and chemical properties of BnaDof proteins are outlined in Table S1. The
size of the BnaDof protein sequences ranged from 77 (BnaDof30, BnaDof31, BnaDof75, and
BnaDof76) to 453 (BnaDof33) amino acids. All BnaDofs had a marginally higher percentage
of aliphatic amino acids than aromatic amino acids. The predicted isoelectric point (pI)
ranged from 4.78 (BnaDof20) to 10.14 (BnaDof30, BnaDof31, BnaDof75, and BnaDof76),
and the molecular weight (MW) ranged from 8.76 kD (BnaDof30, BnaDof31, BnaDof75, and
BnaDof76) to 50.33 kD (BnaDof33). The Grand Average of Hydropathy (GRAVY) values of
the BnaDofs reflected the hydrophilic nature of these proteins.

We also identified 62 B. oleracea genes as members of the Dof TF family (Table S2).
In B. rapa, Ma et al. [21] reported 76 BnaDof genes. However, among B. rapa Dof genes,
Bra007632 contained a B3 DNA binding domain, auxin response factor domain, and
Aux/IAA domain in addition to the DOF domain. Bra007632 was orthologous to AUXIN
RESPONSE FACTOR 18 (ARF18, At3g61830), and hence, we excluded it from our analysis.
It is worth noting that in addition to the 117 BnaDof genes, one other gene (BnaA07g02590D)
showed the presence of the DOF domain along with a Syntaxin domain. Further investiga-
tion revealed that this gene was homologous to Bra002057, and reported as a B. rapa Dof
gene family member [21]. However, this gene is orthologous to Arabidopsis SYNTAXIN
OF PLANTS 21 (SYP21, At5g16830). We decided to exclude BnaA07g02590D and Bra002057
from our analysis as these genes can be classified as members of the SNAP Receptor
(SNARE) protein family [22]. Thus, finally, we considered 74 Dof genes from B. rapa, 62 Dof
genes from B. oleracea, and 117 Dof genes from B. napus.

2.2. Phylogenetic Relationships of the Dof Gene Family in B. napus

We explored the phylogenetic relationships between the Dof families in B. napus and
Arabidopsis by first performing alignment of the 117 BnaDof s and 36 Arabidopsis Dof s
using CLUSTALW [23]. The multiple sequence alignment was then used to construct the
unrooted phylogenetic tree in MEGA7.0 [24] using the maximum likelihood method with
500 bootstrap values (Figure 2). We then classified BnaDof s into four major groups: A, B,
C, and D and the following nine subgroups: A, B1, B2, C1, C2.1, C2.2, C3, D1, and D2,
based on the phylogenetic tree. The largest group was C, with 35% of BnaDof s, followed by
group D with 28% BnaDof s. Among the subgroups, D2 was the largest, comprising ~18%
BnaDof s. The least number of BnaDof s belonged to subgroup C1.

We further explored the phylogenetic relationship between the Dof gene family in
B. napus, B. oleracea, B. rapa, and Arabidopsis. As mentioned earlier, there were 76 (74 in-
cluded in our analysis) B. rapa Dofs and 36 Arabidopsis Dofs, and we identified 117 and
62 Dof genes in B. napus and B. oleracea, respectively [6,21]. Subsequently, a total of 289 DOF
protein sequences were utilised to construct the phylogenetic tree. Based on the resulting
phylogenetic tree, the Dof gene family can be classified into four major groups and nine sub-
groups, as described earlier (Figure S1). The tree illustrates the expansion and divergence
of the Dof gene family from Arabidopsis to B. napus. A few genes from the two diploid
progenitors were lost in B. napus during hybridisation, such as Bra010136 and Bra013490
from B. rapa, and Bo3g106920 Bo01143s010 from B. oleracea, with no orthologs in Brassica
napus. A few B. rapa genes underwent further duplications after hybridisation; for example,
Bra020880 had four orthologs in B. napus (BnaDof 30, BnaDof 31, BnaDof 75, and BnaDof
76), and Bra023888 had two orthologs in B. napus (BnaDof03 and BnaDof64). However, the
majority of BnaDof s were consistently inherited from their progenitors (Table S3). Based
on the known chromosomal locations, we confirmed a total of 42 and 33 gene pairs which
maintained their relative positions between the B. rapa genome and An sub-genome in the
B. napus and B. oleracea genomes and Cn sub-genome in B. napus, respectively.



Plants 2021, 10, 709 5 of 23
Plants 2021, 10, x FOR PEER REVIEW 5 of 24 
 

 

 
Figure 2. Phylogenetic tree of B. napus and Arabidopsis DOF proteins. The evolutionary history was inferred by using the 
maximum likelihood method based on the JTT (Jones-Taylor-Thornton) matrix-based method. Maximum-likelihood boot-
strap values (500 replicates) above 70% are shown. The analysis involved 153 amino acid sequences. Phylogenetic topology 
was generated via MEGA7. 

We further explored the phylogenetic relationship between the Dof gene family in B. 
napus, B. oleracea, B. rapa, and Arabidopsis. As mentioned earlier, there were 76 (74 in-
cluded in our analysis) B. rapa Dofs and 36 Arabidopsis Dofs, and we identified 117 and 62 
Dof genes in B. napus and B. oleracea, respectively [6,21]. Subsequently, a total of 289 DOF 
protein sequences were utilised to construct the phylogenetic tree. Based on the resulting 
phylogenetic tree, the Dof gene family can be classified into four major groups and nine 
subgroups, as described earlier (Figure S1). The tree illustrates the expansion and diver-
gence of the Dof gene family from Arabidopsis to B. napus. A few genes from the two 
diploid progenitors were lost in B. napus during hybridisation, such as Bra010136 and 

Figure 2. Phylogenetic tree of B. napus and Arabidopsis DOF proteins. The evolutionary history was inferred by using
the maximum likelihood method based on the JTT (Jones-Taylor-Thornton) matrix-based method. Maximum-likelihood
bootstrap values (500 replicates) above 70% are shown. The analysis involved 153 amino acid sequences. Phylogenetic
topology was generated via MEGA7.

