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Several lines of evidence point to a pervasive disturbance of energy balance in

Parkinson’s disease (PD). Weight loss, common andmultifactorial, is the most observable

sign of this. Bradykinesia may be best understood as an underinvestment of energy

in voluntary movement. This accords with rodent experiments that emphasise the

importance of dopamine in allocating motor energy expenditure. Oxygen consumption

studies in PD suggest that, when activities are standardised for work performed,

these inappropriate energy thrift settings are actually wasteful. That the dopaminergic

deficit of PD creates a problem with energy efficiency highlights the role played by the

basal ganglia, and by dopamine, in thermodynamic governance. This involves more

than balancing energy, since living things maintain their internal order by controlling

transformations of energy, resisting probabilistic trends to more random states. This

review will also look at recent research in PD on the analysis of entropy—an information

theory metric of predictability in a message—in recordings from the basal ganglia.

Close relationships between energy and information converge around the concept

of entropy. This is especially relevant to the motor system, which regulates energy

exchange with the outside world through its flow of information. The malignant

syndrome in PD, a counterpart of neuroleptic malignant syndrome, demonstrates how

much thermodynamic disruption can result from breakdown of motor signalling in an

extreme hypodopaminergic state. The macroenergetic disturbances of PD are consistent

with a unifying hypothesis of dopamine’s neurotransmitter actions—to adapt energy

expenditure to prevailing economic circumstances.
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INTRODUCTION

The prevalence of weight loss as a symptom suggests that many patients deviate from normal
energy balance as Parkinson’s disease (PD) progresses (1). Weight is often lost in phases during its
course, followed by periods of stabilisation. Occasionally, weight change is rapid and severe enough
to prompt investigations for malignancy. Many patients with advanced disease have low body
weight and depleted fat stores. Alterations on the energy supply side of the equation are easier to
identify. Depression, cognitive impairment, and olfactory deficits diminish appetite. Chewing and
swallowing are impaired in advanced PD. Altered gut motility may affect absorption of nutrients.

PD patients have involuntary motor disorders that consume muscular energy—resting
tremor, static muscle activation in rigidity, drug-induced dyskinesia and dystonia.
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Many PD patients are less physically active than healthy
individuals. There is, however, evidence that the chief
parkinsonian motor sign of bradykinesia involves defective
energy of movement. That the dopaminergic deficit of PD creates
a problem with energy efficiency highlights the role played by the
basal ganglia, and by dopamine, in thermodynamic governance.

Thermodynamics is the study of energy in transformation. Its
special term entropy is not easy to define—it means dispersed or
unusable energy, randomness as opposed to order. The thermal
energy of a cup of coffee becomes less concentrated as it spreads
to its surrounds on cooling. The cup tips over, potential energy
becomes kinetic energy as the liquid splashes on the floor,
coffee molecules no longer confined to a vessel but distributed
randomly all about. One does not observe such processes
running in reverse. Energy is conserved when it transforms,
but things adopt their most probable dispositions as it does
so. There is, seemingly, an exception to these thermodynamic
principles—living systems, which maintain wildly improbable
degrees of complexity. Organisms achieve internal order through
interactions with their environments. These are the iron laws of
the physical world and even conditional suspensions turn out to
be temporary. Entropy resumes its relentless march with death
and decomposition.

While living systems are complex, they don’t directly monitor
or control their complexity. What they control is energy.
Molecular mechanisms achieve this at a cellular level. For
animals, macroenergetics rely heavily on the nervous system.
Motor programming enables energy acquisition and manages
the energy usage of skeletal muscle. This article will review the
thermodynamic effects of PD. In addition to changes in energy
balance, we will be looking at the role of signalling within the
motor system. The flow of energy in the human body is regulated
by the smaller amounts of energy that are used for the flow of
information. Energy and information have a deep relationship,
which converges around the concept of entropy (2).

