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A B S T R A C T

Detecting adulteration in extra virgin olive oil (EVOO) is particularly challenging with oils of similar chemical
composition. This study applies near-infrared hyperspectral imaging (NIR-HSI) and machine learning (ML) to
detect EVOO adulteration with hazelnut, refined olive, and olive pomace oils at various concentrations (1%, 5%,
10%, 20%, 40%, and 100% m/m). Savitzky-Golay filtering, first and second derivatives, multiplicative scatter
correction (MSC), standard normal variate (SNV), and their combinations were used to preprocess the spectral
data, with Principal Component Analysis (PCA) reducing dimensionality. Classification was performed using
Partial Least Squares-Discriminant Analysis (PLS-DA) and ML algorithms, including k-Nearest Neighbors (k-NN),
Naïve Bayes, Random Forest (RF), Support Vector Machine (SVM), and Artificial Neural Networks (ANN). PLS-
DA, k-NN, RF, SVM, NB, and ANN models achieved accuracy rates of 97.0–99.0%, 96.2–100%, 96.5–100%,
98.6–99.5%, 93.9–99.7%, and 99.2–100%, respectively, in discriminating between pure EVOO, adulterants, and
adulterated oils. PLS-DA, RF, SVM, and ANN significantly outperformed Naïve Bayes (p < 0.05) in binary
classification, with Matthews correlation coefficient (MCC) values exceeding 0.90. All the binary classifiers
except Naïve Bayes, when coupled with SNV/MSC, Savitzky-Golay smoothing and derivatives, consistently
achieved perfect scores (1.0) for accuracy, sensitivity, specificity, F1 score, precision, and MCC in distinguishing
pure EVOO from adulterated oils. No significant differences (p > 0.05) in model performance were found be-
tween those using full spectra and those based on key variable selection. However, PLS-DA and ANN significantly
outperformed k-NN, RF, and SVM (p < 0.05), with MCC values ranging from 0.95 to 1.00, indicating superior
classification performance. These findings demonstrate that combining NIR-HSI with machine learning, along
with key variable selection, potentially offers an effective, non-destructive solution for detecting adulteration in
EVOO and combating fraud in the olive oil industry.

1. Introduction

Food fraud, a growing threat to public health and consumer trust,
continues to undermine the integrity of the global food system through
practices such as mislabeling, adulteration, and counterfeiting
(Manning, 2016). The adulteration of high-value oils, particularly
extra-virgin olive oil (EVOO), is alarming, with frequent reports of
dilution or substitution using cheaper alternatives (Moore et al., 2012).
As awareness of this issue increases, implementing robust authentica-
tion methods to safeguard the integrity of these oils has become crucial
(Medina et al., 2019; Meenu et al., 2019).

The toxic oil syndrome of the 1980s, caused by aniline-adulterated
rapeseed oil mislabeled as olive oil, resulted in over 400 deaths and
20,000 illnesses, drawing significant attention to oil adulteration
(Manuel Tabuenca, 1981; Philen and Posada, 1993; Posada De La Paz
et al., 2001). This tragedy highlighted the severity of edible oil fraud
(Casadei et al., 2021). More recently, Spanish and Italian authorities
uncovered 260,000 L of counterfeit EVOO blended with lower-grade
lampante oil, underscoring the ongoing challenges in the industry
(Food Safety News, 2023).

EVOO is the highest-quality and most expensive olive oil, produced
exclusively through mechanical or physical methods that preserve its
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natural composition without chemical alterations (IOC, 2010). Its global
demand continues to rise due to its unique sensory qualities, nutritional
value, and numerous health benefits (Drira et al., 2021; Jabeur et al.,
2016). However, these factors make EVOO prone to adulteration with
lower-grade olive oils such as olive-pomace, deodorized olive oils, as
well as cheaper vegetable oils including hazelnut, sunflower, canola,
and corn (de la Mata et al., 2012; Filoda et al., 2019; Jabeur et al., 2017;
Ozcan-Sinir, 2020). The authenticity and quality of EVOO are crucial for
consumer satisfaction, industry reputation, and regulatory compliance
(CodexAlimentarius, 2017). Rising prices and demand have fueled an
increase in adulteration, often unbeknownst to consumers while sellers
profit (Moore et al., 2012). This compromises product integrity and
poses health risks (Posada De La Paz et al., 2001). Robust authentication
measures are essential to preserve authenticity of EVOO, protect con-
sumer confidence, and uphold industry standards.

