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Abstract: Oligodendrocytes are cells fundamental for brain functions as they form the myelin sheath
and feed axons. They perform these critical functions thanks to the cooperation with other glial cells,
mainly astrocytes. The astrocyte/oligodendrocyte crosstalk needs numerous mediators and receptors,
such as peroxisome proliferator-activated receptors (PPARs). PPAR agonists promote oligodendrocyte
precursor cells (OPCs) maturation in myelinating oligodendrocytes. In the Alzheimer’s disease brain,
deposition of beta-amyloid (Aβ) has been linked to several alterations, including astrogliosis and
changes in OPCs maturation. However, very little is known about the molecular mechanisms. Here,
we investigated for the first time the maturation of OPCs co-cultured with astrocytes in an in vitro
model of Aβ1–42 toxicity. We also tested the potential beneficial effect of the anti-inflammatory and
neuroprotective composite palmitoylethanolamide and luteolin (co-ultra PEALut), which is known
to engage the isoform alfa of the PPARs. Our results show that Aβ1–42 triggers astrocyte reactivity
and inflammation and reduces the levels of growth factors important for OPCs maturation. Oligo-
dendrocytes indeed show low cell surface area and few arborizations. Co-ultra PEALut counteracts
the Aβ1–42-induced inflammation and astrocyte reactivity preserving the morphology of co-cultured
oligodendrocytes through a mechanism that in some cases involves PPAR-α. This is the first evidence
of the negative effects exerted by Aβ1–42 on astrocyte/oligodendrocyte crosstalk and discloses a
never-explored co-ultra PEALut ability in restoring oligodendrocyte homeostasis.

Keywords: oligodendrocytes; astrocytes; beta-amyloid; palmitoylethanolamide; luteolin; neuroin-
flammation; peroxisome proliferator-activated receptors; Alzheimer’s disease

1. Introduction

Aberrant myelination of neuronal axons is a common hallmark of several neurodegen-
erative diseases [1]. Physiologically, myelination consists in wrapping axons in a sheath
of lipid called myelin, which is able to increase the rate of action potentials along the
axon [2]. Thus, any impairment in myelin formation may alter neurotransmission and lead
to reduced cognitive functions and dementia [3].

Myelination is performed by oligodendrocytes, brain cells belonging to the macroglia
family of glial cells [3]. They originate from oligodendrocyte precursor cells (OPCs), mainly
localized in the ventricular zones of the central nervous system (CNS). From there, they
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migrate to the developing brain, where they become active oligodendrocytes [4]. In the
adult brain, the OPCs cell cycle is accelerated in case of myelin loss due to brain injury,
aging, or diseases [5], to counteract the damage.

OPCs survival and proliferation are under the control of another macroglia cell type,
namely astrocytes [3,6]. The latter are star-shaped cells able to maintain brain homeostasis
at all levels of organization [7–9]. Among their innumerable functions, astrocytes con-
tribute to myelination because they support OPCs survival by establishing direct cell–cell
contacts as well via secreted mediators [7,10]. Among many, astrocytes release both the
fibroblast growth factor (FGF)2 and the transforming growth factor (TGF)-β, two enhancers
of OPCs differentiation. During aging or some pathological conditions, astrocytes mod-
ify the production of these and other factors, thus hampering important physiological
functions, including OPCs differentiation and myelin sheath formation [11,12]. For in-
stance, in multiple sclerosis (MS), astrocytes secrete proinflammatory factors such as the
tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6, negatively affecting OPCs
differentiation [10,13,14]. Astrogliosis and demyelination also occur in Alzheimer’s disease
(AD) [15–18]. Brain imaging studies have linked myelin impairments with AD pathogene-
sis, appointing beta-amyloid (Aβ) cerebral deposition as a possible etiological factor [19,20].
Myelin damage coincides indeed with Aβ accumulation and concurrent impairment in
OPCs maturation in the brains of AD patients [21]. To date, the molecular mechanisms
involved have not been clarified yet. Very recent in vitro and in vivo evidence reported
the effect of Aβ in stimulating the maturation of OPCs and promoting the expression
of the myelin basic protein (MBP) [22,23]. In order to contribute to understanding these
counterintuitive findings, here we investigated the effects of Aβ1–42 on the maturation of
OPCs co-cultured with astrocytes, exploring the molecular mechanisms.

Numerous mediators and receptors and, among these, the peroxisome proliferator-
activated receptors (PPARs) seem to play a prominent role in regulating the communication
between astrocytes and oligodendrocytes [24–27]. PPARs represent a family of ligand-
activated transcription factors playing a vital role in cellular processes [28]. Three different
isoforms have been identified named α, β/δ, and γ. All of them are expressed in oligo-
dendrocytes, astrocytes, and neurons [29]. Molecules acting as agonists of these receptors
have demonstrated anti-inflammatory and neuroprotective properties in different in vitro
and in vivo models of CNS diseases [30–35]. In animal models of demyelinating diseases,
such as encephalomyelitis and amyotrophic lateral sclerosis, the administration of PPAR-γ
agonists delayed the onset and ameliorated the clinical manifestations of the pathology by
mainly exerting anti-inflammatory effects [36].