ENERGY AND DOPAMINE

Virtually all animals share certain attributes—ability to move,
reliance on chemical energy ultimately sourced from plants, a
central control network. While survival and reproductive fitness
drive the Darwinian model of evolution, an animal’s ability to
capture energy is a vital pre-condition for success. Adaptive
behaviours, whatever their goal, require energy efficiency
in execution.

Dopamine’s fundamental role may be as a token of energy.
The idea of dopamine as the neurochemical of reward is
well-accepted. Human impulse control disorders, resulting
from direct or indirect overstimulation of dopamine receptors,
emphasise hedonistic and addictive behaviours (3). Mesolimbic
and mesocortical projections are the dopaminergic inputs to
this “reward system,” which integrates cognitive, emotional and
motor planning resources into complex behavioural responses.

Evidence from rodent experiments points to motor energy as
the link between dopamine and food reward (4). Blocking or
depleting dopamine in rats reduces the amount of physical but

not cognitive effort that the animals will devote to obtaining food
(5). The effects do not resemble those of appetite suppression
by pre-feeding or by drugs, and hedonistic reactivity to sucrose
is not sensitive to dopamine blockade (6, 7). Mice rendered
hyperdopaminergic by knockdown of the dopamine transporter
gene expend more energy to gain food (8). If availability is
not constrained, this effort does not translate into an overall
increase in consumption (they consume larger, less frequent
meals). These experiments can be interpreted as showing that
increased dopamine made the animals undervalue the energy
outlaid on reward-seeking activities—the nexus between effort
and reward gained was weaker, not stronger. But when food is
harder to obtain, normal homeostatic control occurs, suppressing
activities with unfavourable cost-benefit ratios (9). As will be
discussed below, simple movements seem also to show an energy
thrift effect, inappropriately prominent in PD and resulting in a
loss of “vigor.”

Energy-marginal environments have pertained to much of
human evolution (10). The progressive encephalization in
humans and other primates involved energy trade-offs with
gut size (11). Late life energy stresses associated with the
human trait of longevity may predispose to neurodegeneration.
Dopamine, in regulating movement and reward-seeking, has
been integral across species to balancing energy outlay and input.
Its functions are strongly conserved by evolution. Lamprey,
jawless fish of ancient lineage, have, of all vertebrates, the most
distant phylogenetic relationship with humans. The last common
ancestor lived 560 million years ago. Regulating the restricted
repertoire of lamprey motor activity, dopamine modifies striatal
output with the same general pattern as mammals—a direct
pathway with neurons expressing D1 receptors, and a D2 indirect
pathway (12).

ENERGY BALANCE IN PD

Some energy imbalance in PD can be traced to its motor deficits,
which show a strong relationship with nigral cell loss and
the resultant dopaminergic deficiency (13). The neuropathology
of PD, though, affects other neuronal populations and other
neurotransmitter systems. This contributes to the manifold
reasons for reduced body mass in PD.

Weight Loss
Patients with PD have lower body weight in comparison with age-
matched subjects, and are more frequently underweight (1, 14).
A systematic review showed that between 0 and 24% of PD
patients were malnourished, while a further 3–60% were at risk
of malnutrition (15). Weight loss across the disease course is
about 3–6 kg but can be as high as 12 kg (16). Malnutrition
and unintended weight loss seem to correlate with disease
progression (17), and are negatively associated with quality of
life (18).

Low body mass index is correlated with lower dopamine
transporter activity (19). There is an inverse relationship between
body mass index changes and Unified Parkinson’s Disease Rating
Scale motor score (20). Moderate or severe dyskinesia is also a
risk factor for undernutrition (21).
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Non-motor symptoms have been linked with weight loss
in PD patients (22). Some studies show association of low
protein intake with a lower olfactory score (23, 24). Impaired
gastric emptying and bacterial overgrowth from small intestine
dysmotility could affect nutrition, though correlations with body
mass index were weak in a small number of studies (25–
27). PD patients with cognitive impairment or depression are
at increased risk of weight loss and malnutrition, presumably
because of effects on appetite and feeding (28–30). Dysphagia
may contribute to weight loss (31).

