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Additive genetic variance in fitness is a prerequisite for adaptive evolution, as a trait must be genetically correlated with fitness

to evolve. Despite its relevance, additive genetic variance in fitness has not often been estimated in nature. Here, we investigate

additive genetic variance in lifetime and annual fitness components in common terns (Sterna hirundo). Using 28 years of data

comprising approximately 6000 pedigreed individuals, we find that additive genetic variances in the zero-inflated and Poisson

components of lifetime fitness were effectively zero but estimated with high uncertainty. Similarly, additive genetic variances in

adult annual reproductive success and survival did not differ from zero butwere again associatedwith high uncertainty. Simulations

suggested that we would be able to detect additive genetic variances as low as 0.05 for the zero-inflated component of fitness but

not for the Poisson component, for which adequate statistical power would require approximately two more decades (four tern

generations) of data collection. As such, our study suggests heritable variance in common tern fitness to be rather low if not zero,

shows how studying the quantitative genetics of fitness in natural populations remains challenging, and highlights the importance

of maintaining long-term individual-based studies of natural populations.
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Fisher’s Fundamental Theorem of Natural Selection postulates

that “the rate of increase in fitness of any organism at any time

is equal to its genetic variance in fitness at that time” (Fisher

1930). As such, additive genetic variance in fitness, equivalent

to the change in mean fitness resulting from selection, has been

considered the single most useful statistic quantifying selection

(Burt 1995). Genetic variation in fitness is also a prerequisite for

adaptive evolution, as a trait must be genetically correlated with

fitness to evolve through natural selection (Robertson 1966; Price

1970). Hence, understanding the quantitative genetics of individ-

ual variation in fitness is arguably one of the most important aims

in evolutionary ecology (Burt 1995; Ellegren and Sheldon 2008;

Walsh and Blows 2009; Gomulkiewicz and Shaw 2013; Shaw

and Shaw 2014; Hendry et al. 2018).

Considerable debate has surrounded the question of whether

additive genetic variation in fitness is expected to be low (e.g.,

†Contributed equally as last authors.

Jones 1987; Burt 1995; Houle et al. 1996; Merilä and Sheldon

1999; Shaw and Shaw 2014), particularly under which conditions

(e.g., Cheverud and Routman 1995; Whitlock et al. 1995). Em-

pirical estimates of additive genetic variance in fitness from wild

populations are relatively scarce (e.g., Gustafsson 1986; Kruuk

et al. 2000; Merilä and Sheldon 2000; McCleery et al. 2004; Colt-

man et al. 2005; Brommer et al. 2007; Foerster et al. 2007; Teplit-

sky et al. 2009; Wheelwright et al. 2014; McFarlane et al. 2014,

McFarlane et al. 2015; Wolak et al. 2018; de Villemereuil et al.

2019) and have thus far not shed much light on this debate, since

estimates vary substantially, with many estimates close to zero

and few large estimates (review by Hendry et al. 2018). Overall,

Hendry et al. (2018) tentatively concluded that the evolvability

of fitness (measured as the square of the coefficient of additive

genetic variance in fitness) is usually less than 0.2.

Data constraints might partially explain the paucity of

studies testing for the heritability of fitness in the wild and the

heterogeneity among estimates of additive genetic variance,
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although steadily growing datasets collected from long-term

study populations gradually alleviate the problem (Clutton-Brock

and Sheldon 2010). This increased data availability was recently

accompanied by the development of (i) statistical tools designed

to deal with the non-Gaussian distributions that often charac-

terize fitness data (de Villemereuil et al. 2016; de Villemereuil

2018), as well as (ii) theoretical frameworks that facilitate the

evolutionary inference of quantitative genetic parameters based

on these data distributions (Morrissey and Bonnet 2019). To

date, only four studies have modeled the quantitative genetics of

fitness in wild populations assuming a non-Gaussian distribution

(McFarlane et al. 2014; McFarlane et al. 2015; Wolak et al.

