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Abstract: Sono-photodynamic sterilization technology (SPDT) has become a promising non-thermal
food sterilization technique because of its high penetrating power and outstanding microbicidal
effects. In this study, Listeria monocytogenes (LMO) was effectively inactivated using curcumin
as the sono-photosensitizer activated by ultrasound and blue LED light. The SPDT treatment at
optimized conditions yielded a 4-log reduction in LMO CFU. The reactive oxygen species (ROS)
production in LMO upon SPDT treatment was subsequently investigated. The results demonstrated
SPDT treatment-induced excessive ROS generation led to bacterial cell deformation and membrane
rupture, as revealed by the scanning electron microscope (SEM) and cytoplasmic material leakage.
Moreover, agarose gel electrophoresis and SDS-PAGE further revealed that SPDT also triggered
bacterial genomic DNA cleavage and protein degradation in LMO, thus inducing bacterial apoptosis-
like events, such as membrane depolarization.

Keywords: sono-photodynamic sterilization; curcumin; Listeria monocytogenes; reactive oxygen species

1. Introduction

Pathogenic bacterial contamination is the most significant cause of food safety issues
and the most widespread public health concern worldwide [1]. Listeria monocytogenes
(LMO), together with Escherichia coli, Staphylococcus aureus, and Salmonella enterica, are
considered the most important bacterial pathogens commonly implicated in food-borne
illnesses [2]. LMO has been commonly detected in a variety of foods including frozen meat,
aquatic products, and dairy ingredients [3]. Moreover, listeriosis caused by LMO infection
can be particularly dangerous or even fatal for immune-compromised people. For instance,
listeriosis is considered extremely dangerous for pregnant women and their newborn
babies, resulting in miscarriage, stillbirth or even death [4,5]. Additionally, LMO is highly
pathogenic due to its secretion of a variety of virulence factors (internalin, phospholipases,
hemolysin, and virulence proteins) [6–12]. Therefore, exploring sanitizing methods against
LMO has drawn great attention from scholars.

Traditional thermal sterilization techniques transmit large amounts of heat energy to
the foodstuff through heat conduction, thereby inactivating microorganisms [13]. Currently,
these thermal sterilization techniques have been widely adopted in the food industry [14].
However, thermal sterilization often severely affects the flavor, color and nutrient content of
foods [15]. With the continuous development of non-conventional sterilization techniques, a
number of non-thermal sterilization technologies, such as ultra-high-pressure, pulsed light,
ultrasonic, ultraviolet, and sono-photodynamic treatment (SPDT) have gained significant
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attention [16]. Particularly, SPDT was effectively applied in inhibiting periopathogenic
bacteria with numerous advantages, such as ease of operation, low cost, good penetrating
power and safety [17].

Similar to the widely-adopted antimicrobial photodynamic inactivation (aPDI), in which
photosensitizer absorbs light energy and catalyzes the formation of ROS, SPDT relies on
the sono-photosensitizer activated by light and ultrasound simultaneously to generate
ROS [18,19]. Notably, SPDT offers numerous advantages over aPDI. For instance, light
often has limited penetration depth, therefore, aPDT is thus only suitable for sterilization
of food surfaces and some liquid clarified beverages but not opaque liquids and solid
foods. In contrast, ultrasound used in the sono-dynamic technology has strong penetrating
power [20] and thus can achieve good sterilization effects on opaque liquids and the interior
of solid foods. Additionally, the cavitation of ultrasound also contributes to the microbicidal
activity of SPDT [20]. Indeed, Niavarzi et al. [21] have compared the killing effects of
methylene blue-mediated aPDI and SPDT against Enterococcus faecalis biofilms and found
SPDT yields more significant decreases in the survival of faecalis. Drantantiyas et al. [22] also
reported that sono-photodynamic sterilization techniques were more effective in inhibiting
S. aureus than sono-dynamic and photodynamic bactericidal techniques alone.