2.3. Gene Structure and Conserved Motifs of BnaDofs

To gain further understanding of the structural diversity of BnaDof s, we studied
exon-intron organisation and identified the presence of conserved protein motifs (Figure 3).
The analysis revealed 61 BnaDof s with no introns, whereas 46, 8, and 2 BnaDof s had one,
two, and three introns, respectively. The majority of the genes within a given subgroup
showed a similar exon-intron organisation. For example, all the C1 subgroup BnaDof s
had one intron, and most members of subgroups D2, A, B2, C3, and C2.2 had no introns.
Similarly, BnaDof s belonging to subgroup B1 had at least one intron. The most diverse
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gene structure organisation was observed in the members of subgroup D1, ranging from
zero to three introns.
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Figure 3. Phylogenetic relationships, gene structure, and conserved protein motifs in the Dof gene family members in
B. napus. (a) Phylogenetic relationships of BnaDofs. The phylogenetic tree was constructed with MEGA 7.0 using the
neighbour-joining (NJ) method with 1000 bootstrap replicates and the Poisson correction method. The nine Dof groups
are displayed in different text colours and enclosed in the respective colour boxes. (b) Gene structure of BnaDof genes.
Grey boxes indicate untranslated 5′- and 3′-regions; blue boxes indicate exons; and black lines indicate introns. Scale bar
represents gene length. (c) Distribution of conserved motifs in BnaDof proteins. The sequence of each motif (1–15) displayed
in different coloured boxes is provided in the legend.
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Motif analysis performed using MEME showed a highly conserved motif, motif 1,
representing the DOF-type domain, across all the 117 BnaDof amino acid sequences [25].
The conserved nature of motif distribution within the BnaDof protein subgroup also
highlighted their phylogenetic relationships. It is worth mentioning that conserved motif
distribution also existed among members of different clades within a subgroup. For
example, BnaDof28, BnaDof48, and BnaDof88, which belonged to one clade in subgroup
D2, showed only one out of three conserved motifs found in the other D2 subgroup
members. Thus, the results suggest that gene and protein structural divergence across
subgroups probably governs the functional diversity in the Dof subgroups.

2.4. Orthologous Gene Clustering of Dof Gene Family in B. napus, B. oleracea, B. rapa,
and Arabidopsis

To understand the evolutionary relationships of the Dof gene family among the
four important members of the Brassicaceae family—B. napus, B. oleracea, B. rapa, and
Arabidopsis, we carried out an orthology analysis in OrthoVenn2 web platform [26]. The
identified orthologous clusters in the four species are illustrated in Figure 4. 134 DOF
proteins from all four species were clustered in 29 orthologous groups. We also identified
25 Brassica-specific clusters with 88 DOF proteins from the three Brassica species. One
Arabidopsis DOF protein (AT3G45610), 17 BnaDofs, and 6 B. rapa DOFs did not cluster in
any orthologous group and were identified as singletons. No singletons were identified in
B. oleracea. Furthermore, there were seven clusters (17 DOFs) between B. rapa and B. napus,
six clusters (12 DOFs) between B. oleracea and B. napus and two clusters between B. rapa and
B. oleracea. The absence of B. napus genes in B. rapa—B. oleracea-specific clusters suggests
that genes belonging to these clusters might have been lost during the hybridisation event.
A detailed list of orthologous gene clusters and singletons is provided in Table S4a,b.
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2.5. Evolution and Divergence of BnaDofs

The expansion of a gene family occurs because of duplication events arising at a whole-
genome or small scale. We first identified duplicated gene pairs among BnaDof s based on
the sequence similarity (Table S5a). We found 128 gene pairs with >80% sequence similarity.
Gene pairs were identified as tandemly duplicated if the new gene/sequence was found
adjacent (within a 100 kb window) to the duplicated genomic region. Based on these
criteria, three BnaDof gene pairs were identified as tandemly duplicated (BnaDof30–31,
BnaDof 75–76, and BnaDof 86–87). The rest of the BnaDof gene pairs underwent interspersed
duplications. Furthermore, BLASTP- and MCScanX-based methods identified 85 segmental,
26 dispersed, 4 tandem, and 1 proximal duplication event (Table S5b) [20,27]. These results
highlight that segmental duplication events played a critical role in shaping the Dof gene
family in B. napus.

Nucleotide substitutions producing an amino acid change are termed non-synonymous,
and those that do not are termed synonymous. The ratio of non-synonymous to synony-
mous substitutions (Ka/Ks) in a protein-coding gene reflects the magnitude and direction
of selection pressure acting on a protein sequence [28]. A Ka/Ks value < 1 indicates that a
gene pair has experienced negative or purifying selection (acting against change), whereas
Ka/Ks > 1 indicates positive or adaptive selection (driving change), and Ka/Ks = 1 indi-
cates neutral selection [29]. Thus, we calculated the Ka/Ks ratio among the duplicated
gene pairs (Table S5a). Among the 128 identified duplicated BnaDof gene pairs, six gene
pairs (BnaDof30 and BnaDof31, BnaDof30 and BnaDof75, BnaDof13 and BnaDof 75, BnaDof30
and BnaDof 76, BnaDof31 and BnaDof76, and BnaDof75 and BnaDof76) were 100% identical,
and their Ka = Ks = 0. Three gene pairs (BnaDof29 and BnaDof74, BnaDof32 and BnaDof74,
and BnaDof72 and BnaDof33) underwent positive or adaptive selection (Ka/Ks > 1), and
the remaining 119 gene pairs experienced negative or purifying selection (Ka/Ks < 1).
Purifying selection plays a potential role in maintaining the conservation of the Dof genes
structure during evolution. The gene pairs undergoing positive selection indicate the
presence of mutations that might be advantageous for B. napus.