It was recently shown in vitro that a formulation containing palmitoylethanolamide
(PEA) co-ultramicronized with the flavonoid luteolin (co-ultra PEALut) promotes OPCs
morphological development into mature oligodendrocytes [37,38]. Furthermore, co-ultra
PEALut significantly reduced the development of encephalomyelitis in an in vivo experi-
mental model of MS [39]. The co-ultra PEALut mechanism of action was not investigated
in either of these studies. We and others have shown that PEA exerts anti-inflammatory
and neuroprotective properties through the interaction with the PPAR-α [40,41]. Moreover,
our laboratory has demonstrated PEA efficacy in dampening astrocyte reactivity in several
preclinical models of AD by engaging the PPAR-α [32,42–44]. In the light of this, here we
tested the effects of the agonism at PPAR-α by co-ultra PEALut in modulating the proper
communication between astrocytes and oligodendrocytes necessary for myelination.

Primary OPCs were cultured on permeable membranes inserted in wells containing
primary astrocytes, thus allowing secreted soluble factors to diffuse while preventing
physical contact between the two different cell types. Using this model, we tested the
possible beneficial effect of co-ultra PEALut treatment in counteracting Aβ1–42-induced
toxicity. We concurrently verified the involvement of PPAR-α by carrying out experiments
in the presence or absence of GW6471, a selective PPAR-α antagonist.

The results of the present study provide the very first evidence indicating that the
exposure of primary astrocytes to Aβ1–42 impairs some astrocytic functions and changes
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the differentiation and cellular morphology of co-cultured oligodendrocytes. Moreover,
here we show a new and never-explored ability of co-ultra PEALut in counteracting
Aβ1–42-induced damage on oligodendrocyte homeostasis, exerting some effects through
the PPAR-α. Considering that co-ultra PEALut is already approved for human use as a
food for special medical purposes, altogether, our findings open new opportunities for the
treatment of diseases characterized by myelination impairments.

2. Materials and Methods
2.1. Primary Cell Cultures

All animal procedures were performed in agreement with the guidelines of the Italian
Ministry of Health (D.L. 26/2014) and with the European Parliament directive 2010/63/EU.

Primary astrocytes and OPCs were isolated from cerebral cortices of female Sprague
Dawley rat pups (6 pups/experimental group) according to our previous studies [32,40,42]
and published protocols [45,46] with minor modifications. Rats at postnatal day 0–2 were
sacrificed by decapitation. The cortices were isolated, and the meningeal membranes were
removed. Each cortex was mechanically grinded in cold sterile Phosphate Buffer Saline
(PBS) 1X added with 10 U/mL penicillin and 100 µg/mL streptomycin and then centrifuged
(200× g for 30 s). The pellet was resuspended in High-glucose Dulbecco’s modified Eagle’s
medium (DMEM) containing papain, L-cysteine, and DNase I. After 60 min (min) in a 37 ◦C
water bath with occasional swirling, an ovomucoid solution (DMEM supplemented with
DNase I solution, 1% bovine serum albumin solution (BSA), and trypsin inhibitor) was
added for additional 2 min. After centrifugation (400× g for 3 min), cells were triturated by
pipetting several times in fresh ovomucoid solution. Then, DMEM supplemented with 10%
fetal bovine serum (FBS), 100 U/mL penicillin, and 100 µg/mL streptomycin (complete
DMEM) was added to the suspension. After centrifugation (400× g for 5 min), the obtained
mixed glial cells were plated on 75 cm2 tissue culture flasks (3,000,000 cells/flask) in
complete DMEM and cultured at 37 ◦C in a humified atmosphere containing 5% CO2.
Complete DMEM was replaced 24 h and 7 days later. Ten days after isolation, microglial
cells were dislodged by shaking flasks for 1 h and discarded. OPCs were separated from
astrocytes through an overnight shaking session and plated on semi-porous membranes
(0.4 µm pore size; density 100,000 cells/membrane), previously coated with poly-D-lysine
hydrobromide, in Sato medium, that is DMEM supplemented with 4% 3,3′,5-triiodo-L-
thyronine, 4% L-thyroxine, 200 U/mL penicillin and 200 µg/mL streptomycin, 1% FBS, 2%
N2 supplement (Thermo Fisher Scientific, Waltham, MA, USA). Astrocytes were plated
(200,000 cells/well) in 24-well plates (Nunc, Thermo Fisher Scientific, Waltham, MA,
USA) in 1 mL of complete DMEM. Then, semi-porous membranes containing OPCs were
located in the 24-well plates containing astrocytes. After plating, OPCs and astrocytes
were allowed to acclimatize and grow for 72 h in the respective media before treatments.
Remaining astrocytes were plated at 1,000,000 cells/well in 6-well plates for Western Blot
experiments and at 30,000 cells/well on 13 mm glass coverslips located in a 24-well plate
for immunofluorescence experiments. The procedure is outlined in Figure 1a.

Otherwise specified, all reagents and plasticware used in the above-described protocol
were purchased from Sigma Aldrich, Saint Louis, MO, USA.

2.2. Drugs and Schedule of Treatments

Human Aβ1–42 was purchased from AnaSpec (Fremont, CA, USA) and dissolved
in sterile NaOH 10 mM at a concentration of 221.5 µM following the manufacturer’s
instructions. In order to obtain the fibrillary form, Aβ1–42 solution was diluted in PBS 1X
and let aggregate for 24 h at 37 ◦C [47–49].