However, searching for a suitable sono-photosensitizer is always a challenge for
commercial applications of SPDT in the food industry. Unlike chemically synthesized
sono-photosensitizers, curcumin is a naturally-derived polyphenol approved by the WHO
and FDA as food additive [23,24]. Therefore, several studies were conducted to explore
the potential of curcumin-based SPDT for killing food-borne bacteria and food preserva-
tion [25]. For instance, Fernanda et al. [26] demonstrated curcumin-mediated SPDT could
achieve a reduction of 3.48-log of S. aureus with bacterial biofilm disruption. Similarly,
Maryam et al. [27] showed curcumin-decorated nanophytosomes-mediated SPDT could
effectively kill Aggregatibacter actinomycetemcomitans by more than 10-log reduction of CFU
and significantly decrease the bacterial metabolic activity. Bhavya et al. [28] also reported
the killing effects of curcumin-mediated SPDT on E. coli and S. aureus in orange juice; while
SPDT was also found to inhibit the growth of the spoilage microorganisms (Psychrobacter
and Brochothrix) in shrimp surimi [29]. However, to the best of our knowledge, the bacte-
ricidal activity of curcumin-based SPDT on LMO, as well as its underlying mechanisms,
have not been reported. Therefore, in the current study, the killing effects of SPDT against
LMO, along with possible mechanisms of action, were explored. Particularly, the excessive
ROS generated during SPDT treatment, as well as its disruption activities on the bacte-
rial membrane, were determined, followed by the assessment of ROS-induced oxidative
damage to bacterial DNA and proteins.

2. Materials and Methods
2.1. Preparation of Bacterial Suspension and Curcumin Solution

LMO was obtained from the China Microbial Strain Conservation Centre (CMCC, Beijing,
China) and stored at −80 ◦C. A single colony was transferred to TSB-YE broth and cultured
at 37 ± 1 ◦C. The bacteria were harvested at logarithmic growth stage by centrifugation at
5000× g for 5 min at 4 ◦C. Harvested LMO pellets were washed with sterilized PBS solution
(pH 7.4) and resuspended in PBS at OD600 = 0.5 (≈109 CFU/mL). Curcumin was purchased
from MCE China (Shanghai, China). To prepare the curcumin stock solution (10 mM), 185 mg
of curcumin was dissolved in 50 mL of ethanol solution and stirred for 30 min on a magnetic
stirrer. The curcumin stock solution was stored at 4 ◦C, and further diluted using PBS before
experiment. Since the maximum concentration of curcumin working solution in the current
study was 70 µM, the ethanol concentration in all curcumin working solutions was below
0.7%, which has little impact on the viability of bacteria [30].

2.2. Sono-Photodynamic Sterilization Treatment

For the sono-photodynamic sterilization treatment, curcumin solution was added into
the bacterial suspension and incubated in the dark for 30 min. Then the bacterial samples
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were exposed to ultrasound treatment (XH300E, XiangHu Technologies, Beijing, China) and
blue LED illumination (M425L, Zolix Instruments Co., Ltd., Beijing, China). The distance
between sample and ultrasonic probe and LED bulb was 2 and 5 cm, respectively (as
illustrated in Figure 1). Thereafter, the bacterial viability was assessed with CFU counting
assay using PCA plates. In brief, ten-fold serial dilutions of LMO samples were prepared,
and 200 µL of each dilution was incubated on the PCA plate at 37 ◦C for 24 h. The CFUs
were calculated by multiplying the numbers of colonies counted on the plates by the
dilution ratio.

Figure 1. The schematic diagram (A) and apparatus (B) of sono-photodynamic treatment for inacti-
vating food-borne bacteria Listeria monocytogenes.

2.3. Detection of Reactive Oxygen Species (ROS)

The measurement of ROS was performed using DCFH-DA staining method as de-
scribed by Akhtar et al. [19]. 2,7-dichlorodihydrofluorescein diacetate (DCFH-DA) was
used as a fluorescent probe to detect the ROS content [31]. In brief, 500 µL of bacterial solu-
tion in each group (~109 CFU/mL before treatments) was mixed with 25 µL of DCFH-DA
solution (10 µmol/L) and incubated at 37 ◦C for 30 min and then the ROS was determined
by fluorescence spectrophotometers (RF-5301PC, Shimadzu, Kyoto, Japan). The excitation
wavelength (λex), emission wavelength (λem) and slit width were set as λex = 490 nm,
λem = 520 nm and 5 nm, respectively.

2.4. Scanning Electron Microscopy (SEM)

SEM images were captured according to the method of Lai et al. [23]. In brief, the
bacterial solutions (5 mL, at ~109 CFU/mL before treatments) were centrifuged at 5000× g
for 5 min at 4 ◦C to harvest the bacteria, which were then loaded on the coverslip and fixed
with glutaraldehyde at a concentration of 2.5% for overnight, and then rinsed three times
with PBS. The bacteria were fixed with 1% osmium tetroxide for 6 h, followed by stepwise
dehydration with 25%, 50%, 75% and 95% ethanol. After drying in a CO2 desiccator, the
bacterial samples were coated by gold spraying. Finally, the cell structure was observed
on a high-resolution field emission scanning electron microscope (SIGMA, Carl Zeiss,
Rödermark, Germany).