The mesolimbic dopamine system is modulated by
nutritionally significant hormones (32). Leptin, which decreases
food intake, can change food desire. Leptin attenuates the
response of brain reward regions to food stimuli, and enhances
activation of regions involved in cognitive inhibition. Ghrelin,
on the other hand, is a hormone that stimulates food intake by
enhancing the hedonic and incentive responses to food-related
cues. Leptin and ghrelin levels were lower in PD patients who
had lost weight (33).

In a prospective study, PD patients began to lose weight
loss shortly before the diagnosis (17). They tended to increase
their energy intake as their weight fell. Functional neurosurgery
is associated with weight gain, and this effect is stronger for
procedures that target the subthalamic nucleus (STN) (34). There
may be a correlation with reduced dyskinetic movement (35, 36).
After deep brain stimulation (DBS), weight gain appears to occur
without significant increase in appetite or food intake (37).

Resting Energy Expenditure
Resting energy expenditure (REE), the energy output in the
absence of physical activity, represents about 60% of daily energy
output (38). While some of this is basal metabolic activity,
contributions from skeletal muscle to total expenditure are
considerable (Figure 1). Involuntary motor features of PD—
tremor, rigidity, and drug-induced dyskinesia—could elevate
energy consumption at rest. Evidence of abnormal REE in PD is,
however, inconsistent. Indirect calorimetry estimates metabolic
energy use from concentrations of oxygen and carbon dioxide in
exhaled air. In studies that have shown increased REE, (41, 42)
rigidity rather than tremor correlated better with REE measured
in off states. Capecci et al. (43) found that REE fell by 8% after
doses of dopaminergic medication, although subjects in another
study who developed active on phase dyskinesia had a rise in their
REE (41). Other researchers have found normal REE in PD, even
in patients who had been losing weight (44, 45).

Reduction in tremor, rigidity and dyskinesia after DBS surgery
could all have contributed to the reduced REE shown in several
studies (35, 36, 46). Another, though, reported no change in REE
after STN-DBS (47).

Physical Activity and Energy
While physical activity is probably reduced overall in PD (44),
comparisons of exercise at standard workloads point to an
inefficiency of movement-related energy expenditure. Across
various speeds of treadmill walking, the oxygen consumption
rate of parkinsonian subjects exceeded that of normal controls
by a 6–10% margin (48). Oxygen consumption at rest was no

different in this study, suggesting that reduced walking economy
in PD relates to physical activity and not to tremor or rigidity.
Kalifa et al. (49) compared early PD with control subjects
on matched cycling at moderate intensity and also showed
increased oxygen consumption with exercise. In another cycling
study, parkinsonian patients reached similar maximum oxygen
consumption to controls, but at lower power outputs, again
consistent with reduced economy of movement (50).

Bradykinesia and Energy of Movement
Bradykinesia is a shorthand for complex disturbances of
initiation and execution of actions and the ability to sustain
them (51). Akinesia (failure of initiation) and hypokinesia
(underactive movement) both relate to bradykinesia, as does
the sequence effect—repetitive movements becoming smaller or
slower. Slowness itself is not always present, as is seen in the
phenomenon of festination—a gait that hastens by rapid, small
steps—or spoken words that run together at speed and are hard to
understand. Loss of motor energy may be its defining character.

Fast goal-directed limb movements are executed by triphasic
bursts of muscle activation in an agonist-antagonist-agonist
sequence (52). In PD, this basic motor architecture is intact, but
burst size is inadequate to impel the limb to its destination (53).
Additional burst cycles need to be recruited, and themovement is
deficient in acceleration and peak velocity. Movements are always
underscaled in relation to their intended speed and range, though
not necessarily in absolute terms (54). Thus, a large movement
might comprise bursts that would have been adequate for a
normal smaller one.