The selective PPAR-α antagonist GW6471 was purchased by Tocris Bioscience (Bristol,
UK) and dissolved in DMSO, whereas a preparation containing co-ultra PEALut (PEA and
Luteolin co-ultramicronized, 10:1 by mass; a kind gift of Epitech Group SpA, Saccolongo,
Italy) was dissolved in Pluronic F-68 (Sigma-Aldrich, St. Louis, MO, USA) and sonicated
for 20 min in a water bath until complete dissolution.
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Figure 1. Experimental design, characterization of OPCs maturation and effects of treatments. (a) 
Schematic representation of the experimental design. (b) MBP+/Olig2+ cell count at 1, 3, 5, 7, and 9 
days in vitro (DIV). (c) Astrocyte viability after 48 h treatment with human fibrillary Aβ1-42 (0–0.5–
1–5–10 μm). (d) Astrocyte viability tested by neutral red uptake assay after 48 h treatment with co-
ultra PEALut (0–0.5–1–3–7 μm). (e) Astrocyte viability tested by neutral red uptake assay after 48 h 
treatment with GW6471 (0–0.25–1–3–7 μm). (f) Astrocyte and (g) oligodendrocytes viability after 48 
h treatment with either complete DMEM or Sato medium (CTRL), Aβ1-42 1 μm, co-ultra PEALut 3 
μm, GW6471 3 μm, Pluronic F-68, and DMSO. Data are plotted as mean ± SEM and expressed as 
percentage variations to the control group (CTRL). ** p < 0.01 vs. CTRL (Dunnett’s test). 
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Figure 1. Experimental design, characterization of OPCs maturation and effects of treatments.
(a) Schematic representation of the experimental design. (b) MBP+/Olig2+ cell count at 1, 3, 5, 7,
and 9 days in vitro (DIV). (c) Astrocyte viability after 48 h treatment with human fibrillary Aβ1–42

(0–0.5–1–5–10 µm). (d) Astrocyte viability tested by neutral red uptake assay after 48 h treatment with
co-ultra PEALut (0–0.5–1–3–7 µm). (e) Astrocyte viability tested by neutral red uptake assay after
48 h treatment with GW6471 (0–0.25–1–3–7 µm). (f) Astrocyte and (g) oligodendrocytes viability after
48 h treatment with either complete DMEM or Sato medium (CTRL), Aβ1–42 1 µm, co-ultra PEALut
3 µm, GW6471 3 µm, Pluronic F-68, and DMSO. Data are plotted as mean ± SEM and expressed as
percentage variations to the control group (CTRL). ** p < 0.01 vs. CTRL (Dunnett’s test).

Primary astrocytes were treated with Aβ1–42 1 µM in the presence or absence of the fol-
lowing substances: co-ultra PEALut (3 µm) and GW6471 (3 µM). Concentrations and sched-
ule of treatments were chosen based on the available literature [23,32,40,50,51] and accord-
ing to the results of neutral red uptake assays. All reagents were lipopolysaccharide-free.

After 48 h of treatment, astrocytes and oligodendrocytes were collected separately and
processed for analyses.
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2.3. Neutral Red Uptake Assay

Respective astrocyte and oligodendrocyte viability was tested by neutral red uptake
assay, as previously described [42]. Cells were bathed for 3 h in 50µg/mL neutral red
solution (Sigma-Aldrich) at +37 ◦C. Later, cells were rinsed first in Ca2+- and Mg2+-free PBS
and then in a de-staining solution containing ethanol, deionized water, and glacial acetic
acid (50:49:1 v/v). Cell absorbance (540 nm) was read by a microplate spectrophotometer
(Epoch, BioTek, Winooski, VT, USA). The proportional number of viable cells was calculated
and expressed as percentage to control sample (CTRL).

2.4. Protein Extraction and Western Blot Analysis

Western blot analysis was performed on protein lysates of primary astrocytes, follow-
ing our published protocol [42]. Cells were lysed in ice-cold hypotonic buffer containing
150 mM NaCl, 1 mM EDTA, 50 mM Tris/HCl pH 7.5, 1% triton X-100 complete of inhibitors
of protease (0.1 mM leupeptin, 10 µg/mL aprotinin, and 1 mM phenylmethylsulfonyl
fluoride, all from Sigma-Aldrich). Homogenates were incubated for 40 min at +4 ◦C, then
centrifuged at 18,440× g for 30 min. Supernatants containing proteins were stored at−80 ◦C
until use. An equivalent amount of each sample (50 µg), calculated by Bradford assay, was
resolved through 12% acrylamide SDS-PAGE Stain-Free precast gels (Bio-Rad Laboratories,
Segrate, Italy). All samples were run concurrently. Proteins were transferred from gels to
nitrocellulose papers using a trans-blot SD semidry transfer cell (Bio-Rad Laboratories).
After 1 h incubation in a blocking solution containing 5% no-fat dry milk and 0.1% Tween
20 in TBS (TBS-T) at room temperature (Tecnochimica Moderna, Rome, Italy), membranes
were left overnight at +4 ◦C in a blocking solution containing one of the following primary
antibodies: rabbit anti-glial fibrillary acidic protein (GFAP) 1:25,000 (Abcam, Cambridge,
UK), mouse-anti-glutamine synthetase (GS) 1:500 (Millipore, Burlington, MA, USA), and
mouse anti-high mobility group box 1 (HMGB1) 1:1000 (BioLegend, San Diego, CA, USA).
The following morning, membranes were rinsed using 0.05% TBS-T and incubated with
a blocking solution containing the appropriate secondary horseradish peroxidase (HRP)-
conjugated antibody for 1 h at room temperature. Lastly, membranes were washed with
T-TBS and briefly bathed in a specific solution of the enhanced chemiluminescence (ECL)
kit (GE Healthcare Life Sciences, Milan, Italy). Immunocomplexes were detected by a
Chemidoc XRS and analyzed by Image Lab software (Bio-Rad, Hercules, CA, USA). Values
were normalized to the total protein content. Experimental conditions are summarized in
Table 1.