The syntenic relationships between chromosome segments of different species can
provide valuable insights into the origin of the gene family members. For the synteny
analysis, only the genes with known chromosomal locations were considered. We per-
formed a syntenic analysis between Dof genes from B. napus and Arabidopsis (Figure 5a).
Following our orthology analysis, we identified orthologs for 35 Arabidopsis genes in
B. napus. In addition, we also constructed a synteny map between Dof genes from B. napus,
B. oleracea, and B. rapa. 58 out of 117 genes in B. napus and two out of 62 genes in B. oleracea
were discarded due to uncertain chromosomal locations (Figure 5b). Out of the remaining
59 BnaDof s, 98.3% of genes were placed in collinear blocks. In B. rapa (42/75 Dof genes) and
in B. oleracea (47/60 Dof genes), 56 and 78.3% were placed in collinear blocks, respectively.
Since the same gene in B. napus could be in a collinear block relative to B. rapa but not
relative to B. oleracea, the numbers reported for B. rapa and B. oleracea indicated how many
genes were collinear with the corresponding orthologs in B. napus. For B. napus, instead,
this number reported the number of collinear genes in at least one of the other species.
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chromosomes of A. thaliana (blue) and B. napus (dark green) are displayed in the outer circle, while in the inner circle
indicates the positions of the genes in the corresponding chromosomes. Green links connect orthologous genes between the
two species. The chromosome scale is in Kb. At: Arabidopsis thaliana; Bn: Brassica napus. (b) Synteny of DOF transcription
factors within the Brassicaceae genus. Ideograms of chromosomes of B. rapa (pale green), B. oleracea (lime green), and B. napus
(dark green) are displayed in the outer circle, while the inner circle indicates the positions of the genes in the corresponding
chromosomes. Green links connect collinear orthologous genes, while red links connect orthologues genes that underwent
chromosomal translocation events. The chromosome scale is in Kb. Bn: Brassica napus; Bo: Brassica oleracea; Br: Brassica
rapa. (c) Density of Ks values of Dof orthologous gene pairs between B. napus and Arabidopsis. Analyses were conducted
using the Nei–Gojobori model in MEGA7.0. All ambiguous positions were removed for each sequence pair. (d) Density
of Ks values of Dof orthologous gene pairs between B. napus, B. oleracea, and B. rapa. Analyses were conducted using the
Nei–Gojobori model in MEGA7.0. All ambiguous positions were removed for each sequence pair.

Furthermore, we estimated the divergence time of the Dof gene family between
Arabidopsis and B. napus by calculating the Ks values of the identified orthologous gene
pairs (Table S6a). The Ks value for all the orthologous pairs ranged from 0.28 to 0.74,
with an average of 0.51 (Figure 5c). Using the estimate of mutational rate, R = 1.5 × 10−8

synonymous substitutions per site per year [30,31], the average estimated divergence time
of the Arabidopsis and B. napus Dof gene family was ~17 Mya. Our results agree with
the reported estimated divergence time (14–24 MYA) of the Arabidopsis and B. napus
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lineage [32,33]. We also calculated the Ks values of orthologous gene pairs between
the three Brassica species (Table S6b). The Ks value ranged from 0.0024 to 0.5896. with
an average of 0.15 (Figure 5d). The average divergence time was ~5 Mya (80,000 years–
19.5 Mya). The hybridisation event between B. rapa and B. oleracea took place approximately
7500–12,500 years ago, and the Brassica whole-genome triplication event is estimated to
have taken place approximately 9–15 Mya [14,34]. Overall, these results indicate the
divergence of the Brassica genus from Arabidopsis, followed by whole-genome triplication,
and hybridisation of B. rapa and B. oleracea to form B. napus, as well as gene loss and
rearrangements that shaped the Dof gene family in B. napus.

2.6. Functional Annotation of BnaDofs and Promoter Analysis

Functional annotation allows detailed evaluation of proteins with unidentified molec-
ular function, biological processes, or cellular components. In the cellular component gene
ontology category, all the BnaDof s were associated with “nucleus”, and the majority of
them were associated with “integral component of membrane” terms. A Dof gene family
is a transcription factor family. It was expected that in the molecular process category,
the BnaDof s would be associated with terms such as “DNA binding” and “DNA-binding
transcriptional factor activity”. In the biological process category, BnaDof s were associated
with “regulation of transcription” and several other terms related to organ development,
vegetative to reproductive transition, light signalling, response to different hormones, cell
differentiation, and oxidation–reduction, among others. A detailed summary of functional
annotation results along with descriptors is provided in Table S7.

To gain further understanding of the functional roles of BnaDof s, we used the Plant-
CARE database to identify potential cis-regulatory elements present upstream of the coding
regions (1.5 kb upstream) [35]. Several cis-acting regulatory elements were found in the
promoter region of BnaDof s, and we classified them into three categories: developmental,
stress-responsive, and hormone-responsive (Figure 6). Among the development-related cis-
elements, we identified elements regulating light responsiveness (G-box, Box-4, GT1-motif,
3-AF1, AAAC-motif, Sp1, and MRE), circadian rhythm (circadian), meristem expression
(CAT-box) and differentiation of palisade mesophyll cells (HD-Zip-1). Cis-acting regula-
tory elements related to light responsiveness, especially the G-box, Box-4, and GT1-motif
elements, were present in ~66%, ~77%, and ~50% BnaDof s. CCGTCC-box, a development-
related cis-element, was also found in the promoters of 11 BnaDof s, out of which seven
BnaDof s belonged to the D major group.

Furthermore, we detected the presence of the stress-responsive cis-elements MBS
(involved in drought inducibility), LTR (low-temperature responsive), WUN-motif (wound
responsive), TC-rich repeats (defence and stress-related), ARE (anaerobic induction), and
GC-motif (anoxic specific inducibility) in 43, 37, 36, 42, 90, and 3 BnaDof promoters, re-
spectively. An as-1 cis-element reported to be present in pathogenesis-related genes in
plants was also detected in the promoters of 58 BnaDof s. Stress signalling and hormone
signalling operate at an intertwined level in the regulation of plant stress-responsive gene
expression. Therefore, we identified hormone-responsive cis-elements in the BnaDof pro-
moters. Among all the hormone-responsive elements, 219 ABRE (Abscisic acid Responsive
Elements) elements were present in 77 (68%) BnaDof s. Cis-elements responsive to auxin
(AuxRR-core and TGA-element), gibberellin (TATC-box, GARE-motif, and P-box), salicylic
acid (TCA-element), ethylene (ERE), and methyl jasmonate (CGTCA and TGACG) were
also present in the BnaDof promoters. In addition to the above-mentioned cis-elements,
we encountered several other cis-acting elements such as the AE-box (part of a module
for light response), MYB, Myb-binding site, MYC, TATA-box, and CAAT box, which was
present in the BnaDof promoters.