Parkinsonian movement occurs over an abnormally narrow
dynamic range, consistent with reduced “motormotivation” (55).
Rapid movements made by healthy subjects can be shown to be
influenced by both speed-accuracy and energy cost trade-offs.
PD patients balance speed and accuracy normally but assign a
higher energetic cost to movement (56). The energy expense
of a motor command corresponds to the force generated by
the encoded action. In upper limb force-matching tasks, PD
patients underestimate the force generated by the contralateral
hand, experiencing the same subjective sense of effort at lower
energy output than controls (57). Using a force-based definition
of motor energy, Tinaz et al. (58) demonstrated that the sequence
effect of bradykinesia can be explained as an inability to meet the
cumulative energetic demand of a repetitive task. Simultaneous
dual tasks seem to magnify the problem of deficient motor
energy, with PD patients struggling sufficiently to energise a
second task (59). Higher motor planning is affected—PD patients
cannot augment motor effort to track unpredictable targets in
a choice reaction time task (60). It has been hypothesised that
changes in electroencephalographic beta oscillation power in
relation to movement is a cerebral cortical manifestation of
abnormal energy regulation in PD (61).

In PD, therefore, patterns of voluntary muscle activation
are consistent with a scaling back of motor commands, as if
to conserve energy based on inappropriately high estimations
of energetic cost. More normal scaling can be temporarily
restored by additional attentional resources mediated by sensory
cues (62). Movement speed in PD is responsive to behavioural
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FIGURE 1 | Components of energy expenditure in non-obese healthy adults (39, 40). EAT, exercise activity thermogenesis; NEAT, non-exercise activity thermogenesis

(low-level physical activities of daily living, including some locomotion, upper limb movement, postural tone and maintenance); TEF—thermal effects of food (digestion

and secondary metabolism). Skeletal muscle contributes roughly 20% of basal metabolic activity.

motivation, as it is in healthy subjects. In PD, reward had
a weaker effect on energising movement than an aversive
stimulus (63), recalling the kinesia paradoxica effect first reported
in the pre-levodopa era (64). Avoidance is the opposite of
reward-seeking, although both are subject to a cost-benefit
calculation about how much energy should be invested in
an action.

The usual movements of parkinsonian subjects look slow
and under-powered. Yet recruitment of additional muscle
contraction is required to complete a hypokinetic action
(53), and underinvestment of energy may in the end make
it more costly to move. Oxygen consumption research
previously cited is consistent with a degree of inefficiency
and wastefulness.

Cellular Energy Considerations
Abnormalities of energy metabolism, particularly mitochondrial
function (65), have been theorised in the aetiology of PD.
Certain mitochondrial defects could also increase the basal
metabolic component of REE in PD by causing a degree of
uncoupling of oxidative phosphorylation, and there is some
evidence that brain heat production is increased in PD (66).
Neuropathological research alludes to possible energy influences
in selective neurodegeneration. As Braak pointed out, the

neurons that are susceptible to α-synuclein deposition share
certain characteristics (67). All are projection neurons that
have axons disproportionately long and thin for their cell body
size, and are unmyelinated or poorly myelinated (68, 69). A
long, thinly myelinated nerve fibre requires more energy for
impulse transmission than a shorter well-myelinated one (70,
71). For neurons of the substantia nigra, two additional factors
are at play—an energy-expensive “pacemaker” function (72),
and a high degree of axonal arborisation (73, 74). A broader
discussion about oxidative stress (75) and other molecular
mechanisms for nerve cell degeneration in PD that concern
energy production (76) is, however, beyond the scope of
this review.

ENTROPY AND THE MOTOR SYSTEM

Living things exist because they can restrict themselves
to a narrow range of improbable states. They do this
by acquiring energy in an organised, usable form—
free energy—then by controlling its transition to an
unavailable form, the random molecular motion of
heat. In animals, movement occupies a central place in
this process.
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FIGURE 2 | Boltzmann imagined a container of gas as a set of “microstates,” based on the position and momentum of its individual molecules. In his formula for

entropy S, W represents the number of microstates, were it possible to count them.