2018; de Villemereuil et al. 2019). Additive genetic variance in

fitness was estimated to be very small in North American red

squirrels (Tamiasciurus hudsonicus) (VA ∼ 0, 95% = 5.2×10−07

- 1.1, McFarlane et al. 2014, see also McFarlane et al. 2015).

In birds, de Villemereuil et al. (2019) showed that hihis

(Notiomystis cincta) in New Zealand had negligible additive

genetic variance in lifetime fitness (VA zero-Inflated component ∼ 0,

95% CI = 1.4×10−11 - 0.0038 and VA Poisson component = 0.0078,

95% CI = 2.3×10−10 - 5.7), while Wolak et al. (2018) found that

the song sparrows (Melospiza melodia) of Mandarte Island in

Canada harbored substantial additive genetic variance in female

and male fitness (VA female = 2.01, 95% CI = 0.21 – 3.93; VA male

= 1.72, 95% CI = 0.27 – 3.39).

Here, we present phenotypic and pedigree data obtained

from a 28-year individual-based study on common terns (Sterna

hirundo). The common tern is a Nearctic and Palearctic colo-

nially breeding, serially monogamous and migratory seabird. The

study colony is located in northern Germany; common terns

from this colony spend their winters in western Africa and re-

turn to the breeding colony in early spring to breed or prospect

potential breeding locations (Becker and Ludwigs 2004). Com-

mon terns breed annually, both parents incubate and feed the

chicks, and extrapair paternity is rare (González-Solís et al. 2001;

Becker and Ludwigs 2004). Applying a series of “animal mod-

els” to data from almost 6000 pedigreed individuals across five

generations, we investigate additive genetic variance for life-

time fitness (assessed as the total number of fledglings pro-

duced by a locally born fledgling) and two of its underlying an-

nual components: annual reproductive success and adult annual

survival.

Methods
STUDY SYSTEM

Fitness and pedigree data were collected between 1992 and 2019

as part of a long-term study of a common tern population lo-

cated at the Banter See on the German North Sea coast (53°36´N,

08°06´E). The Banter See colony consists of six concrete is-

lands, each of which is surrounded by a 60-cm wall. Walls are

equipped with 44 elevated platforms, each containing an an-

tenna that reads transponder codes. The individual-based study

at the Banter See was initiated in 1992, when 101 adult birds

were caught and marked with individually numbered subcuta-

neously injected transponders. Since 1992, all locally hatched

birds have been similarly marked with a transponder shortly be-

fore fledging, and the presence and reproductive performance of

marked individuals have been monitored following a standard

protocol (Becker and Wendeln 1997). As part of this protocol,

the colony is checked for new clutches every 2−3 days through-

out the breeding season (Zhang et al. 2015). Parents are identified

using portable antennae placed around each nest for 1−2 days

during incubation, which are shared by both partners. Pairs could

rear up to three chicks per brood (mean successful brood size

0.41 ± 0.65 SD chicks) and can produce replacement clutches

after the loss of eggs or chicks. Second clutches are extremely

rare (Becker and Zhang 2011).

FITNESS DATA

Our initial data selection included individuals that fledged be-

tween 1992 and 2016 because previous work showed that 97%

of fledglings, if they returned, did so within the first 3 years

(Vedder and Bouwhuis 2018). Since there is little standardized

monitoring in areas around the focal colony, we cannot directly

quantify juvenile dispersal. However, we know that there is (i) a

relatively high local return rate (26% of chicks fledged between

1992 and 2016 returned to the colony, of which 14% recruited)

and (ii) only rare reporting of external recruits (between 1992

and 2016, 32 fledglings from the Banter See were observed a

total of 105 times in other European breeding colonies). In addi-

tion, although we cannot directly observe an individual’s death,

we can reliably assume it, because adult breeders at the Banter

See are highly site-faithful, evidenced by a resighting probability

of breeding individuals close to one (Szostek and Becker 2012),

and 96% of breeders not skipping recording by the antenna sys-

tem for two or more consecutive years after first reproduction

(Bouwhuis et al. 2015; Zhang et al. 2015). Based on this knowl-

edge, we removed all birds that were observed in 2018 and/or

2019 and were younger than 11 years old because (i) they are

known to not be, or cannot yet be assumed to be, dead, and

(ii) lifetime fitness of individuals older than 10 years and those

who died showed a high correlation (r > 0.8) in our dataset.