Plants 2021, 10, 709 11 of 23Plants 2021, 10, x FOR PEER REVIEW 12 of 24 
 

 

 

Figure 6. Cis-acting regulatory elements in the promoter region of BnaDof genes. The cis-acting
regulatory element analysis in the promoter region (1.5 kb upstream of translation initiation site) of
BnaDof genes was performed using the PlantCARE database. The number of each cis-acting element
in the promoter regions of BnaDof genes are represented in three major categories: developmental,
stress-responsive, and hormone-responsive. On top, the bar graph represents the total number of
each cis-acting element present in BnaDof s (grey box) and the corresponding number of BnaDof s
promoters carrying a particular cis-element (red diamond). The details of the cis-elements are
provided in Table S10.
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2.7. Tissue-Specific and Abiotic Stress-Responsive Expression Profiling of BnaDofs

To analyse the tissue-specific expression patterns of BnaDof s, publicly available RNA-
Seq data [14] for four tissues were compared: young root, stem, leaf, and flower buds
(Table S10a). The distinctive tissue-specific expression of BnaDof s could be grouped into
eight (T.I–T.VIII) clusters, as illustrated in Figure 7a. The majority of the BnaDof s belonging
to cluster T.II showed higher expression in young roots. Similarly, T.III and T.VIII showed
higher expression in flower buds and stem, respectively. Additionally, BnaDof s belonging to
cluster T.I, T.IV, T.V, and T.VII showed higher expression in at least two tissues. Interestingly,
in cluster T.VI, BnaDof01, BnaDof34, BnaDof65, and BnaDof101 had higher expression in
leaves and flower buds, BnaDof61, BnaDof62, BnaDof66, BnaDof74, and BnaDof116 showed
higher expression in leaves, whereas the expression of BnaDof11, BnaDof12, BnaDof29,
BnaDof32, BnaDof73, and BnaDof96 was undetectable in any of the four tissues. Preferential
expression within the tissue-specific cohort of the Dof family group was also noticeable.
For instance, BnaDof members belonging to group C2.1 showed higher expression in young
roots and stem; more than 50% of the A and B1 Dof group members showed preferential
expression in stem and young roots, respectively.

Plants 2021, 10, x FOR PEER REVIEW 14 of 24 
 

 

to heat and downregulated in response to cold, and an opposite trend was seen in genes 
clustering in S.VII. Genes belonging to clusters S.I and S.IV showed significant upregula-
tion under drought conditions, and S.II cluster BnaDofs were downregulated. However, 
the majority of BnaDofs were not drought-responsive.  

 
Figure 7. (a) Heat map represents the tissue-specific expression of BnaDofs. RNA-Seq data were obtained from root, stem, 
leaf, and flower of B. napus. (b) Heat map representation of the stress-responsive expression of BnaDofs. RNA-Seq data 
were obtained from three weeks old B. napus seedlings grown at control conditions (16/8 h photoperiods at 22 °C, RH 50%, 
and a light intensity of 230–240 μmol m−2 s−1) and exposed to Heat: 35 °C for 24 h, Cold: 4 °C for 24 h, and Drought: 22 °C, 
25% PEG-6000 for 24 h. Hierarchical clustering of BnaDof expression profiles was performed using the Euclidean distance 
method and complete clustering method. The scale bar represents the Z-score (scaled TPM values). 

3. Discussion 
Brassica napus, the second-largest economically important oilseed crop, is an allopol-

yploid formed due to the spontaneous pairwise hybridisation of B. rapa and B. oleracea. 
The availability of the B. napus genome provides opportunities for the identification of 
important gene families. One of the important plant-specific transcription factor families 
is the Dof zinc finger gene family. This gene family has been described in several plant 
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were obtained from three weeks old B. napus seedlings grown at control conditions (16/8 h photoperiods at 22 ◦C, RH 50%,
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25% PEG-6000 for 24 h. Hierarchical clustering of BnaDof expression profiles was performed using the Euclidean distance
method and complete clustering method. The scale bar represents the Z-score (scaled TPM values).
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Brassica Expression DataBase (BrassicaEDB), a gene expression database for Brassica
crops (version 1.0) was released recently [36]. To get a comprehensive understanding
of developmental expression patterns of BnaDof s, we compiled the expression maps of
BnaDof s, across different tissues and developmental stages as available on Brassica EDB
(Supplementary Folder). The expression levels of BnaDof11, BnaDof12, BnaDof29, BnaDof32,
BnaDof73, and BnaDof96 were undetectable in young roots, stem, leaves, and flower buds
based on our RNA-Seq analysis (Figure 7a). Thus, we observed the expression maps of
these genes on BrassicaEDB. BnaDof73 showed limited expression in cotyledons (48 h
after germination), seeds (13 days after fertilisation), and the seed coat (inner integument).
Similarly, BnaDof96 and BnaDof11 were only expressed in the seed coat (inner integument),
BnaDof32 and BnaDof29 in seeds 13 days after fertilisation, and BnaDof12 in seeds 10 days
after fertilisation.

We further investigated the changes in expression patterns of BnaDof s in three-week-
old B. napus seedlings exposed to various abiotic stresses by analysing the publicly available
RNA-Seq data [36]. Figure 7b illustrates the expression patterns of BnaDof s in control con-
ditions and upon exposure to heat stress, cold stress, and drought conditions (Table S10b).
The expression profiles of BnaDof s were grouped into ten clusters (S.1–S.X). Numerous
BnaDof genes showed changes in expression profiles upon exposure to extreme tempera-
ture. BnaDof s grouped in clusters S.VI, S.VII, S.VIII, and S.X were upregulated in response
to low-temperature stress. BnaDof genes belonging to clusters SII, SIII, SIV, SV, and S.IX
were downregulated in response to cold stress. The expression of some BnaDof s belonging
to cluster S.III (BnaDof 26, BnaDof28, BnaDof29, BnaDof32, BnaDof74, BnaDof105, BnaDof109,
and BnaDof112) was undetectable or did not show any changes in expression upon abiotic
stress exposure. This probably indicates that these genes might not be involved in heat,
cold, and drought stress response in three-week-old seedlings. Cluster S.IV, S.V, and S.VI
genes were upregulated upon exposure to heat stress. The majority of the heat-responsive
BnaDof s were upregulated. Interestingly a fraction of BnaDof s, which were upregulated
in response to heat stress, showed downregulation in response to cold stress and vice
versa. For example, BnaDof s clustered in S.IV were upregulated in response to heat and
downregulated in response to cold, and an opposite trend was seen in genes clustering
in S.VII. Genes belonging to clusters S.I and S.IV showed significant upregulation under
drought conditions, and S.II cluster BnaDof s were downregulated. However, the majority
of BnaDof s were not drought-responsive.