Thermodynamic Entropy
Entropy means disorder, medical students are taught in their
foundation scientific studies. Thermodynamics started with the
Industrial Revolution and enquiries into the conversion of the
energy of steam intomechanical work by cyclical engines. Ludwig
Boltzmann (1844–1906), the Austrian physicist who gave entropy
its commonly used mathematical expression, considered the
degree of statistical randomness of molecules in an enclosed gas.
This notional quantity defines the entropy of the system. If all
particles are moving with complete unpredictability, the entropy
is maximal. It is much more likely for gas molecules to behave
this way than, say, all line up on one side of the container.
The second law of thermodynamics states that entropy does not
decrease in a closed system. The universe tends to an ever-greater
state of disorder, the probability of this process corresponding to
the arrow of time. Biological systems maintain their order while
increasing entropy in their surroundings by a greater degree.

Boltzmann’s idea of a list of “information” about the particles
of a gas (Figure 2), with the longest list corresponding to themost
probable, most random, highest entropy macrostate, leads on to
the use of the term in information theory.

Information Entropy
At the end of World War 2, the mathematician Claude Shannon
(1916–2001), who had worked on cryptography during the
conflict, turned his attention to peacetime communication
applications. His 1948 publication “A Mathematical Theory of
Communication” (77), concerning coding and compression in
the transmission of data, was a starting point of the discipline
of information theory. Recognising the essentially probabilistic
character of “entropy,” he fashioned a usage that disconnected
the term from the physical world—the degree of randomness or

unpredictability in a stream of symbols that compose a message.
Shannon’s entropy determines the flow of information, his term
henceforth italicised, for it carries another shade ofmeaning from
its “facts provided or learned” dictionary definition.

As illustrated in Figure 3, information is the reduction of
uncertainty by transmission of data that could not easily
be known or predicted. Synonymous with information in
information theory is surprise—that which is not expected.
A message is informative by the degree to which its content
is surprising. The expression for information entropy has a
resemblance to Boltzmann’s equation.

Shannon’s principles were developed for the intentional
communication of meaningful messages. Entropy quantifies
unpredictability and describes the performance of a channel for
any and all messages that might be sent over it. Information
refers to how much (not what) has been understood from
an actual message. A truly random distribution of symbols,
could, with appropriate coding, transmit the maximum amount
of information, and could not losslessly be compressed.
Entropy, though, is the theoretical capacity to send information;
meaningless random noise has high entropy but does not inform
because uncertainty about the vast number of possible messages
it might contain cannot be reduced. Alphabetic English has lower
entropy (E and T are common, X and Z rare, Q is nearly always
followed by U, etc.); this degree of predictability places a limit
on information transfer though it allows some compression (as
in Morse code—E and T are sent by single keystrokes while Z
needs 4).

Energy and Information
Information theory is a branch of mathematics and
thermodynamics describes properties of the physical world.
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FIGURE 3 | Three coins have known but different probability profiles. Each is to be tossed 10 times. A sender wants to transmit the results in a binary stream, 1 =

heads, 0 = tails. Bottom right: a general expression for information entropy H takes the probabilities P(x) of the outcomes of a variable X.

FIGURE 4 | Approximate Entropy algorithm applied to an annual rainfall (mm) series for Melbourne. Statistical properties of marginal probabilities are a shortcut to the

probability character of a whole sample. A block size m and scaling or filter parameter r are selected. Here, m = 2, and r = 25% of the standard deviation. Blocks are

assessed in turn for matches—BOTH corresponding numbers must lie within the ± 36 filter. In the top row, Block 1 matches with Block 17, and Block 2 with Block

15. In the bottom row, m has been raised by one—all 3 numbers must correspond to within ± 36. Block 2 with Block 15 is a match. All m = 2 and 3 matches are then

tallied to calculate Approximate Entropy. Interested readers can find theoretical and practical treatments of information entropy measurement elsewhere (78).