Hence, we included birds that completed their life histories (n =
5836), as well as birds that were still alive but older than 10 years

(n = 163), to avoid introducing a cohort truncation bias by non-

randomly removing longer-lived birds (Hadfield 2008; Morrissey

et al. 2012). To control for any potential confounding effect, we

modeled whether an individual was considered dead or alive as a

fixed effect (see below).
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Figure 1. Phenotypic distributions of (a) lifetime fitness measured as the total number of fledglings a locally hatched fledgling produced

in its lifetime (with the inset showing the distribution for nonzero fitness in more detail) and (b) annual reproductive success, measured

as the number of fledglings an adult breeder produced in a year.

We quantified lifetime fitness as the number of local

fledglings that a locally hatched fledgling produced during its

lifetime for a total of 5999 locally hatched fledglings (Fig. 1a)

and decomposed it into two major components: juvenile survival

and adult lifetime reproductive success. Juvenile survival cap-

tures survival from fledgling to age 1, inferred from whether

a fledgling became a local recruit in later years, whereas adult

lifetime reproductive success captures adult survival and repro-

ductive success from age 1 onward. These two fitness com-

ponents correspond to the two mechanisms captured by the

zero-inflated Poisson distribution of lifetime fitness. We fur-

ther decomposed adult lifetime reproductive success into its two

components: annual reproductive success (ARS) and adult annual

survival (AAS). ARS was measured as the number of fledglings

that an individual produced each year between age 1 and last reg-

istration, assigning zeroes for years of skipped reproduction or

registration and for years prior to recruitment (Fig. 1b). Simi-

larly, AAS was adult survival (1/0) to the following breeding sea-

son, measured every year from age 1 to last registration (inferring

missing direct observations prior to recruitment from later obser-

vations). In total, our data comprised 836 individuals with 6873

observations for ARS and AAS.

PEDIGREE

The pedigree was constructed by assigning all fledged offspring

to their social parents and then pruned to remove individuals who

were either not phenotyped or not ancestors to phenotyped indi-

viduals. For the purpose of this study, the pruned pedigree com-

prised 6290 records. The maximum depth was five generations,

and the numbers of paternities and maternities were 2417 and

2520, respectively. The numbers of full, paternal and maternal

siblings were 2594, 10,229, and 9807, respectively (see Support-

ing Information for further information on the population relat-

edness structure). This social pedigree is a good approximation

of the genetic pedigree because common terns exhibit very low

levels of extrapair paternity (González-Solís et al. 2001).

QUANTITATIVE GENETIC MODELS

We applied an animal model approach that combines phenotypic

information on individual fitness components with information

from the social pedigree (Kruuk 2004). As such, we fitted a series

of univariate animal models where fitness, or one of its compo-

nents, was the response variable.

To model lifetime fitness, we fitted a univariate animal

model with a zero-inflated Poisson error distribution. We fit-

ted a zero-inflated Poisson distribution to better capture the na-

ture of our metric of lifetime fitness. Zero-inflation is often the

result of a process that determines whether an event occurs or

not, which differs from the Poisson process that determines how

many times an event occurs. In this case, a zero-inflated Poisson

model can explicitly model the two different processes, as op-

posed to a Poisson model that assumes only a single process to

be generating the data (Korner-Nievergelt et al. 2015). We fitted

random intercepts for individual identity linked to the pairwise re-

latedness matrix and for hatch-year (to account for cohort effects;

e.g., Vedder and Bouwhuis 2018). Because we modeled lifetime
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fitness with a zero-inflated overdispersed Poisson distribution,