Adulteration of EVOO remains challenging, especially with cheaper
oils such as hazelnut and lower-grade olive oils. These adulterants are
chosen for their similar physicochemical properties, triacylglycerol
composition, sterol content, and fatty acid profile, making detection
difficult, particularly at low levels (Calvano et al., 2012). This similarity
extends to minor components including phenolic compounds, tocoph-
erols, chlorophyll, carotenoids, and volatile compounds, further mask-
ing adulteration (Chiavaro et al., 2008). Despite advances in detection
technologies, fraudsters continue to develop sophisticated techniques
that evade some conventional methods (Peña et al., 2005). The ability to
detect and quantify adulterants depends on their concentration and
similarity to EVOO (Torrecilla et al., 2010). This highlights the need for
advanced, sensitive techniques capable of distinguishing pure EVOO
from adulterated products.

EU authorities have raised concerns about the adulteration of EVOO
with hazelnut oil. Detecting refined hazelnut oil in EVOO, particularly at
concentrations below 20%, remains challenging with conventional
methods (Azadmard-Damirchi, 2010; Mildner-Szkudlarz and Jeleń,
2008). This difficulty stems from the refining process, which removes
filbertone, a key volatile compound in hazelnut oil, along with other
minor components essential for detection (Flores et al., 2006). Both oils
share similar fatty acid profiles and minor components such as tocoph-
erols and sterols, further complicating differentiation. Unrefined
hazelnut oil also poses a health risk for individuals allergic to hazelnut
proteins (Arlorio et al., 2010; Martín-Hernández et al., 2008; van Hen-
gel, 2007). To address these challenges, the International Olive Council
(IOC) and CODEX STAN 33–1981 have established global guidelines for
olive oil purity, quality, and authenticity, emphasizing fraud detection
through innovative and effective techniques (Codex Alimentarius
Commission, 2003).

Several chromatography-based methods, including high-
performance liquid chromatography, high-resolution gas chromatog-
raphy, and mass spectrometry, have been proposed for EVOO authen-
tication (Calvano et al., 2012; Capote et al., 2007; Drira et al., 2021;
Jabeur et al., 2017; Mildner-Szkudlarz and Jeleń, 2008; Ozcan-Sinir,
2020). These techniques quantify compounds such as fatty acids, sterols,
tocopherols, and tocotrienols. A common approach is to analyze specific
marker compounds. For instance, filbertone is used as a chiral marker to
detect unrefined hazelnut oil. However, filbertone can be removed
during refining, making some adulterations harder to detect (Flores
et al., 2006). Although chromatographic techniques are highly precise,
they are expensive, time-consuming, and require skilled operators.
Moreover, they often use harmful chemicals, raising environmental
concerns due to waste production (Aparicio and Aparicio-Ruíz, 2000).
Despite these limitations, chromatography remains indispensable in
certain cases, though faster and non-destructive alternatives are
emerging to complement it for EVOO authentication.

In recent years, rapid spectroscopic methods, including Fourier
Transform Infrared Spectroscopy (FTIR) (Rohman and Man, 2010),
Raman spectroscopy (Georgouli et al., 2017; López-Díez et al., 2003),
NMR (Mannina et al., 2009), and total synchronous fluorescence (Poulli

et al., 2007), have emerged for detecting EVOO adulteration. These
techniques offer significant advantages but are point-based, scanning
small sample areas and limiting their ability to provide the spatial in-
formation essential for broader food inspection (Lohumi et al., 2015).
However, when combined with chemometrics and machine learning
algorithms, they offer a fast, cost-effective method for routine authen-
tication screening (Vieira et al., 2021).

Hyperspectral imaging (HSI) is a promising tool for combating food
fraud, integrating spectroscopy and imaging to provide enhanced spatial
and spectral detail compared to traditional methods (Mendez et al.,
2019; Rungpichayapichet et al., 2017). HSI allows for simultaneous
analysis of multiple samples on a conveyor belt or scanning platform,
unlike traditional methods that analyze one sample at a time. This ef-
ficiency makes HSI ideal for high-throughput industrial applications. Its
flexibility also allows hyperspectral data collection from samples of
varying sizes and shapes (Lohumi et al., 2015). Our recent study
demonstrated the effectiveness of near-infrared HSI (NIR-HSI) in
detecting and quantifying EVOO adulteration with sunflower, corn,
soybean, canola, sunflower, and sesame oils, outperforming traditional
methods such as FTIR, Raman, UV–Vis, and GC-MS (Malavi et al., 2023).
HSI-NIR successfully distinguished various vegetable oils (Hwang et al.,
2024), though its potential for detecting complex adulteration in
chemically similar oils remains underexplored.