2.5. Determination of Cytoplasmic Material Leakage

LMO (at ~109 CFU/mL) was treated as described above. Then the cytoplasmic material
leakage was measured according to the method described in the previous studies [23,32].
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In brief, 500 µL of bacterial suspension in each group was passed through a 0.22 µm pore
size membrane. The OD260 and OD280 of the filtrates were measured using an ultra-micro
UV-Vis spectrophotometer (ND2000C, Thermo Fisher, Waltham, MA, USA).

2.6. DNA Agarose Gel Electrophoresis

The bacterial genomic DNA was extracted according to the manufacturer’s proto-
col (Omega Bio-tek, Norcross, GA, USA). The extracted genomic DNA was mixed with
6 × DNA Loading Buffer and separated in 1% agarose gel. The electrophoresis apparatus
parameters were set at 100 V for 30 min. The gel was visualized using gel imaging system
(ChemiDoc MP, Bio-Rad, Hercules, CA, USA) after electrophoresis [23].

2.7. Polyacrylamide Gel Electrophoresis (SDS-PAGE)

In brief, the bacterial pellet was resuspended in protein lysis buffer (2×). Upon com-
plete lysis of the bacteria, the lysates were mixed with same volume of Protein Loading
Dye (2×) and then heated at 100 ◦C for 5 min. Samples were centrifuged at 10,000× g for
30 s and the supernatant was loaded into SDS polyacrylamide gel for electrophoresis. After
electrophoresis, the gels were stained with Coomassie Brilliant Blue Dye (P0017, Beyotime,
Shanghai, China) and the images were observed using gel imaging system (ChemiDoc MP,
Bio-Rad, Hercules, CA, USA).

2.8. Annexin V-FITC/PI Staining Assay

The bacterial apoptosis-like event membrane depolarization was evaluated using the
Annexin V-FITC Apoptosis Detection Kit (C1062M, Beyotime, Shanghai, China) following
the manufacturer’s instructions. The bacterial pellets were harvested by centrifugation,
resuspended in PBS and stained with Annexin V-FITC and propidium iodide at 25 ◦C
for 15 min in the dark, followed by flow cytometric detection using Beckman Coulter
CytoFLEX (Indianapolis, IN, USA).

2.9. Data Statistics and Analysis

All experimental data were obtained from at least three replicates. Data were expressed
as mean ± SD. SPSS software (version 24.0) was used for performing statistical analysis and
significant differences between groups were determined by one-way analysis of variance
(ANOVA) with Duncan’s multiple comparisons. The significance level was 0.05.

3. Results
3.1. SPDT Showed Effective Bactericidal Activity against LMO

As shown in Figure 2, the increase in the concentration of curcumin (ranging from
10–50 µmol/L) led to the enhanced killing effects of SPDT against LMO. A 4.12-log CFU/mL
decrease was observed with curcumin at a concentration of 50 µmol/L (Figure 2A). How-
ever, a further increase in the curcumin concentration only enhanced the antibacterial
efficacy of SPDT slightly. Notably, increasing the curcumin concentration beyond 60 µM
even resulted in decreased killing effects. This phenomenon may be due to the fact that a
higher curcumin concentration led to the increase in opacity of the solution, which may
hinder the penetration of the lights. Similarly, the number of LMO colonies gradually
decreased with the increasing duration of the sono-photodynamic treatment. The number
of colonies decreased by 4.19-logs when the processing time was 25 min; while the number
of LMO colonies further decreased slightly when the treatment time was expanded to
30 min (Figure 2B). In addition, ultrasonic power was also identified as an important factor
affecting bactericidal activity. The killing effects of SPDT increased rapidly with ultrasonic
power rising to 600 W. A 3.91-log decrease in CFU/mL was achieved when the ultrasonic
power reached 800 W (Figure 2C). Moreover, the bactericidal effects of negative controls
(curcumin only, light-illumination only, and ultrasonic treatment only with their optimized
parameters) were next explored. The results also supported that only curcumin-mediated
SPDT achieved desirable bactericidal effects against LMO (Figures 2D and S1).
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Figure 2. The optimization of curcumin concentration (A), light-ultrasonic processing time (B) and
ultrasonic power (C) for the bactericidal activity of curcumin-mediated sono-photodynamic treatment
against Listeria monocytogenes; (D) The bactericidal effects of curcumin only (50 µM), light-illumination
only (25 min), ultrasonic treatment only (800 W) and curcumin-mediated SPDT against LMO. CK:
Control group without treatment; Cur: Curcumin-treated group; Lig: Light-illuminated group;
US: Ultrasound-treated group; SPDT: Curcumin-mediated sono-photodynamic treated group. The
significant differences among samples were denoted by various lowercase letters (p < 0.05).