we could estimate the covariance between the zero-inflated and

Poisson components for each variance component. However, a

model including additive genetic and hatch-year covariances be-

tween the zero-inflated and Poisson components of the trait did

not provide a better fit to the data; hence, we did not model such

covariances. The main models presented also did not control for

shared environmental effects between siblings (maternal, pater-

nal, or brood effects) because we did not have information on

parental identity for all individuals (maternal identities = 2382

and paternal identities = 2481; 1271 individuals have both ma-

ternal and paternal identities known, see Supporting Information

for detailed information on the population relatedness structure)

and because most fledglings came from broods where only a sin-

gle individual had successfully fledged (3027 broods fledged one

chick, 1145 broods two,226 broods 3, while 4 individuals could

not be assigned to a brood). However, we did explore the poten-

tial effects of a shared environment (due to maternal, paternal ef-

fects, or brood effects) by running two additional animal models

that included one or two shared environmental effects as random

effect(s). We found that there was no major influence on our esti-

mate of additive genetic variance in lifetime fitness components,

as expected given that the model presented in the main text re-

turned a very low (close to or zero) estimate of additive genetic

variance (see Suppl. Material, Tables S1 and S2).

As fixed effects, we modeled the trait intercept and whether

the individual was alive or dead at the end of the study pe-

riod (categorical variable with two levels). Additionally, we

performed data simulations to investigate (i) whether we can

effectively detect “small but substantial” additive genetic vari-

ances in fitness (sensu de Villemereuil et al. 2019) given our

data and pedigree structure and (ii) the improvement of our

statistical power to detect small additive genetic variances in

both components of lifetime fitness when the dataset and pedi-

gree would increase in size and depth (Supporting Information,

Figs. S1-S5).

To model ARS, we assumed a Poisson error distribution with

a log link function and checked whether the trait was underdis-

persed, which was not the case. We fitted random intercepts for

individual identity linked to the pairwise relatedness matrix, in-

dividual identity not linked to the pedigree (to account for per-

manent environmental effects) and year of observation (to ac-

count for temporal variation across years). As fixed effects, we

modeled the trait intercept and age (continuous trait ranging from

1 to 23 years), as fledgling production is known to linearly in-

crease with age (Zhang et al. 2015) (but see Supporting Informa-

tion, Table S3, for results of the same animal model without age

effects).

To model AAS, we assumed a binary error distribution with

a logit link function and fixed the residual variance to one. We

fitted random intercepts for individual identity linked to the pair-

wise relatedness matrix, individual identity not linked to the pedi-

gree (to account for permanent environmental effects) and year of

observation (to account for temporal variation across years). As

fixed effects, we modeled the trait intercept and age (continuous

trait ranging from 1 to 23 years), as AAS is known to linearly

decrease with age (Zhang et al. 2015; Vedder et al. 2021) (but see

Supporting Information, Table S3, for results of the same animal

model without age effects).

All quantitative genetic models were fitted using a Bayesian

framework implemented in the statistical software R (v. 3.6.1,

R Core Team 2019) using the R packages MCMCglmm (Had-

field 2010) and QGglmm (de Villemereuil et al. 2016). Pos-

terior distributions were plotted using the R package wolakR

(github.com/matthewwolak/wolakR). Narrow-sense heritabilities

(h2) were conditional on the variance explained by fixed ef-

fects and were estimated as the proportion of the total pheno-

typic variance explained by the additive genetic variance. Evolv-

abilities (IA) were estimated by dividing the additive genetic

variance by the squared population mean (Houle 1992; Hansen

et al. 2011).

For all models, we used parameter-expanded priors (Had-

field 2010). We fitted different priors for each fitness component

(see Supporting Information). The number of iterations and thin-

ning intervals were chosen for each model to ensure that the min-

imum MCMC effective sample size for all parameters was 1000.