Yet information and energy have links that go well beyond
some parallels in their mathematical formulae. Information
needs to be registered, processed or erased by a physical
system. This requires energy, usually electromagnetic, to
be dispersed. It is possible to calculate rough comparisons

between information gained (in bits) and energy transformed
(in joules) for the transmission of digital message between
two smartphones. It costs about 10,000 ATP molecules to
send one bit of information across a synapse in the retina of a
fly (79).
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Communication of information requires energy and
transformations of energy involve information. What
distinguishes usable, or free, energy from the randomness
of thermodynamic equilibrium is information—reduced
uncertainty. Carbohydrate molecules possess information
because it is known that their atoms are bound together in a
certain way and not all moving randomly about. In this sense
also, information is physical (80).

As will be discussed, a “free energy” characterisation
of information underpins an ambitious theory about self-
organisation in the nervous system.

Entropy Measurements of Biological Data
Biological data in a time series have dynamic irregularities that
are not captured by “linear” time and frequency analysis. By
considering the degree of randomness vs. predictability in a
signal, Shannon’s information entropy concepts can be used
to infer additional layers of temporal organisation in nervous
system activity. There are a number of entropymetrics, beginning
with Pincus’s 1991 work on approximate entropy (81). They
quantify repetition as a marker of predictability by comparing
short segments of data in a time series (Figure 4).

The question then arises as to what biological quality is being
captured by entropy analysis. Entropy, because it gives additional
capacity for coded information, is sometimes considered a
measurement of complexity (82). The words, though, are not
synonymous. A system that is simple and uniform is likely to
have a regular, relatively predictable output of low information
entropy. But a completely random system, with no attributes
of biological complexity, would transmit a structureless, high
entropy signal. True biological complexity sits at an intermediate
point on this spectrum. Diseases of the motor system could
cause alterations in both directions—loss of processing capacity
resulting in simplified output (of low entropy) that imposes rigid,
less adaptable control; or more random, higher entropy signals
that reflect network disarray.

ENTROPY MEASUREMENTS IN PD

Analysis of gait from wearable accelerometers during normal
living shows increased entropy in PD (83). Accelerometer
recordings of standing postural stability show the same trend—
sample entropy in all three axes is significantly greater than for
healthy older subjects (84).

Tremor, a predictably regular phenomenon in its own right,
shows different entropy tendencies to gait and balance. Kinematic
and electromyographic recordings of parkinsonian tremor
have lower approximate entropy compared with physiological
tremor in healthy controls (85, 86). Both STN-DBS and
dopaminergic medication increase entropy of parkinsonian
tremor (87, 88).

Recordings of neuronal activity in the basal ganglia show a
fairly consistent pattern—the parkinsonian state has increased
entropy. This is seen in interspike intervals, which presumably
transmit coded data. Intra-operative recordings from the
globus pallidus interna during DBS procedures show higher
neuronal approximate entropy in PD compared with dystonic

patients (89). In the MPTP primate model of PD, DBS of
the STN reduces entropy in globus pallidus interna neuronal
activity (90). During intra-operative recordings in PD patients
undergoing DBS procedures, entropy in STN firing pattern
went down when doses of subcutaneous apomorphine that
ameliorated parkinsonism without inducing dyskinesia
were administered (91). Recordings from freely ambulant
parkinsonian patients implanted with STN-DBS showed,
under medication-off and DBS-off conditions, greater entropy
in those subject to gait freezing, especially when freezing
was actually occurring (92). Electroencephalographic activity
in PD shows increased entropy in comparison to healthy
controls (93).

The concept of information entropy is independent of coding,
content, and type of channel. What can be surmised in PD is
that the configuration of the flow of information about energy
of movement is altered.