Table 1. Western blot conditions.

Primary Antibody Brand Dilution Secondary Antibody Brand Dilution

Rabbit α-GFAP Abcam
1:25,000

5% milk in TBS-T
0.1%

HRP conjugated goat
anti-rabbit IgG

Jackson
ImmunoResearch

1:10,000
5% milk in TBS-T

0.1%

Rabbit α-GS Millipore
1:500

5% milk in TBS-T
0.1%

HRP conjugated goat
anti-mouse IgG

Jackson
ImmunoResearch

1:10,000
5% milk in TBS-T

0.1%

Rabbit α-HMGB1 BioLegend
1:1000

5% milk in TBS-T
0.1%

HRP conjugated goat
anti-mouse IgG

Jackson
ImmunoResearch

1:10,000
5% milk in TBS-T

0.1%

GFAP: glial fibrillary acidic protein; GS: glutamine synthetase; HMGB1: high mobility group box 1; TBS-T: tris
buffered saline tween 20; HRP: horseradish peroxidase.

2.5. Real Time-Quantitative Polymerase Chain Reaction (RT-qPCR)

RT-qPCR was carried out as previously described [52] and summed up in Table 2.
The TRI-Reagent (Sigma-Aldrich) was added to primary astrocyte samples to extract total
mRNA. An equal amount of mRNA (1 µg) from each experimental group was quantified
by a D30 BioPhotometer spectrophotometer (Eppendorf AG, Hamburg, Germany) and
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reverse transcribed using a QuantiTect Reverse Transcription Kit (Qiagen, Valencia, CA,
USA). RT-PCR reactions (20 µL) were set mixing specific primers, cDNA (20 ng) with the
iTaq Universal SYBR Green Supermix (Bio-Rad, Hercules, CA, USA) and run in 96-well
plates using the CFX96 Touch thermocycler (Bio-Rad, Hercules, CA, USA). All samples
were run concurrently in triplicate. A two-step thermal protocol was used for 40 cycles
(10 s at 95 ◦C and then 30 s at 60 ◦C) preceded by a polymerase activation step (3 min at
95 ◦C). Gene-specific amplification was controlled by including a melting curve analysis
of the amplification products at the end of the reaction. The Glyceraldehyde-3-Phosphate
Dehydrogenase (GAPDH) was used as reference gene to normalize each target amplicon.
Data were analyzed using the Pfaffl method, correcting the delta Ct values for each primer
efficiency [53]. All primer sequences are listed in Table 2.

Table 2. RT-qPCR parameters and list of primers.

Gene Brand Primer (5′ → 3′) Ann. (60 ◦C) Efficiency (%) R2

IL-1β Bio-Rad
Forward

N/A (Cod. qRnoCID0004680) 60 98.0 0.999
Reverse

IL-6 Sigma
Aldrich

Forward CAGAGTCATTCAGAGCAATAC
60 96.1 0.997

Reverse CTTTCAAGATGAGTTGGATGG

TGF-β Bio-Rad
Forward

N/A (Cod. qRnoCID0006448) 60 102.0 0.999
Reverse

FGF2 Bio-Rad
Forward

N/A (Cod. qRnoCID0003540) 60 96.0 0.999
Reverse

p50NFκB Bio-Rad
Forward

N/A (Cod. qRnoCID0003698) 60 92.0 0.997
Reverse

GFAP Sigma
Aldrich

Forward CGGCTCTGAGAGAGATTCGC
60 101.7 0.994

Reverse GCAAACTTGGACCGATACCA

S100B
Bio-Fab

Research (Roma, Italy)
Forward TCAGGGAGAGAGGGTGACAA

60 106.4 0.994
Reverse ACACTCCCCATCCCCATCTT

GAPDH Bio-Fab
research

Forward GCGAGATCCCGCTAACATCAAAT
60 100.0 0.999

Reverse GCCATCCACAGTCTTCTGAGTGG

Ann.: annealing; IL: interleukin; TGF-β: transforming growth factor-β; FGF2: fibroblast growth factor 2; NFκB:
nuclear factor kappa-light-chain-enhancer of activated B cells; GFAP: glial fibrillary acidic protein; GAPDH:
glyceraldehyde-3-phosphate dehydrogenase.

2.6. Immunofluorescence

Immunofluorescence was performed according to our previous studies [54]. Briefly,
semi-porous membranes containing primary oligodendrocytes were carefully cut out and
laid down on glass slides (Thermo Scientific, Rockford, IL, USA). Cells were fixed in 4%
paraformaldehyde (Santa Cruz, Dallas, TX, USA) in PBS 1X for 20 min at room temperature.
After being washed three times with PBS 1X, they underwent a 10 min bath in PBS 1X
with 0.25% Triton X-100 (Sigma-Aldrich) to promote cell permeabilization. Then, cells were
submerged for 2 h in a blocking solution containing 5% BSA and 0.25% Triton X-100 in
PBS 1X and subsequently incubated overnight at 4 ◦C with the blocking solution added
of the following primary antibodies: rabbit anti-GFAP (1:1500, Abcam), rabbit anti-Olig2
(1:200), and mouse anti-MBP (1:200), both from Santa Cruz. The following day, cells were
washed 3 times with PBS 1X and incubated for 1 h with a fresh blocking solution containing
the FITC-conjugated goat anti-rabbit IgG (H + L) antibody (1:200) and TRITC-conjugated
goat anti-mouse IgG (H + L) antibody (1:200) (Jackson ImmunoResearch, Suffolk, UK).
Nuclei were stained with Hoechst (1:500, Thermo Fisher Scientific). Lastly, cells were rinsed
3 times in PBS 1X before being covered with Fluoromount aqueous mounting medium
(Sigma-Aldrich) and a glass coverslip. Experimental conditions are summarized in Table 3.
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The specificity of the signal was confirmed in cells that underwent the same protocol
procedure except for the incubation with the primary antibody.