3. Discussion

Brassica napus, the second-largest economically important oilseed crop, is an allopoly-
ploid formed due to the spontaneous pairwise hybridisation of B. rapa and B. oleracea.
The availability of the B. napus genome provides opportunities for the identification of
important gene families. One of the important plant-specific transcription factor families
is the Dof zinc finger gene family. This gene family has been described in several plant
species, including Arabidopsis [6], rice [7], wheat [8], tomato [37], pepper [38], Chinese
cabbage [21], and cucumber [39], among others, but not in B. napus. Functional charac-
terisation of various DOF proteins has highlighted their role in key plant functions such
as seed development and germination [40,41], light-regulated hypocotyl elongation [42],
photosynthesis [10,43], flowering [44–46], lipid biosynthesis [47,48], carbon metabolism [5],
pollen development [49], abiotic stress response [46,50,51], and several other biological
processes. In this study, we performed in silico genome-wide identification, comparison,
and evolutionary analysis of the Dof gene family in B. napus. Here, we report 117 genes as
putative members of the Dof gene family in B. napus, which is the largest number of Dof
genes ever reported in eudicots.

3.1. Systematic Analysis of BnaDofs

According to the phylogenetic analysis of Dof genes in Arabidopsis and rice, reported
by Lijavetzky and collaborators [7], members of the Dof gene family are classified into
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nine groups. The 117 BnaDof s identified in our study were also classified into nine groups
based on the phylogenetic analysis between the identified BnaDof s and Arabidopsis Dof
genes. We further performed a phylogenetic analysis between Arabidopsis, B. napus,
B. rapa, and B. oleracea. Our present study also identified 62 Dof genes in B. oleracea. In
B. rapa, 76 Dof genes were reported [21]; however, we included only 74 B. rapa Dof in
our analysis. Bra007632 contained a B3 DNA binding domain, auxin response factor
domain, Aux/IAA domain, and DOF domain and was orthologous to AUXIN RESPONSE
FACTOR 18 Arabidopsis. Bra002057 contained a Syntaxin domain and the DOF domain
and was orthologous to a SYNTAXIN OF PLANT 21 gene in Arabidopsis. Thus, these two
genes were excluded from our study. The Dof gene family across the Brassica species also
clustered phylogenetically in nine groups. Furthermore, comparative analysis of the gene
structure and conserved protein domains highlighted conserved exon-intron organisations
and distribution of protein motifs followed by most BnaDofs. The DOF domain (motif 1,
Figure 3c) was conserved across all BnaDofs, and a similar motif distribution pattern can
be seen across the members belonging to the same group. The presence of specific motifs
across members of a subgroup, for example, motif 7 being only present in the members of
subgroup C3, indicates the specificity of these motifs to the evolution of a subgroup.

The exon-intron organisation of most BnaDof s was similar to Dof genes reported in
other plants such as Arabidopsis and rice [7]. The majority of the BnaDof genes had zero
to one intron. Eight BnaDof s had two introns, and two BnaDof s (BnaDof40 and BnaDof86)
had three introns. The intron length across members of a subgroup was also diverse. In
Arabidopsis, the Dof genes had zero to one intron, and in rice, the Dof genes had zero to
two introns [7]. It is worth mentioning that in Arabidopsis, the transcripts/splice variants
of Dof genes can have more than one intron; for example, At3g55370.3, a transcript of
At3g55370, had three introns. We also observed the exon-intron organisation of B. rapa and
B. oleracea Dof genes (Figure S2). B. rapa Dof genes had zero to two introns and B. oleracea
Dof genes had zero to one intron. The structural diversity of BnaDof genes in terms of
intron number suggests that in comparison to the Dof genes of B. rapa and B. oleracea,
BnaDof s acquired introns during evolution. Li et al. 2019 [52] reported that the EIN/EIL3
gene family members in B. napus also acquired introns. The presence of introns can be
advantageous for an organism [53]. For instance, due to alternative splicing, the protein
diversity of an organism can increase. Introns are also reported to regulate gene expression
and produce non-coding RNAs that play diverse regulatory roles.

3.2. Expansion and Divergence of the Dof Gene Family in B. napus

Genome-wide studies identifying gene families in B. napus have reported the frequent
expansion of gene families such as HSF, GST, CRF, TLP, and bHLH, to name a few [54–58].
The difference in the size of the Dof gene family from Arabidopsis to B. napus indicates
the expansion of the B. napus Dof gene family. We performed orthologous gene clustering,
synteny analysis and molecular evolutionary analysis to understand the expansion of the
BnaDofs. The average synonymous base substitution rate between B. napus Dof genes and
their Arabidopsis orthologs was calculated as 0.51 (0.28 to 0.74). We further estimated the
divergence time of ~17 Mya, and it was constant with the time Arabidopsis and Brassica
lineages diverged, i.e., 14–24 Mya [33]. Similarly, the calculated maxima, minima, and aver-
age Ks values of the orthologous gene pairs between the Brassica species highlights that the
whole-genome triplication events (9–15 Mya) and the hybridisation event (7500 years ago)
led to the expansion of the Dof gene family in B. napus [14,32]. The expansion of gene
families due to whole-genome and local gene duplication events might be an effective
strategy in plants for adapting to the ever-changing environmental conditions.

3.3. Distinct Expression Patterns of BnaDofs during Development

Tempo-spatial expression profiles of BnaDof s in association with functional annota-
tions and cis-element analysis of BnaDof promoters indicate their preferential expression
in different tissues, suggesting a diversification of function during organ development.
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The functional characterisation of DOF proteins in different plants has indicated their
association with light-responsiveness, phytochrome signalling, seed germination, and
tissue-specific expression in endosperms, vascular tissue development, leaves, or guard
cells [11,59–61]. Here in this section, to provide better clarity, we will be discussing the
BnaDof genes in terms of orthologous relationships with Arabidopsis Dof genes rather than
in terms of classified groups, as different schemes for the Dof gene family classification are
available in the literature [6,7,11].