Darbin et al. (94) have proposed an entropy hypothesis
for neuronal firing in basal ganglia disorders. Low entropy
neuronal activity could result in hyperlegible messaging and
hyperkinetic motor output. On the other hand, high entropy
signals, as observed in PD, give rise to hypokinesia. A high
entropy channel could carry more coded information, or more
random noise. But less predictable signals would likely require
greater processing to decipher them. They would also be less
compressible without loss of meaning, interfering with the
way that motor transmissions must be funnelled from larger
to smaller neuronal populations when descending the motor
control hierarchy (95). High entropy in the parkinsonian basal
ganglia appears to result in “pathological” information transfer,
partly rectified by dopaminergic drugs or partly blocked by
DBS (96).

PREDICTIVE CODING OF MOVEMENT AND
FREE-ENERGY

The brain is a device that tests hypotheses about the external
world. According to this theory, neural circuits employ a
version of Bayes’ rule for the conditional probability of events,
whereby expectations—predictive beliefs, or prior probabilities—
are updated in response to new evidence. This has become
an important principle in understanding human perception,
and in machine learning programmes that try to mimic it.
Bayesian perceptual inference may approximate a neural coding
principle underlying a continuous process of prediction error
minimisation between forecast and actual sensory input that
operates across all levels of the hierarchy of the central nervous
system (97, 98).

Predictive processing encompasses the control of movement.
Prediction error minimisation can also be achieved by changing
sensation through action to make it fit with expectations—
active inference. That is, the brain anticipates the proprioceptive
outcome of a motor command. The theory posits a simple
algorithm enabling the brain’s complex hierarchical balance
between “top down” projections of expectation and “bottom
up” sensory traffic. While it is possible to show that perception
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and movement function as if Bayesian hypothesis-testing is
embedded in the neural circuitry, it is not clear how such
processing might have become established and evolved to its
present level of sophistication.

Karl Friston, one of the originators of the predictive coding
account of brain activity, has appealed to thermodynamics
for an answer to this question (99). Living systems exist by
restricting themselves to a small range of improbable states. By
creating boundaries with the disordered outside world, and by
exchanging energy and matter with it, they cause these to be
the most probable internal arrangements. As Claude Shannon
used “entropy” as a term for randomness in a data stream, so
Friston links the prediction error of predictive coding with the
thermodynamic variable of free energy. Free-energy (italicised to
distinguish from its thermodynamic counterpart), he writes, “is
an information theory quantity that bounds the evidence for a
model of data” (99).

In thermodynamics, free energy is the energy available to do
work. The relevant equation can be paraphrased;

Free Energy Equals Total Energy Minus Entropy
In performing mechanical or chemical work, some free energy
is dissipated into entropy—the random molecular motion of
heat—which, in a closed system, is unavailable to do work. In
an inefficient engine, or an explosive chemical reaction, nearly
all free energy might be so dispersed. Biochemical free energy,
which drives the direction of reactions, is minimised when
a protein folds to its functional 3-dimensional conformation.
The probability of finding a molecular system in one state as
opposed to another is determined by the difference in their
free energies (100). It is therefore more probable that proteins
occupy desirably folded steady states than undergo further
thermodynamic transition. Living systems minimise free energy
to maximise the chance that their complex, improbable elements
will retain their stability.

An accurate model of an action yields predictable incoming
sensory signals of low “surprise” content. Yet the brain has no
innate yardstick for entropy, or surprise. Rather, it controls the
“free energy” character of information encoded in probability
distributions of expectation, which is minimised by reducing
prediction error. If returning signals are unsurprising, probability
distributions don’t require updating to new data. Using complex
mathematics, Friston shows that calculations based on free-
energy, which places an upper limit on surprise, approximate
Bayes’ rule. Free-energy, abstract informational quantity, exists
through actual neuronal energy, which is needed to code its
probability estimates (80). Accurate predictions are frugal with
thermodynamic free energy, since little additional neuronal
activity is needed to modify these distributions to unsurprising
feedback. Friston says that any self-organising system that is at
nonequilibrium steady state with its environment must, behind
physical and statistical boundaries, minimise its free-energy
(101). By doing so, it will continue to occupy its small set of
preferred states.