Burn-in was set to a minimum of 5000 iterations. The retained ef-

fective sample sizes yielded absolute autocorrelation values <0.1

and satisfied convergence criteria based on the Heidelberger and

Welch convergence diagnostic (Heidelberger and Welch 1981).

We drew inferences from the posterior mode and 95% credible

intervals (95% CI). To facilitate evolutionary inference (Bonnet

et al. 2019; Morrissey and Bonnet 2019), we back-transformed

the latent-scale posterior distributions of the quantitative genetic

parameters to the data-scale (de Villemereuil et al. 2016).

Results
QUANTITATIVE GENETICS OF LIFETIME FITNESS

COMPONENTS

Among the 5999 common tern chicks that fledged between 1992

and 2016, lifetime fitness ranged between 0 and 29 fledglings

(Fig. 1a). A total of 5231 (87.19%) fledglings obtained zero

fitness, such that the distribution of fitness was strongly zero-

inflated (Fig. 1a).

The raw mean fitness was 0.72 ± 2.52 SD fledglings. Al-

though this value would indicate the population to be in over-

all decline (a mean lifetime breeding success of two fledglings

would be required for the population to be stable), population

size actually varied dramatically across years and did not decline
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Table 1. Posterior modes and 95% credible intervals (in brackets) for data-scale variance estimates from quantitative genetic analyses

of lifetime fitness components.

Fitness
component Nindividuals Pop. Mean VP VA h2 IA

zero-inflated 5999 0.854 (0.777, 0.908) 0.119 (0.083, 0.173) 0.004 (0, 0.008) 0.031 (0.003, 0.059) 0.006 (0, 0.012)
Poisson 5999 5.71 (3.86, 10.2) 17.2 (20.4, 549) 2.29 (0.002, 12.3) 0.023 (0, 0.126) 0.088 (0, 0.242)

The results are shown for the zero-inflated and Poisson components of the model. All statistics (Pop. Mean, population mean; VP, phenotypic variance; VA,

additive genetic variance; h2, heritability; IA, evolvability) presented in the table are reported on the data-scale.

Figure 2. Posterior MCMC samples (bars), kernel density estimation (solid black line), posterior mean (red dotted line), 95% credible

intervals (black dashed lines) and prior (solid blue line) for the (a) additive genetic variance (VA), (b) heritability (h2), and (b) evolvability

(IA) of the zero–inflated component of lifetime fitness, and the (d) additive genetic variance (VA), (e) heritability (h2) and (f) evolvability

(IA) of the Poisson component of lifetime fitness. Distributions are reported on the data scale.

(Fig. S6), partially because there was a substantial influx of non-

locally hatched breeders that immigrated into the population (ca.

74 % ± 1 SD breeders were estimated to be immigrants in any

given year between 1992 and 2020). Since we do not capture or

mark immigrants, we can quantify the proportion of immigrants

present in our colony in a given year, but we cannot include them

in the pedigree or our individual-based models.

Simulations showed that, given our data structure and pedi-

gree, we would not be able to detect what might be considered

a small but substantial signal for the zero-inflated component

of lifetime fitness: we generated a zero-inflated component of

fitness with an additive genetic variance of 0.01 and found that

the average posterior mode was similar to the simulated value of

VA (average = 0.012 across the 100 replicates, Fig. S1), but the

lower 95% CI limit was on average zero across replicates (95%

CI = 0 – 0.023 and lower 95% CI exceeded a value of 0.0001

only 72 times across the 100 replicates, Fig. S1). When we sim-

ulated larger values of additive genetic variance (i.e., VA = 0.05

or 0.10), our simulations showed that we would be able to de-

tect those values (average = 0.053 and 95% CI = 0.028 – 0.083

across the 100 replicates for a simulated value of 0.05; and aver-

age = 0.102 and 95% CI = 0.064 – 0.145 for a simulated value

of 0.10). The lower 95% CI always exceeded a value of 0.0001

in both simulated cases (Figs. S3 and S4).