Light is an indispensable environmental cue regulating developmental processes such
as photomorphogenesis, seed germination, flowering, and several other metabolic and
cellular processes [62]. In plants, the first DOF TF reported in maize was involved in light
signalling [3–5]. The BnaDof promoters are enriched for the presence of light-responsive
cis-acting elements. Several Dof genes in plants are associated with the regulation of
photomorphogenesis, seed germination, and development [59,60].

Light is essential for converting the inactive Pr form of phytochrome into the active
Pfr, which then activates the process of seed germination [63]. In Arabidopsis, DAG1,
DAG2, COG1, and OBP3 were reported to regulate seed germination and hypocotyl elonga-
tion [64–67]. DAG1 represses seed germination in response to light, and DAG2 activates
seed germination, thus acting antagonistically [64]. In Arabidopsis, the expression of
DAG1 and DAG2 is detected in vascular tissues but not in seeds, suggesting regulation
of long-distance light-related signalling pathways. The B. napus gene orthologous to
DAG1 is BnaDof45, and to DAG2 are BnaDof06 and BnaDof68. These genes also showed
comparatively higher expression in tissues other than seed or embryo.

The first reported DOF protein to regulate phytochrome-mediated signalling involved
in seedling development was COG1 [65]. COG1 interacts with Phytochrome Interacting
Factors (PIF4 and PIF5), activates Brassinosteroids biosynthesis, and promotes hypocotyl
elongation [68]. It was also reported that COG1 controls the expression of PRX2 and
PRX25, which are associated with seed longevity, and thereby regulates seed tolerance [69].
Four BnaDof genes, BnaDof22, BnaDof44, BnaDof71, and BnaDof85, were identified as
orthologous to COG1(At1g29160) and functionally annotated to be associated with seed
coat development, and showed very high to moderate expression in the seed coat. The
Arabidopsis OBP3 gene is involved in hypocotyl elongation repression in a light-dependent
manner [67]. Among the orthologs of OBP3, in comparison to BnaDof111, BnaDof40 showed
higher expression in hypocotyl, suggesting a similar function.

Circadian rhythms occur in plants to respond to daily and seasonal changes and
synchronise their developmental programme based on the day length [70]. In addition
to light-responsive cis-elements, a few BnaDof promoters also showed the presence of
circadian clock associated cis-elements (Figure 6). In Arabidopsis, cycling DOF factors
(CDF1, CDF2, CDF3, and CDF5) were reported to regulate the photoperiodic flowering
response [44,71]. In Arabidopsis, CDF1 represses the transcription of a core circadian clock
signalling gene CONSTANS (CO) [44,72]. The CO gene is involved in regulating flowering
under long days, and its repression by CDF1 represses flowering in Arabidopsis [44,73]. Its
ortholog in B. napus, BnCDF1 (BnaDof54 in our study), was also reported to play a role in
flowering [74]. BnaDof54, functionally annotated to be involved in flower development,
shows very high expression in flowers. Similarly, BnaDof55, which is also orthologous to
CDF1, was functionally annotated to be related to flower development and showed higher
flower expression, indicating a similar functional role.

The Arabidopsis Dof gene, At3g45610, also known as Dof6 or Dof3.2, negatively
regulates seed germination [75]. Orthology analysis revealed the absence of the Dof6 or-
thologous gene across the B. napus Dof gene family. Gene loss due to the evolution and
divergence of BnaDof genes might have either resulted in a loss of function or neofunc-
tionalisation. It is worth mentioning that the cis-element analysis of the BnaDof promoters
also revealed cis-elements related to or acting as binding sites for other transcription fac-
tors (MYB, MYC, ARF, and MADS-boxes). A similar diversification of binding sites was
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reported for Arabidopsis Dof promoters, indicating potential relationships between DOF
TFs and other TFs regulating diverse plant developmental processes [76].

In cereals, Dof genes play a role in seed protein accumulation and mobilisation [60,77,78].
In maize, ZmDof36 and ZmDof3 play a role in seed starch accumulation [79,80]. However,
for B. napus, the accumulation of oil in the seeds is of economic importance. In soybean,
two DOF-like proteins, GmDOF4 and GmDOF11, enhance the fatty acid content in seeds
when overexpressed in Arabidopsis by directly binding to the promoter regions of the
acetyl CoA carboxylase gene and long-chain-acyl CoA synthetase gene and activating their
expression [47]. Similarly, the overexpression of the GhDof1 gene in cotton can potentially
increase seed lipid content [48]. Thus, further exploring the role of BnaDof genes in
regulating seed oil content will prove beneficial in producing high oil yielding varieties.

3.4. Potential Role of BnaDofs in Abiotic Stress Response

DOF TFs have also been reported to participate in response to the abiotic stress
response [62]. Genome-wide expression analysis studies have reported the abiotic stress-
responsive gene expression of Dof genes in Chinese cabbage [21], wheat [8], tomato [45],
pepper [38], rose [81], and other plant species. We investigated the expression profiles
of BnaDof s in response to heat, cold, and drought stress. In response to heat stress, the
majority of the differentially regulated BnaDof s were upregulated. The mechanism by
which Dof genes regulate heat stress response is not yet described for Dof genes. In
walnut, Yang et al. [82] suggested the contribution of JrDof3 in enhancing the heat stress
response of JrGRAS2. JrGRAS2 overexpression lines in Arabidopsis exhibited enhanced
heat stress tolerance.

The majority of BnaDofs in our analysis were differentially regulated upon exposure
to low temperatures. A recent study in B. napus exploring the cold-responsive TFs reported
the changes in expression of Dof genes in response to the cold stress response and suggested
their possible role in imparting cold tolerance [50]. In cotton, the overexpression of the
GhDof1 gene enhanced cold tolerance during the seedling stage [48]. The transgenic line
overexpressing GhDof1 also exhibited enhanced salinity tolerance due to enhanced root
development in transgenics under salt stress.