Table 3. Immunofluorescence conditions.

Primary
Antibody Brand Dilution Secondary

Antibody Brand Dilution

Rabbit α-Olig2 Santa Cruz
1:200

5% BSA in PBS/0.25%
Triton X-100

FITC conjugated goat
anti-rabbit IgG (H + L)

Jackson
ImmunoResearch

1:200, 5% BSA in
PBS/0.25% triton X-100

Mouse α-MBP Santa Cruz
1:200

5% BSA in PBS/0.25%
Triton X-100

TRITC conjugated goat
anti-mouse
IgG (H + L)

Jackson
ImmunoResearch

1:200, 5% BSA in
PBS/0.25% triton X-100

Mouse α-GFAP Abcam
1:1500

5% BSA in PBS/0.25%
Triton X-100

FITC conjugated goat
anti-rabbit IgG (H + L)

Jackson
ImmunoResearch

1:200, 5% BSA in
PBS/0.25% triton X-100

MBP: myelin basic protein; GFAP: glial fibrillary acidic protein; BSA: bovine serum albumin; FITC: fluorescein
isothiocyanate; TRITC: tetramethyl rhodamine; PBS: phosphate buffer saline.

Data were collected using an Eclipse E600 microscope equipped with Nikon Plan 20×
and 40× objectives (Nikon instruments, Rome, Italy) connected to a Qimaging camera
(Surrey, BC, Canada), and controlled by the software NIS-Elements-BR 3.2 64 bit (Nikon
instruments). Parameters of gain and exposure were kept constant to allow comparisons
between samples within the same experiment.

2.7. Image Analysis

In order to calculate the percentage of MBP+/Olig2+ oligodendrocytes, cells were
counted manually from six random fields per condition for each independent experiment
using the Fiji software by two investigators blinded to treatments.

The morphology of MBP+ oligodendrocytes was analyzed by measuring the surface,
expressed in µm2, of each individual cell [55].

The complexity of MBP+ oligodendrocytes was analyzed by using the Sholl analysis
plugin [56,57]. Fluorescent pictures were converted into binary 8-bit images, background
subtracted, and the free edges were detected. Starting radius was set at 10 µm and step
size at 5 µm, thus creating 5 concentric radii up to 30 µm distance from the soma. The
number of cell processes intersecting those circles was plotted as a function of the radial
distance from the cell soma. Several descriptors of cell arborization were analyzed, which
are the maximum intersections (calculated as the highest number of processes/branches in
each cell arbor), the sum of intersections (calculated as the sum of intersections detected at
each concentric circle), and the mean of intersections (calculated as the sum of intersections
divided by intersecting radii) [23,58,59]. Images were analyzed by an investigator blinded
to treatments.

2.8. Statistical Analysis

Statistical analysis was performed using GraphPad Prism software version 6.0 (Graph-
Pad Software, San Diego, CA, USA). Data were analyzed by either the Student’s t-test,
in case just two experimental groups were compared, or one-way analysis of variance
(ANOVA) in all other experiments. Upon detection of a main significant effect from
ANOVA, a post hoc test was carried out as either the Dunnett’s test, in case groups needed
to be compared only to the CTRL, or the Student Newman Keuls (SNK) test in case of
multiple comparisons among groups. Differences between mean values were considered
statistically significant when p < 0.05.
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3. Results
3.1. Characterization of OPCs Maturation In Vitro and Effects of Treatments on the Viability of
OPCs and Astrocytes

To monitor the maturation of OPCs in our experimental conditions, we performed a
longitudinal immunofluorescence study testing the appearance of the MBP signal. We stud-
ied the MBP+/Olig2+ cell ratio, which is considered an index of the level of maturation of
OPCs [60]. Indeed, MBP is the major protein constituent of myelin, and it is produced only
by mature oligodendrocytes, whereas Olig2 is a specific transcriptional factor expressed
by oligodendrocytes at all developmental stages, from precursors to mature cells [60–62].
According to literature data, our results show that primary oligodendrocytes cultured alone
survive approximately 10 days and start to express MBP between the second and third
day in vitro (DIV). MBP expression progressively increases to reach the highest value at
about the seventh DIV (Figure 1b). Provided these data, we decided to study the effects of
treatments on the initial phase of OPCs maturation, that is, the third DIV.

Figure 1c–e shows the results of viability assays performed to choose the appropriate
concentrations of treatments to be applied for 48 h to astrocytes. In Figure 1, we also report
the effects of the selected concentrations and of the relative vehicles used to solubilize each
substance on astrocyte (f) and oligodendrocyte (g) viability. No significant variation versus
control was observed when co-ultra PEALut or GW6471 were provided alone.