Our quantitative genetic analysis of empirical data suggested

that the additive genetic variance in the zero-inflated compo-

nent of lifetime fitness was not different from zero, as the pos-

terior mode of the additive genetic variance was very close to,

and the lower 95% CI limit leaning toward, zero (Table 1, Fig-

ure 2a-c). Taken together, our combination of analyses of empiri-

cal and simulated data therefore suggested there to be low (lower

than 0.05) to null additive genetic variance in the zero-inflated
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Figure 3. Posterior MCMC samples (bars), kernel density estimation (solid black line), posterior mean (red dotted line), 95% credible

intervals (black dashed lines) and prior (solid blue line) for the (a) additive genetic variance (VA), (b) heritability (h2), and (c) evolvability

(IA) of adult annual survival (AAS). Distributions are reported on the data scale.

component of lifetime fitness, but that we lack power to deter-

mine with higher precision whether such variance is effectively

zero or nonzero but very small.

The results for the Poisson component of lifetime fitness

are less straightforward. Simulations showed that, given our data

structure and pedigree, we would not be able to detect either small

but substantial or larger signals for the Poisson component of fit-

ness: we generated a Poisson component of fitness with a series

of evolvability values (IA = 0.00, 0.01, 0.05 and 0.10) and found

that the lower 95% CI limit was on average zero in all cases (i.e.,

the lower 95% CI did not exceed a value of 0.0001 in the vast

majority of the 100 replicates, Fig. S1-4). Our analysis of the

empirical data suggested that the additive genetic variance of the

Poisson component did not differ from zero, given that the lower

95% CI limits of VA, h2 and IA converged toward zero (Table 1,

Figure 2d-f). Altogether, the combination of empirical analyses

and data simulations showed that we lacked power to determine

where the additive genetic variance in the Poisson component of

lifetime fitness falls within a rather large range of values (between

“larger than 0.10” and zero).

Finally, simulation of a larger dataset with a deeper pedi-

gree structure indicated that increasing our study to include four

more generations of pedigreed individuals would lead to an im-

portant increase in statistical power, such that we would be able

to detect additive genetic variances of at least 0.05 in both com-

ponents of lifetime fitness. Estimated values of additive genetic

variance were of similar magnitude to that of the simulated value

(average posterior mode of 0.05 across the 100 replicates for both

components of lifetime fitness), with nonzero lower 95% CI in

both cases (95% CI = 0.031- 0.064 for the zero-inflated compo-

nent, and 95% CI = 0.009 −0.197 for the Poisson component,

Fig. S5).

QUANTITATIVE GENETICS OF ANNUAL FITNESS

COMPONENTS

We investigated the annual reproductive success and adult an-

nual survival of 836 fledglings that survived to adulthood and

bred in our population (Table 2). The raw mean annual repro-

ductive success was 0.70 ± 0.81 SD with a maximum of three

fledglings (Fig. 1b). The posterior distribution of VA for ARS

converged toward zero (Table 2, Figure 4a-c), suggesting that

VA is not different from zero. The raw mean adult annual sur-

vival probability was 0.85 ± 0.36 SD. The posterior modes of all

quantitative genetic parameters for AAS were very close to zero

(Table 2, Figure 3a-c), with the lower 95% CI limit of all param-

eter estimates converging toward zero, again suggesting that VA

in AAS is not different from zero.

Discussion
The most direct measure of the adaptive potential of a popula-

tion is its standing additive genetic variance in fitness (Fisher

1930). Here, we estimated additive genetic variances in life-

time and annual fitness components in a wild colony of common

terns. On the one hand, our empirical findings indicated no ev-

idence for substantial (or different from zero) additive genetic

variance in lifetime fitness components, adult annual survival

or annual reproductive success. On the other hand, data simu-

lations demonstrated an overall lack of statistical power to detect

small but substantial signals (i.e., VA = 0.01), although statisti-

cal power differed between the two components of lifetime fit-

ness: we would have power to detect slightly larger signals (ad-

ditive genetic variances of at least 0.05) for the zero-inflated, but

not Poisson, component of fitness. As such, our work demon-

strated that estimating additive genetic variance in fitness is very
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Figure 4. Posterior MCMC samples (bars), kernel density estimation (solid black line), posterior mean (red dotted line), 95% credible

intervals (black dashed lines), and prior (solid blue line) for the (a) additive genetic variance (VA), (b) heritability (h2), and (c) evolvability