3.2. SPDT Generated Significant Intracellular ROS in LMO

As shown in Figure 3, the fluorescence in the control groups (curcumin-treated only,
light-illuminated only, ultrasonicated only) showed increases in fluorescence of 2~3-fold
compared to the untreated bacteria, while the SPDT-treatment was found to augment the
fluorescence intensity by >5 folds in the treated bacteria compared with untreated bacteria,
indicating significantly more ROS generation occurred in LMO upon SPDT treatment
(Figure 3).

Figure 3. Generation of reactive oxygen species (ROS) in Listeria monocytogenes cells subjected to
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different treatments. (A) Fluorescence intensity of Listeria monocytogenes in different treatment groups.
(B) The ratio of the fluorescence intensity of each treatment group to CK group. CK: Control group
without treatment; Cur: Curcumin-treated group; Lig: Light-illuminated group; US: Ultrasound-
treated group; SPDT: Curcumin-mediated sono-photodynamic treated group. Different lowercase
letters above the columns indicate the significant difference (p < 0.05).

3.3. SPDT Altered Morphology of LMO

As shown in Figure 4A, the untreated LMO cells showed the normal shape of bac-
teria surrounded by intact cell membranes without the obvious release of intracellular
components. A fraction of LMO with curcumin treatment or blue-light illumination or
ultrasonic treatment appeared to have blurred morphology, but the majority of the bacteria
still possessed intact cell membranes (Figure 4B–D). In contrast, more obvious disrupted
membranes and altered cellular morphologies were observed in the LMO with SPDT treat-
ment (Figure 4E), indicating that the SPDT treatment could effectively disrupt the bacteria
membrane of LMO.

Figure 4. SEM images of Listeria monocytogenes. (A) Control group without treatment; (B) Curcumin-
treated group; (C) Light-illuminated group; (D) Ultrasound-treated group; (E) SPDT: Curcumin-
mediated sono-photodynamic treated group.

3.4. SPDT Induced Cytoplasmic Material Leakage in LMO

As shown in Figure 5, the OD260 and OD280 of bacterial culture filtration were similar
among the untreated bacteria and LMO in the control groups (Curcumin group; Light
group; and Ultrasound group). In contrast, SPDT caused a significant increase in both
the OD260 and OD280 of bacterial culture filtration, indicating SPDT could destroy the cell
structure and cause the leakage of substances to the extracellular area.
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Figure 5. Release of 260 nm (A) and 280 nm (B) absorbing cytoplasmic materials from Listeria monocy-
togenes. CK: Control group without treatment; Cur: Curcumin-treated group; Lig: Light-illuminated
group; US: Ultrasound-treated group; SPDT: Curcumin-mediated sono-photodynamic treated group.
Different lowercase letters above the columns indicate the significant difference (p < 0.05).

3.5. SPDT Induced DNA Fragmentation and Protein Degradation in LMO

As shown in Figure 6, significant DNA degradation occurred in LMO upon SPDT
treatment, as evidenced by the weak and smeared DNA bands being detected. Similarly,
the protein bands in the SPDT-treated group also became scattered and blurred, with large
proportions of the bands even disappearing. These phenomena also implied that SPDT
triggered a universal protein degradation in LMO, making it impossible for the bacteria to
metabolize properly, and thus leading to its death.
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Figure 6. Curcumin-mediated sono-photodynamic treatment induced genomic DNA cleavage and
general degradation of bacterial proteins in Listeria monocytogenes. (A) Agarose gel electrophore-
sis analysis of the cleavage of Listeria monocytogenes genomic DNA samples. (B) SDS-PAGE pro-
file of Listeria monocytogenes total proteins. M: Marker; lane A: Control group without treatment;
B: Curcumin-treated group; C: Light-illuminated group; D: Ultrasound-treated group; E: Curcumin-
mediated sono-photodynamic treated group.
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3.6. SPDT Induced Membrane Depolarization in LMO

As shown in Figure 7, the majority of untreated LMO showed the absence of annexin
V-binding and propidium uptake (Q4, live status); while light illumination or ultrasound
treatment slightly increased the percentage of bacterial cells being PI-negative and annexin
V-positive. In contrast, bacterial cells in the SPDT group demonstrated massive outward
exposure of phosphatidylserine, which is the biochemical hallmark of bacterial apoptosis-
like events.