3.2. Aβ1–42 Triggers Astrocyte Reactivity

To study the effects of human fibrillary Aβ1–42 1 µm on astrocyte function in our
transwell culture system, we performed immunofluorescence and western blot experiments
analyzing the expression levels of key proteins that are commonly related to a reactive
and proinflammatory phenotype [63,64]. Our results show that 48 h treatment with Aβ1–42
triggers this astrocytic phenotype as documented by the increased expression of GFAP, GS,
and HMGB1 (Figure 2).
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Figure 2. Effects of Aβ1–42 on astrocytes. (a) Representative photomicrographs of GFAP immunola-
beled cells. Results from western blot experiments show increased expression of GFAP (b), GS (c),
and HMGB1 (d) in astrocytes treated with human fibrillary Aβ1–42 1 µm for 48 h compared with
vehicle-treated cells (CTRL). Data are plotted as mean ± SEM and expressed as percentage variations
vs. CTRL. * p < 0.05; ** p < 0.01 vs. CTRL (Student’s t-test).
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3.3. Co-Ultra PEALut Prevents the Astrocyte Reactivity and the Reduction in Growth Factors
Transcription Induced by Aβ1–42 Exposure

Experiments investigated whether co-ultra PEALut exerts beneficial effects in primary
astrocytes exposed to Aβ1–42, focusing on astrocytic factors able to affect OPCs survival
and development. The possible engagement of the PPAR-α in such co-ultra PEALut effects
was also explored.

As shown in Figure 3a–e, the challenge with Aβ1–42 triggered both astrocyte reactivity
and an inflammatory process, detected by the increase in GFAP, S100B, p50NFκB, IL-6, and
IL-1β mRNA compared with control cells. Co-ultra PEALut significantly prevented the
Aβ1–42-induced raises. Concurrent treatment with the PPAR-α antagonist GW6471 ham-
pered co-ultra PEALut to block Aβ1–42-induced transcription of IL-6 and IL-1β, indicating
PPAR-α involvement in co-ultraPEALut effects.
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Figure 3. Co-ultra PEALut blunts the Aβ1–42-induced reactive and proinflammatory astrocyte
phenotype. Astrocytic transcriptional changes of GFAP (a) and S100B (b), two markers of astrocyte
reactivity, proinflammatory mediators p50NFκB (c), IL-6 (d), and IL-1β (e), and growth factors
FGF2 (f), and TGF-β (g). Treatments with human fibrillary Aβ1–42 1 µm in the presence or absence of
co-ultra PEALut 3 µm and GW6471 3 µm (or respective vehicles) were added to the culture media of
primary astrocytes set in co-cultures with OPCs. Primary astrocytes were collected 48 h later and
processed for RT-qPCR. Data are expressed as mean ± SEM of the fold change to the vehicle-treated
group (CTRL). * p < 0.05; ** p < 0.01; *** p < 0.001 vs. CTRL; ◦ p < 0.05; ◦◦ p < 0.01; ◦◦◦ p < 0.001 vs.
Aβ1–42; $$ p < 0.01; $$$ p < 0.001 vs. Aβ1–42 + co-ultra PEALut (SNK test).
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Furthermore, our results show that Aβ1–42 significantly reduced the gene expression
of both astrocytic FGF2 and TGF-β compared with control cells (Figure 3f,g). Co-ultra
PEALut treatment significantly prevented such Aβ1–42-induced modifications. However,
concurrent treatment with GW6471 did not change the observed co-ultra PEALut effect,
thus indicating that the PPAR-α was not engaged.3.4. Co-ultra PEALut counteracts the
altered MBP+/Olig2+ ratio triggered by Aβ1–42 exposure

Experiments investigated whether exposing primary astrocytes to Aβ1–42 affects the
maturation of co-cultured OPCs and whether co-ultra PEALut prevents the observed
Aβ1–42-induced changes. The possible involvement of the PPAR-α in co-ultra PEALut
effects was tested too. As shown in Figure 4, we observed an increase in the number
of MBP+ oligodendrocytes when these cells were co-cultured with Aβ1–42-challenged
astrocytes but not with the vehicle (Figure 4a,b). Olig2+ cell count was not affected by treat-
ment, suggesting that no proliferation or death of oligodendrocytes occurred (Figure 4a,c).
Coherently, the MBP+/Olig2+ ratio increased in oligodendrocytes indirectly exposed to
Aβ1–42 (Figure 4d). Co-ultra PEALut significantly prevented such an Aβ1–42-induced effect
(Figure 4a–d). Concurrent treatment with GW6471 did not reverse the co-ultra PEALut
effect indicating that other mechanisms of action could be involved.

3.4. Co-Ultra PEALut Controls the Oligodendrocyte Morphological Changes Induced by
Aβ1–42 Exposure

Oligodendrocytes change their cell morphology in various CNS pathological condi-
tions, including AD [65–70]. As we observed that Aβ1–42 increased MBP+ cells, we decided
to clarify the Aβ1–42 effects by performing a thorough morphological analysis of oligo-
dendrocytes. We analyzed the cell surface area and the number of arborizations of MBP+

oligodendrocytes. As shown in Figure 5, we observed a reduction in the cell surface area of
oligodendrocytes when these cells were co-cultured with astrocytes challenged with Aβ1–42
but not with the vehicle. Co-ultra PEALut significantly prevented such Aβ1–42-induced
effect. Concurrent treatment with the PPAR-α antagonist GW6471 did not block the effect
of co-ultra PEALut, suggesting the involvement of other mechanisms.