The Free-energy principle has been described as a piece
of philosophical-mathematical reasoning that seeks to explain
nervous and mental phenomena (102). At another level, it says
that life depends on exploiting relationships between energy and
information to achieve thermodynamic outcomes. This cursory

and unmathematical synopsis of Free-energy shows what might
be happening in sensori-motor neurotransmission, though the
theory can only be applied conceptually to PD. Underscaled
bradykinetic movements that have to be augmented by secondary
muscle activation, or that decrement on repetition, imply that
free-energy is not being minimised in PD. “Surprising” sensory
feedback delivers continual prediction errors on actions that fall
short of expectation.

MALIGNANT SYNDROMES OF PD AS
THERMODYNAMIC CRISES

In its fully developed form, neuroleptic malignant syndrome
is a life-threatening combination of pyrexia, rigidity with
rhabdomyolysis, autonomic instability and altered mental state
(103). There are milder versions, with a continuum that extends
from severe drug-induced parkinsonism. Dopaminergic D2
receptor blockade by antipsychotic drugs is likely to be the
primary cause, and peripheral explanations around skeletal
muscle fibre toxicity are less satisfactory. This conclusion is
reinforced by the occurrence of neuroleptic malignant-like states
in PD (104–108). Sudden withdrawal of dopaminergic therapy,
intercurrent infection and dehydration are the most common
triggers. It can emerge from profound off phases in patients
with motor fluctuations (109). Virtually all of the features of a
neuroleptic drug-induced malignant state are reproduced in its
PD counterpart (110).

Energy dysregulation is central to the malignant syndrome in
PD. The metaphor of “meltdown” captures the runaway thermal
effects. In a state of extreme parkinsonism, there little capacity
for muscles to perform voluntary mechanical work. Instead,
abnormal muscle contraction liberates large amounts of heat
energy. Thermoregulation is overwhelmed. Some inbuilt load-
limiting governor is overridden, muscles exceed their metabolic
safety points, and start to break down.

Malignant syndromes underline the extent of the energy
resources normally held in harness by the motor system.
They bring into relief thermodynamic roles of dopamine
in the basal ganglia by showing the consequences of these
extreme hypodopaminergic states. Chemical energy stores in
skeletal muscle are dissipated as entropy, while the complexity
of muscle cells themselves is degraded by rhabdomyolysis.
Information entropy of motor signals in malignant syndromes
have not been studied, but some inferences can be made.
Continuous involuntary skeletal muscle activation implies motor
messages dominated by random output, far from the minimal
signal-dependent noise of optimum control (111). A crisis of
thermodynamic entropy is brought about by the breakdown of
information flow within the motor system.

CONCLUSIONS

PD predisposes to negative energy balance across its course.
While impaired nutritional intake contributes, there are
abnormalities on the energy output side. These relate to core
motor aspects of the disease, for which the dopaminergic
deficit is responsible. The elusive character of bradykinesia
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is best explained as an under-investment of energy of
movement. But when activities are standardised for work
performed, PD patients paradoxically expend more energy,
suggesting that these inappropriate energy thrift settings are
ultimately wasteful.

To subtract energy output from input is to consider energy
balance in PD as one might for an engine. This highlights
important differences from living things, with their improbable
defiance of the second law of thermodynamics. They resist
its dispersive effects by managing transformations of their
energy. Entropy measurements disclose nothing about the
coding scheme or content of basal ganglia neural signals. These
information flows are controlling energy exchange through
muscular work. Increased neuronal entropy in PD, which

coincides with hypokinesia, can be seen as a marker of defective
energy transfer.

These enquiries into thermodynamic aspects of PD align with
a unifying hypothesis of dopamine’s neurotransmitter actions
(8)—to adapt energy expenditure to prevailing economic
circumstances by influencing the traffic of information
about energy.
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