Figure 7. Membrane depolarization of Listeria monocytogenes detected by flow cytometry with An-
nexin V-FITC/PI double staining. (A) Control group without treatment; (B) Curcumin-treated
group; (C) Light-illuminated group; (D) Ultrasound-treated group; (E) Curcumin-mediated sono-
photodynamic treated group. The two-parameter dot plot divides the cells into four zones: Q1 in-
dicating mechanically damaged cells (Annexin V-FITC-/PI+), Q2 indicating dead with membrane
depolarization (Annexin V-FITC+/PI+), Q3 indicating bacteria with apoptosis-like event membrane
depolarization (Annexin V-FITC+/PI−), and Q4 indicating live cells (Annexin V-FITC-/PI−).

4. Discussion

The development of novel sterilization technologies that effectively deactivate bacteria
with less impact on sensory and physical characteristics of foods is always a major focus
in food science [33]. SPDT is a non-thermal sterilization technology that has already been
used in clinical practice over the past few decades [34,35], exhibiting great potential in
killing pathogenic bacteria. Recently, a number of studies have revealed that SPDT could
effectively inactivate major food-borne pathogens (E. coli, Salmonella, and S. aureus) [26,36].
However, to the best of our knowledge, there is no report so far to suggest the efficacy of
SPDT against LMO. Thus, in the current study, we assessed the effectiveness and mechanism
of action of curcumin-mediated SPDT in killing LMO.
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The obtained results demonstrated that the sterilization effect of SPDT was signif-
icantly enhanced with the extension of the sono-photodynamic processing time and in-
creases in ultrasonic power and curcumin concentration. The optimal sterilization effect
was achieved when the curcumin concentration was 50 µmol/L, the sono-photodynamic
action time was 25 min, the ultrasonic power was 800 W and the blue LED light wavelength
was 425 nm. The total number of LMO colonies under these parameters decreased by about
4.07 ± 0.15 log (equal to a bactericidal rate of 99.99 ± 0.01%), revealing a good bactericidal
ability of the SPDT against LMO.

ROS production, which plays a crucial role in bactericidal activity, was investigated
in the current study. Excessive production of ROS in bacteria can trigger bacterial death
by multiple mechanisms, including damaging cellular components (e.g., bacterial lipids,
DNA and proteins) [37], disrupting normal physiological metabolism [38], increasing per-
meability of cell membranes [38], even speeding up gene mutations [39], which ultimately
lead to cell death [40]. Indeed, ROS generation was suggested as an important mechanism
underlying the bactericidal activity of SPDT. For instance, hematoporphyrin monomethyl
ether (HMME) and rose bengal (RB)-based nanoparticle-mediated SPDT was found to in-
duce ROS generation with obvious bactericidal effects against methicillin-resistant S. aureus
and extended-spectrum beta lactamase (ESBL)-producing E. coli [41]. Here, our results also
suggested the SPDT induced excessive ROS in LMO, which led to cell membrane rupture
and cell crumbling, as shown in the SEM images. Meanwhile, consistent with a number
of studies [32,42], bacterial membrane damage can further result in the leakage of low-
molecular-weight cytoplasmic constituents that have strong UV absorption at 260 nm and
280 nm. Indeed, these occurrences can also result in abnormal electrical potential across the
membrane, thus affecting the physiological metabolism of the bacteria [43,44]. Meanwhile,
as highly reactive molecules, ROS-induced large amounts of DNA damage and protein
degradation were also observed in the current study. Indeed, ROS-induced oxidative
damage to genomic DNA and proteins was also mentioned in previous literature [23,45,46].

Notably, previous studies also reported that DNA damage often led to bacterial
apoptosis-like events, such as membrane depolarization [47]. Indeed, Maryam et al. also
reported that curcumin-mediated sono-dynamic treatment effectively kills S. mutans via
apoptosis-like death [47]. Here, our findings also showed SPDT resulted in the outward
exposure of phosphatidylserine, suggesting that bacterial apoptosis-like events may also
be involved in the killing effects of SPDT against LMO.

5. Conclusions

In previous studies, SPDT has demonstrated its desirable bactericidal activity against
a number of food-borne bacteria (including E. coli [38], S. aureus [22,26] and E. faecalis [21]).
Here, our study further demonstrated this non-thermal sterilization technique could ef-
fectively kill another important food-borne pathogen, LMO, which indicated that SPDT
possessed a wide antimicrobial spectrum and could be a promising approach to efficiently
lowered bacterial growth in foods. Admittedly, as a novel sterilization technology, fur-
ther studies are needed before SPDT could become commercialized in the food industry.
Taken together, curcumin activated by blue light and ultrasound is a potential non-thermal
sterilization method for sono-photodynamic inactivation against LMO.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/foods11060808/s1, Figure S1: Representative plate pictures of LMO in CFU counting assay.
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