Recent developments in machine learning offer promising methods
for improving discrimination, minimizing overfitting, and selecting key
features for authentication studies. However, the rapid detection of
EVOO adulteration using NIR-HSI and machine learning algorithms has
been minimally reported, particularly when dealing with oils of similar
composition such as hazelnut oil and refined olive oils. This study ad-
dresses these gaps by evaluating the efficacy of NIR-HSI (900–1700 nm)
combined with chemometrics (PLS-DA) and machine learning algo-
rithms including SVM, RF, k-NN, Naive Bayes, and ANN, for detecting
EVOO adulteration with cheaper oils including hazelnut, olive pomace,
and refined olive oil. Additionally, the performance of binary classifi-
cation models using key spectral features is assessed, further high-
lighting the potential of these techniques in detecting subtle
adulteration patterns in olive oil.

2. Materials and methods

2.1. Edible oil samples

The edible oil samples used in this study were sourced from certified
local and international suppliers. Extra virgin olive oils (EVOO) were
produced in Spain, Italy, and Greece. A total of 36 EVOO samples, 11
refined hazelnut oil (HZO) samples, 11 olive pomace oil (POO) samples,
and 6 refined olive oil (ROO) samples were obtained for analysis. All
samples were stored in a dark environment at 25 ◦C prior to analysis.

2.2. Preparation of adulteration mixtures

After the initial selection, a random subset of 20 distinct extra virgin
olive oil (EVOO) samples, 4 refined hazelnut oil (HZO) samples, 4 olive
pomace oil (POO) samples, and 4 refined olive oil (ROO) samples were
selected for adulteration experiments. Fourteen EVOO samples were
randomly selected and blended with two distinct samples of each
adulterant (HZO, POO, and ROO) to create adulteration mixtures for the
calibration set. The remaining six EVOO samples were blended with the
remaining adulterants to formmixtures for external validation (test set).
Unadulterated samples were also included in both the calibration and
validation phases (Fig. 1). This setup ensured sample exclusivity, critical
for effective model training, validation, and testing. Adulteration mix-
tures were prepared at concentrations of 0%, 1%, 5%, 10%, 20%, 40%,
and 100% (mass/mass) for EVOO + HZO, EVOO + POO, and EVOO +

ROO. Each sample was prepared in triplicate, yielding a total of 1995
samples.
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2.3. Hyperspectral imaging system

A near-infrared hyperspectral imaging system (NIR-HSI) (Spectral
Imaging Oy Ltd, Finland) was used to scan all samples. The system
operates within the 900–1700 nm spectral range, with a spectral reso-
lution of 3 nm, generating 224 bands. The setup featured a hyperspectral
camera (Fx17e Specim) positioned at a 45◦ angle, six 150 W tungsten
halogen lamps for illumination, a moving platform (40 × 20 Specim Lab
Scanner), and a computer for controlling data acquisition.

2.4. Hyperspectral image acquisition

Lumo scanner software facilitated hyperspectral image acquisition,
optimizing settings for exposure time, frame rate, and platform speed.
The exposure time was set to 7.00 ms, the frame rate to 19.50 Hz, and
the platform speed to 2.6 mm/s. For each scan, 10 g of oil sample were
placed in a 6 cm diameter plastic dish, positioned 15 cm from the focus
lens. The sample was scanned line by line across the NIR spectral range
(900–1700 nm) with a spectral interval of 3.5 nm. Each hypercube
captured spatial data with a resolution of 672 × 512 pixels and 224
spectral bands, offering comprehensive information for oil sample
analysis.

2.5. HSI image processing and extraction of the spectral profile

Black and white reference images were acquired to correct the raw
HSI images, addressing dark spots and uneven illumination caused by
the camera. The corrected HSI image (R) was calculated using Equation
(1), where "I" represents the raw HSI image, "W" is the white reference
image obtained from a standard white calibration board (reflectance
value ≈ 99.9%), and "B" is the dark image acquired by closing the
camera lens (reflectance value≈ 0%). The correction and normalization
processes were carried out using ENVI software (IDL 8.7.2).