(IA) of annual reproductive success (ARS). Distributions are reported on the data scale.

difficult in wild populations, partly due to the expected low values

of genetic variation in fitness in locally adapted populations but

also to the challenges associated with collecting sufficient pheno-

typic and pedigreed data.

QUANTITATIVE GENETICS OF LIFETIME AND

ANNUAL FITNESS COMPONENTS

There have been approximately 30 studies testing for additive

genetic variance in fitness in the wild, with, to our knowledge,

only four using non-Gaussian animal models (McFarlane et al.

2014; McFarlane et al. 2015; Wolak et al. 2018; de Villemereuil

et al. 2019). Our estimate of the additive genetic variance for

the zero-inflated component of lifetime fitness on the data-scale

was effectively zero, with a zero lower 95% CI limit (posterior

mode VA data-scale = 0.004, 95% CI = 0 - 0.008, Table 1), sim-

ilar to results for another bird species, the hihi (posterior mode

VA data-scale ∼ 0, 95% CI = 1.4×10−11 - 0.0038, de Villemereuil

et al. 2019). For the Poisson component, de Villemereuil et al.

(2019) found a posterior mode of 0.0078 (95% CI = 2.3×10−10

- 5.7). Our posterior mode estimate was overall larger (posterior

mode VA data-scale = 2.29, Table 1) but associated with high uncer-

tainty (95% CI = 0.002 - 12.3), such that the estimates from both

studies remain qualitatively similar. Given that our estimates of

additive genetic variance in fitness showed very low or null val-

ues, our study implies that the adaptive potential of this natural

population of common terns will be extremely limited, although

the actual potential remains partially unknown, as our estimates

were associated with high uncertainty. Moreover, it is important

to note that we could only investigate the evolutionary potential

of local recruits, as we did not have phenotypic and pedigree data

to investigate the evolutionary potential of the total colony (i.e.,

local recruits and immigrants).

Additive genetic variance in lifetime fitness can theoretically

be decomposed into additive genetic variances in its underlying

components. The two primary components of our measure of life-

time fitness are juvenile survival and adult lifetime reproductive

success. Our zero inflation in lifetime fitness is mainly due to low

juvenile survival (i.e., 74% of fledglings did not locally return to

the colony), while the Poisson process generating the observed

fitness distribution mostly captures adult lifetime reproductive

success. If we compare our nominally zero additive genetic vari-

ance in the zero-inflated component of lifetime fitness (Table 1)

with estimates from other studies that tested for additive genetic

variance in juvenile survival, we observe some differences. For

instance, the study of Wolak et al. (2018) on the song sparrow

population of Mandarte Island reported evidence for nonzero VA

for juvenile survival.

Adult lifetime reproductive success is the sum of annual re-

productive events across the life of an individual and hence can

be decomposed into annual reproductive success and adult an-

nual survival. Our quantitative genetic analyses of these two an-

nual fitness components revealed a lack of substantial additive

genetic variance for both (Table 2). This finding again contrasts

with one from Mandarte’s song sparrows, where there was ev-

idence for moderate levels of additive genetic variance in ARS

(especially for males) and close to zero in AAS, indicating that

heritable ARS was the primary component of heritable adult life-

time reproductive success in that population (Wolak et al. 2018).