The Sholl analysis revealed a significant reduction both in the maximum number of in-
tersections and the sum of intersections of MBP+ cell branches when oligodendrocytes were
indirectly exposed to Aβ1–42 (Figure 6a–d). Similarly, the mean number of intersections
was reduced (Figure 6e). Co-ultra PEALut prevented such Aβ1–42-induced modifications in
oligodendrocyte morphology through PPAR-α involvement. Indeed, GW6471 blocked the
observed co-ultra PEALut effect (Figure 6a,c–e). By counting the number of arborizations
from the MBP+ cell soma outwards every 5 µm (Figure 6f), we found that Aβ1–42-exposed
oligodendrocytes showed a lower number of arborizations at three distance measures
(10, 15, and 20 µm) compared to control cells, reaching the greatest and most significant
reduction at 20 µm from the soma (Figure 6f). Co-ultra PEALut treatment was effective in
preventing these Aβ1–42-induced morphological changes. The co-treatment with GW6471
significantly blunted such co-ultra PEALut effect, indicating an engagement of the PPAR-α
in the co-ultra PEALut mechanism of action (Figure 6f).
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Figure 4. Co-ultra PEALut dampens the altered MBP+/Olig2+ ratio caused by Aβ1–42. (a) Repre-
sentative photomicrographs of MBP (red) and Olig2 (green) staining of primary oligodendrocytes
obtained using a 20× objective mounted on a fluorescent microscope. Cell nuclei were stained with
Hoechst (blue). Scale bar is 40 µm. (b) MBP+ cell count. (c) Olig2+ cell count. (d) The ratio of MBP+

to Olig2+ cell counts. Treatments with human fibrillary Aβ1–42 1 µm in the presence or absence of
co-ultra PEALut 3 µm, GW6471 3 µm (or respective vehicles) were added to the astrocytic culture
medium. Semi-permeable inserts containing the primary oligodendrocytes were collected 48 h later
and processed by immunofluorescence. Data are plotted as mean± SEM and expressed as percentage
variations vs. the vehicle-treated group (CTRL). * p < 0.05; ** p < 0.01 vs. CTRL; ◦ p < 0.05 vs. Aβ

(SNK test).
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Figure 5. Co-ultra PEALut prevents oligodendrocyte shrinkage caused by Aβ1–42. (a) Representative
thresholded (white color) photomicrographs of MBP+ cells taken under a 40× objective mounted
on a fluorescent microscope. Scale bar is 20 µm. (b) Quantification of total MBP+ cell surface area
expressed in µm2. Cell contours were manually drawn using Fiji. Data are plotted as mean ± SEM.
* p < 0.05 vs. CTRL; ◦ p < 0.05 vs. Aβ (SNK test).
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Figure 6. Co-ultra PEALut limits the Aβ1–42-induced alterations in oligodendrocyte morphology.
(a) Representative photomicrographs of MBP+ cells taken using a 40× objective mounted on a
fluorescent microscope. Scale bar is 10 µm. (b) Eight-bit image of a representative MBP+ cell, used
in the Sholl analysis, in which concentric circles were juxtaposed on each MBP+ cell starting from
10 µm far from the cell soma and spaced 5 µm apart. (c) Maximum number of intersections, that is
the highest number of processes/branches counted in each MBP+ cell. (d) Sum of intersections, that
is the number of intersections counted in each circle. (e) Mean of intersections, that is the ratio sum
of intersections /number of circles. (f) Number of intersections counted every 5 µm starting from
10 µm far from the cell soma until 30 µm. At least 20 cells per animal were counted. Data are plotted
as mean ± SEM. * p < 0.05; ** p < 0.01; *** p < 0.001 vs. CTRL; ◦ p < 0.05; ◦◦ p < 0.01; ◦◦◦ p < 0.001 vs.
Aβ1–42; $ p < 0.05; $$ p < 0.01; $$$ p < 0.001 vs. Aβ1–42 + co-ultra PEALut (SNK).
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4. Discussion

Neuroglia is an extremely heterogeneous population of cells present in the nervous
system. The heterogeneity of glial cells correlates with the multiplicity of functions that
they perform. Regardless of their morphology and functions, the common fundamental
role of all types of glial cells in the maintenance of CNS homeostasis [71]. Among glial
cells, astrocytes have recently gained great attention for their homeostatic support that
takes place at all levels of brain organization. Therefore, alterations affecting astrocytes are
nowadays considered to be implicated in the etiology or progression of almost all disorders
affecting the nervous system, including AD [72–75]. For this reason, neuropharmacologists
look at these cells as possible targets for the development of new therapeutics [76,77].

One of the less explored functions of astrocytes is their supportive role in the matura-
tion of oligodendrocytes. Astrocytes establish physical and functional connections with
oligodendrocytes, thus allowing, among many other processes, the proper formation of
myelin [10]. Changes in this cell–cell communication may alter myelination, impairing
neurotransmission, ultimately leading to cognitive decline and dementia [3]. Indeed, aber-
rant myelination is considered one of the key features of AD [17], although it remains an
overlooked field of study. To contribute to filling this gap, here we set up an in vitro model
of Aβ1–42 toxicity to study the interaction between astrocytes and oligodendrocytes, with
particular emphasis on astrocyte reactivity and the release of trophic factors required for
OPCs maturation, which is predictive of their ability to form myelin. By using semi-porous
inserts to grow the two populations of glial cells separately, we treated astrocytes with
human Aβ1–42 and studied the resulting changes in the two cell populations, with spe-
cial reference to OPCs maturation. We observed that 48 h exposure to human fibrillary
Aβ1–42 induced astrocytes to acquire a reactive and proinflammatory phenotype. We in-
deed observed an increase in the expression of key proteins related to astrocyte reactivity,
such as GFAP, GS, and HMGB1. Similarly, elevated transcriptional levels of p50NFkB,
IL-6, and IL-1β, well-known proinflammatory mediators, have been observed. Intrigu-
ingly, the elevation of such meditators has already been linked to a toxic environment that
damages all cells, including oligodendrocytes [78–80]. Furthermore, our data reveal that
Aβ1–42-exposure causes a significant reduction in the astrocytic transcriptional levels of
FGF2 and TGF-β, two factors strictly implicated in OPCs maturation [11,12]. Based on
these results and literature evidence indicating Aβ-induced altered myelination [81,82], we
predicted to observe a defective maturation of co-cultured OPCs in our experimental con-
dition. Our immunofluorescence experiments instead revealed a higher number of MBP+