In B. napus, BnCDF1 (BnaDof54 in our study) has been reported to play a role in
freezing tolerance [74]. Based on our expression analysis, this gene was highly upregulated
upon exposure to 4 ◦C for 24 h. Furthermore, the overexpression of two tomato CDF
genes (SlCDF1 and SlCDF3) in Arabidopsis enhanced drought and salt tolerance [45]. The
overexpression of Arabidopsis CDF3 also enhanced the tolerance of transgenic Arabidopsis
plants to drought, cold, and osmotic stress [46]. A tomato transgenic line overexpressing
AtCDF3 and SlCDF3 exhibited an enhanced growth rate and yield under control and salt
stress conditions [83]. Transcriptomic analysis of these transgenic tomato lines revealed
the role of CDF3 in regulating the expression of several genes involved in cell growth,
metabolism, and stress response. The CDF3 orthologous genes in B. napus, BnaDof53 and
BnaDof102, significantly upregulated in response to cold stress and slightly in response to
heat stress. In comparison to control conditions, these two genes showed a slight reduction
in gene expression under drought. CDFs thus play a potential role in abiotic stress tolerance,
in addition to their role in flowering time control.

We further observed a few BnaDofs (−17, −47, −81, and −113) associated with the
functional terms “oxidation–reduction process” and “response to oxidative stress”, suggest-
ing a potential role in ROS-mediated signalling. In wheat, some TaDof s have been suggested
to act as dynamic regulators of ROS clearance pathways based on their response to heavy
metal stress [8]. DOF proteins are also involved in phytohormone signalling pathways [84].
Our cis-acting element analysis of the BnaDof promoters and the functional annotation of
BnaDof proteins revealed the presence of several cis-elements responsive to auxin, abscisic
acid, salicylic acid, gibberellic acid, and methyl jasmonate. ABRE elements were enriched
in the promoters of 77 BnaDof s. ABA-dependent pathways and phytohormone signalling
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are known to respond to abiotic stresses [85,86]. This suggests that hormones can activate
BnaDof expression, and they might play a role in stress signalling pathways.

The expression analysis exemplifies the stress-responsive nature of BnaDof s. The
differential regulation of BnaDof s may regulate downstream genes involved in stress
response, probably imparting tolerance. Different BnaDof s can be stress-responsive in
different tissues and at different developmental stages, due to the preferential tissue
expression of BnaDof s. It is also important to note that depending upon the variety and
even plant species, the expression profiles and functional roles of Dof genes in response to
stress may show variation. Overall, this study provides a comprehensive understanding of
the molecular structure, evolution, and potential functions of BnaDof s.

4. Materials and Methods
4.1. Identification of Dof Gene Family Members in B. napus

A BLASTP search of the B. napus proteome was carried out using zf-DOF-domain
search model accession (Pfam: PF02701) as a query to obtain the consensus amino-
acid sequences of the putative DOF proteins. The term ‘Dof’ and DOF-domain search
model accession ‘PF02701′ were used to search the Plant Transcription Factor Database
4.0 database (PlantTFDB) [18]. To identify the integrated DOF domain in the puta-
tive DOFs obtained from the BLASTP and PlantTFDb search, SMART 8.0 software (
http://smart.embl-heidelberg.de/, accessed on 5 August 2020) was used, and the fi-
nal predicted DOFs were further characterised [19]. Expasy server’s ProtParam tool (
https://web.expasy.org/protparam/, accessed on 7 August 2020) was used to compute
the various physical and chemical properties of the predicted Dof proteins such as the
number of amino acids in the protein sequence, molecular weight (Mw), protein isoelectric
point (pI), and Grand Average of Hydropathy (GRAVY) of the protein [87]. Chromosomal
locations as well as the genomic, coding, peptide, and promoter sequences of the DOF TFs
were downloaded from GenoScope (Brassica napus. annotation_v5) database. Unique gene
identifiers were assigned to the DOFs, and they were referred to as BnaDofs.

4.2. Evolutionary and Gene Duplication Analysis of BnaDofs

Multiple sequence alignments were performed on the DOF amino acid sequences us-
ing CLUSTALW with default settings [23]. MEGA7.0 was used to construct a phylogenetic
tree based on the maximum likelihood method based on the JTT matrix-based method.
Statistical support for each tree node was provided by performing a 100–500 replicate
bootstrap analysis [24]. We also constructed the phylogenetic tree of BnaDofs using the
neighbour-joining (NJ) method with 1000 bootstrap replicates, and the Poisson correc-
tion method.

To identify gene duplications in BnaDofs, all B. napus gene sequences (101040) were
first aligned using BLASTp, with an e-value of 1e-10, and then the duplication patterns
were classified into interspersed and tandem duplications with MCScanX (default param-
eters) [20,27]. Gene duplication was also analysed based on sequence similarity criteria,
i.e., the similarity of the aligned regions of protein ≥80% [40]. Evolutionary analyses were
conducted in MEGA7 [24]. The number of synonymous substitutions per synonymous
site (dS/Ks), and the number of non-synonymous substitutions per non-synonymous
site (dN/Ka), were calculated using the Nei–Gojobori method (Jukes–Cantor). The for-
mula T = Ks/2R (where, Ks = number of synonymous substitutions per synonymous site,
R = 1.5× 10−8 synonymous substitutions per site per year, and T = divergence time) was
used to estimate divergence time [33,88].

4.3. Gene Structure and Motif Analysis of BnaDofs

The gene structure in terms of the exon-intron organisation was determined using
the GSDS2.0 (Gene Structure Display Server; http://gsds.cbi.pku.edu.cn, accessed on
23 September 2020) [73,89]. The MEME tool from the MEME suite 5.1.1 (http://meme-
suite.org/tools/meme) was used to identify fifteen statistically significant motifs of the
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BnaDof protein sequences based on “zero or one occurrence per sequence (zoops)” [25].
The discoverable motif length and sites were set to 6–50 and 2–600, respectively.

4.4. Functional Annotation and Promoter Analysis

Functional annotation of BnaDofs was performed using PANNZER2 (Protein ANNo-
tation with Z-scoRE 2), which provided both Gene Ontology (GO) annotations and free text
description predictions [90]. Promoter analysis of the BnaDof genes was performed by using
the PlantCARE database (http://bioinformatics.psb.ugent.be/webtools/plantcare/html/,
accessed on 25 September 2020) to identify the cis-acting regulatory elements with putative
involvement in various abiotic stress responses [35]. 1500 bp upstream regions from the
start codon (ATG) of the Dof genes were downloaded as the promoter sequences from the
EnsemblPlants Database [91].