LIMITATIONS OF STUDYING QUANTITATIVE

GENETICS OF FITNESS IN THE WILD

Estimating quantitative genetic parameters with precision is a

data-hungry endeavor. Researchers are therefore faced with the

challenge of collecting hard-to-quantify lifetime fitness data from

an unbiased sample of the population (i.e., avoiding the “miss-

ing fraction” bias) that comprises a sufficiently large number of

individuals of known relatedness (Burt 1995; Merilä and Shel-

don 1999; Hendry et al. 2018). In addition, even when a large
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pedigree is available, additive genetic variance in fitness is of-

ten expected to be low, for instance, when populations are locally

adapted, such that the power to detect small, close to zero, addi-

tive genetic variation in fitness may be low as well. As pointed

out by Burt (1995), “it is very difficult to get an estimate that is

statistically distinguishable from zero, and the sample sizes re-

quired to do so might easily lead to despair”. Our data simula-

tions reveal that we would need at least four more generations of

terns to significantly differentiate between an underpowered and

a true zero estimate of additive genetic variance for the Poisson

component of lifetime fitness. Increasing our pedigree by four

more generations would require roughly two more decades of

data collection, i.e., a nonnegligible amount of funding and lo-

gistical effort. This extrapolation should, however, be taken with

care, as it is challenging to predict the population dynamics for

the next twenty years and/or whether the relatedness structure of

the population will increase or decrease as the rates of emigra-

tion and immigration may change with population growth (e.g.,

Szostek and Becker 2014). In light of the multiple constraints

posed by data requirements and expected low values, negative re-

sults with respect to additive genetic variation in fitness should be

discussed with caution. Nevertheless, simulations aimed at deter-

mining the statistical power of a given dataset and pedigree struc-

ture will help to distinguish a true negative result from a zero

parameter estimated with high uncertainty (e.g., de Villemereuil

et al. 2019).

In addition to the difficulty of estimating the heritabil-

ity of fitness with precision, our knowledge of the genetic ar-

chitecture of fitness components is limited. Extending our ge-

nomic understanding of fitness variation in wild populations

will provide important insights into how genetic variation un-

derpinning fitness may be maintained and, overall, will help to

better predict the evolutionary dynamics of natural populations

(Merilä and Sheldon 1999; Mackay 2001; Huang and Mackay

2016). Despite the clear benefits, genomic research based on

quantitative trait loci (QTL) approaches or genome-wide as-

sociations in natural populations is a challenge (Slate 2004;

Slate et al. 2010; Jensen et al. 2014), partially due to the low

power to detect QTLs, for instance, because studies suffer from

low-density linkage maps and/or relatively few genotyped in-

dividuals. Currently, the use of powerful next-generation ge-

nomic techniques, however, allows for increased power in such

studies.

A better understanding of the genetic architecture of fit-

ness will also provide added benefits, as, for instance, it would

allow a deeper understanding of the genetic underpinnings of

complex traits such as fitness, which might be subjected to

different pleiotropic effects (Mackay 2001). For instance, an-

tagonistic pleiotropy is often assumed to underlie the negative

phenotypic correlation between the two main components of
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lifetime fitness: survival and reproductive success (also observed

in the terns: Vedder et al. 2021).

Conclusion
Our quantitative genetic study of fitness in a wild population of

common terns reported low to zero estimates of additive genetic

variance in lifetime and annual fitness components, which were

associated with high uncertainty. Those analyses, however, were

overshadowed by a lack of statistical power to detect additive ge-

netic variation in fitness more accurately and precisely. The con-

tinuation of long-term individual-based studies should be safe-

guarded (also see Clutton-Brock and Sheldon 2010), such that

the maturation of long-term studies will offer improved opportu-

nities for testing genetic variation in natural populations, which,

thanks to the recent development of appropriate statistical and

theoretical frameworks (de Villemereuil et al. 2016; Bonnet et al.

2019; Morrissey and Bonnet 2019), will help to improve our un-

derstanding of the genetics of fitness in the wild. Ultimately, a

robust quantification of the standing additive genetic variation in

fitness will inform us about the rate of adaptation of populations

and allow a better understanding of their viability in the face of

the deleterious environmental effects resulting from current cli-

mate and global changes.
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