cells and MBP+/Olig2+ ratio in oligodendrocytes indirectly exposed to human Aβ1–42
compared with vehicle. In agreement with these counterintuitive results, direct treatment
of oligodendrocytes with oligomeric Aβ1–42 promoted MBP upregulation in primary rat
oligodendrocyte cultures [23]. Furthermore, a marked increase in oligodendrocyte differen-
tiation was found in the corpus callosum and hippocampus of transgenic models of AD,
namely 3xTg-AD and APP/PS1 mice, compared with the wild-type counterparts [83]. As
suggested by some researchers, a possible explanation of the Aβ effect on oligodendrocyte
MBP expression could be linked to the reaction of these cells to the toxic stimulus [5]. Oligo-
dendrocytes, indeed, may react by increasing their rate of differentiation in the attempt to
restore the lost homeostasis [84,85]. By performing an in-depth morphological analysis,
here we unveil that this push to the maturation operated by the toxic insult with Aβ1–42
actually causes severe morphological changes to oligodendrocytes. We observed that MBP+

oligodendrocytes lose their proper dimension and complexity as a consequence of the toxic
insult. A significant reduction in the cell surface area, the maximum number of intersec-
tions, and both the sum and mean of intersections of MBP+ cell branches were detected in
oligodendrocytes co-cultured with astrocytes challenged with Aβ1–42. All these structural
changes highlight oligodendrocyte loss of planarity and their confused organization of
branches. Data obtained agree with some recent in vivo findings in 3xTg-AD mice. In
particular, oligodendrocytes of six-month-old transgenic mice appeared atrophic when
compared to non-transgenic age-matched animals [55].
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The new and extremely interesting evidence that emerges from the present results
concerns the ability of co-ultra PEALut to restore oligodendrocyte homeostasis impaired by
the Aβ1–42 challenge. Our and other groups have extensively documented the neuropro-
tective and beneficial effects of PEA in several preclinical and clinical settings [41,86–88].
We also demonstrated the ability of both PEA and co-ultra PEALut to modulate glial re-
activity and dampen neuroinflammation, thus fostering neuron survival in different AD
models [32,40,42–44].

Here, we provide the very first evidence about co-ultra PEALut’s ability to restore the
pathological changes occurring in both astrocytes and oligodendrocytes after a toxic insult
with the human Aβ1–42. We also show that co-ultra PEALut exerts some of these effects
with a mechanism mediated by the PPAR-α. The activation of PPAR-α has been linked
to NFκB inhibition, reduction of proinflammatory mediators, increased transcription of
antioxidant enzymes, and promotion of cell survival through the inhibition of caspase 3 [89].
All these pathways could theoretically explain our results; however, further experiments
are needed to clarify the effects of co-ultra PEALut.

By increasing FGF2 and TGF-β mRNA levels and blunting the expression of proin-
flammatory mediators, co-ultra PEALut normalized astrocyte functions and preserved
the morphological features of oligodendrocytes indirectly exposed to Aβ1–42. It is worth
noting that co-ultra PEALut provided concurrently with Aβ1–42, apart from preventing
Aβ1–42-induced branching loss throughout the entire cell, even increases the number of in-
tersections at 20 µm from the soma compared with the control group. Interestingly, the total
area occupied by oligodendrocytes and the number of cellular arborizations are associated
with the ability of these cells to create the myelin sheath around neuronal axons [90,91].
We are aware that further studies are required to better clarify the molecular mechanisms.
However, our data are promising as they suggest the potential use of co-ultra PEALut in
neurological disorders characterized by impaired myelination. In agreement, recent studies
showed the co-ultra PEALut’s ability to promote in vitro OPCs differentiation [37,38,46]
and to reduce the development of clinical signs in an in vivo experimental model of MS [39].

This study has some limits: first, our in vitro system is not able to fully reproduce the
physiological environment where myelination occurs, which also comprehends neurons.
Secondly, the mechanism of action of co-ultra PEALut could be further explored since
not all the observed effects here are mediated by the PPAR-α. Indeed, other receptors
have been proposed as PEA targets, including the transient receptor potential vanilloid
type 1 channel and the orphan G-protein coupled receptor 55; PEA could engage the
endocannabinoid enzyme fatty acid amide hydrolase acting as a false substrate and, in turn,
indirectly increasing anandamide concentration [77,92]. Finally, further studies are needed
to characterize additional markers targeting myelin and to explore OPCs differentiation
and maturation longitudinally.

In conclusion, our data show a novel and never-explored ability of co-ultra PEALut in
counteracting the negative effects exerted by Aβ on oligodendrocyte homeostasis. Alto-
gether, our findings open new opportunities for the adjuvant treatment of AD, and co-ultra
PEALut is a promising composite capable of exerting beneficial effects in both experimental
and clinical settings. Since it is already licensed for human use, the potential to proceed to
clinical use rapidly is reasonable.
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