4.5. Orthology and Collinearity Analysis of BnaDofs

Genome annotations and peptide sequences were downloaded from GenoScope
(Brassica_napus.annotation_v5) and EnsemblPlants (Brassica_rapa.IVFCAASv1.36, Bras-
sica_oleracea.v2.1.36). The orthologous genes in B. oleracea, B. rapa, B. napus, and A. thaliana
were identified using OrthoVenn2 (https://orthovenn2.bioinfotoolkits.net/home, accessed
on 27 September 2020) [26].

For the analysis of collinearity/synteny, 58 out of 117 DOF transcription factor mem-
bers identified in B. napus were discarded because their chromosome of origin was un-
certain. Syntenic blocks were identified by a sequence similarity search of the remaining
59 DOF members in B. napus against the reference genomes of Arabidopsis, B. rapa, and
B. oleracea, using Blastn v. 2.10.1+ with stringent parameters (cut-off e-value 10e-50nd a
minimum percentage of identity of 75) [20]. A custom python script was used to reformat
the blast output and identify collinear genes and genes that underwent chromosomal
translocation. Synteny plots were plotted with CIRCOS v. 0.69–9 [92].

4.6. Tissue-Specific Expression and Abiotic Stress Response Expression Profiling of BnaDofs

To investigate tissue-specific expression (under non-stressed conditions) and abiotic
stress-responsive expression of the BnaDof genes, RNA-Seq data sets from previously
published literature [14,36] were downloaded from the NCBI Sequence Read Archive
database (Table S11). Transcript expression was quantified using Kallisto v0.44.0, and
read abundance was expressed as Transcripts Per Kilobase Million (TPM) [93]. Heat
maps were drawn by using the ComplexHeatmap package to visualise the expression
of BnaDof s [94]. Additionally, the expression maps for BnaDofs were downloaded from
the Brassica expression DataBase (BrassicaEDB). The Supplementary Folder with the
downloaded expression maps of BnaDof s is accessible via the following link https://jmp.
sh/odBHlfT.

5. Conclusions

A systematic analysis of the B. napus Dof transcription factor gene family identified
a total of 117 BnaDof s. The BnaDof s were classified into nine groups: A, B1, B2, C1,
C2.1, C2.2, C3, D1, and D2 based on the phylogenetic analysis. Based on the orthology,
synteny, and evolutionary analysis, the calculated divergence times indicated that the
divergence of the Brassica and Arabidopsis genus (~17 Mya), the whole-genome triplication
event (9–15 Mya), and the formation of B. napus (7500 years ago) drove the expansion of
the BnaDof gene family. Synteny analysis also highlighted that the majority of the Dof
genes with known chromosomal locations in B. napus did not undergo translocations. The
Ka/Ks ratio of the duplicated gene pairs indicated that the BnaDof gene pairs underwent
purifying selection. Further understanding of the molecular evolutionary mechanism
is required to understand how gene duplications, gene loss, and rearrangements can
lead to the expansion of gene families and the possible neo- or sub- functionalisation of
genes. Tissue-specific expression highlighted the role of BnaDof s in organ development

http://bioinformatics.psb.ugent.be/webtools/plantcare/html/
https://orthovenn2.bioinfotoolkits.net/home
https://jmp.sh/odBHlfT
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and other developmental processes. Most of the BnaDof s were responsive to temperature
fluctuations and were differentially regulated, particularly by cold stress. Additionally,
molecular characterisation, functional annotation, and cis-acting element analysis have
provided a starting point for further research investigations—our study supports the
involvement of the Dof gene family in developmental processes and multiple abiotic stress
responses. Further research is warranted to dissect the role of BnaDof s and explore these
transcriptional regulators for developing climate change-resilient varieties with desirable
physiological and agronomic traits.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/plants10040709/s1: Figure S1. Phylogenetic tree of Arabidopsis, B. napus, B. oleracea, and B. rapa
DOF proteins. The evolutionary history was inferred by using the maximum likelihood method
based on the JTT matrix-based method. Maximum-likelihood bootstrap values (100 replicates) above
70% are shown. The analysis involved 289 amino acid sequences. There was a total of 651 positions
in the final dataset. Phylogenetic topology was generated via MEGA7. Figure S2. Gene structure of
(a) B. rapa Dof genes, (b) B. oleracea Dof genes. Table S1. Information of BnaDofs, including gene ID,
type of Dof, chromosomal location, protein sequence length, isoelectric point (pI), molecular weight
(Mw), instability index (I.I), stability, aliphatic index (A.I), and grand average of hydropathicity
(GRAVY). Table S2. Summary of Dof genes identified in B. oleracea and reported Dof genes in B. rapa
and Arabidopsis. Table S3. Detailed summary of identified syntenic genes between A sub-genome
of B. napus and B. rapa, and C sub-genome of B. napus and B. oleracea. Table S4a. Detailed list of
orthologous gene clusters between the Dof genes in B. rapa, B. oleracea, B. napus, and Arabidopsis.
Table S4b. Detailed list of singleton Dof genes in Arabidopsis, B. napus, and B. rapa. Table S5a.
Detailed summary of gene duplications in BnaDofs based on similarity criteria (≥80%). Table S5b.
Detailed summary of gene duplications along with type of duplications in BnaDof s as predicted
by MCScanX. Table S6a. Orthologous gene pairs of Arabidopsis and B. napus Dof genes and their
respective Ks values. Table S6b. Orthologous gene pairs of Dof genes across the three Brassica species
(B. napus, B. oleracea, and B. rapa) and their respective Ks values. Table S7. Detailed results of functional
annotation of BnaDof proteins based on PANNZER2 output. Table S8. Cis-acting regulatory elements
detected in the BnaDof promoters. Table S9. Description of cis-acting regulatory elements detected
in the BnaDof promoters (used in Figure 6). Table S10a. Tissue-specific RNA-Seq expression data.
Read abundance is showed in terms of Transcripts Per Kilobase Million (TPM). Table S10b. RNA-Seq
expression data for three-week-old B. napus seedlings grown in control conditions and exposed to
different abiotic stresses. Read abundance is showed in terms of Transcripts Per Kilobase Million
(TPM). Table S11. Summary of the sequencing data used for analysis. Supplementary Folder:
Expression maps of BnaDofs (https://jmp.sh/odBHlfT).
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