R=(I − B) / (W − B) (1)

After calibrating and normalizing the hyperspectral images, a 50 ×

50 pixel region of interest (ROI) was selected from the center of each
sample using IDL ENVI software (version 5.5.2). The averaged reflec-
tance values from the pixels within the ROI were used to obtain the final
reflectance for each sample. The resultant data matrix, consisting of
1995 rows and 224 columns, was then prepared for further

preprocessing and statistical modeling.

2.6. Spectral preprocessing

Spectral preprocessing is essential in chemometrics for analyzing
spectroscopic data, as it improves data quality by eliminating noise and
irrelevant information, ultimately enhancing the performance of pre-
dictive models (Feng and Sun, 2012). In this study, both raw and pre-
processed spectral data were used to develop classification models.
Several preprocessing methods and their combinations were applied,
including normalization, standard normal variate (SNV), multiplicative
scatter correction (MSC), Savitzky-Golay smoothing, and derivatives.
Normalization mapped the data to a 0 to 1 range, speeding up and
simplifying the modeling process. SNV and MSC were applied to reduce
spectral variability caused by scattering effects. Savitzky-Golay (SG)
smoothing and derivatives were used to remove noise, smooth spectral
data, eliminate baseline variations, and resolve overlapping peaks
(Lohumi et al., 2015). First and second derivatives, combined with a
Savitzky-Golay filter using a 7-point gap and second-order polynomial
filtering, were specifically employed. All spectral preprocessing was
conducted in R Studio using the "mdatools" package for chemometrics
(Kucheryavskiy, 2020).

2.7. Machine learning algorithms

Principal Component Analysis (PCA) was initially employed to
explore the differentiation between authentic EVOO, adulterant oils,
and adulterated olive oils based on spectral variations. PCA addresses
high dimensionality and is used for sample clustering, feature selection,
and noise reduction in spectral data (Minaei et al., 2017). The principal
components (PCs) are mutually orthogonal and capture the maximum
variance in the data (Florián-Huamán et al., 2022). After PCA, various
supervised models, including PLS-DA, and machine learning algorithms
such as k-NN, Naïve Bayes, RF, SVM, and ANN were applied for
classification.

Partial Least Squares (PLS) is considered a ’gold standard’ supervised
linear technique in chemometrics. It establishes a linear relationship
between two datasets: X (spectra) and Y (dependent variable matrix), by
compressing spectral data into orthogonal latent variables that capture
the maximum covariance between X and Y (Uncu and Ozen, 2019). PLS
is well-regarded for feature extraction and addressing high

Fig. 1. Schematic sampling experimental design.
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multi-collinearity in high-dimensional data, such as HSI spectral data
(Leardi, 2018). In this study, the PLS variant, Partial Least
Squares-Discriminant Analysis (PLS-DA), was initially employed for
classification. More details on PLS-DA and the selection criteria for a
parsimonious model can be found in our previous study (Malavi et al.,
2023). After PLS-DA, other machine learning algorithms, including
k-NN, Random Forest (RF), Naïve Bayes, SVM, and ANN, were further
assessed for classification.

K-Nearest Neighbors (k-NN) is a well-known supervised, non-
parametric machine learning algorithm for pattern recognition that re-
lies on the hyperparameter ’k’ in decision-making. In k-NN, each of the
’k’ nearest neighbors has equal influence on the classification outcome.
The core principle is that a sample is assigned to the category most
common among its ’k’ closest neighbors (Yun et al., 2021). The model
calculates the distances between new samples and those in the training
set, classifying them based on a majority vote. In this study, the optimal
value of ’k’ was determined using a grid search from 3 to 30, with step
increments of 2.

The Naïve Bayes (NB) classification algorithm applies Bayes’ theo-
rem to determine the most probable class among available options. It
calculates the prior probabilities of each attribute within every class,
assuming mutual independence of attributes. This means that the pres-
ence of one feature is considered independent of any other feature in the
class. The algorithm then uses these probabilities for classification
(Barbosa et al., 2014). PCA was employed to generate independent
features (PCs) for use as covariates in the classification model.

Support Vector Machine (SVM) is a supervised machine learning
model based on statistical learning theory, commonly used for classifi-
cation, especially with high-dimensional data such as hyperspectral
imaging (HSI) due to its lower sensitivity to dimensionality (Chen et al.,
2007). SVM effectively learns within high-dimensional feature spaces,
even with limited training data, by mapping non-linearly separable data
into a higher-dimensional space and classifying it using maximal margin
hyperplanes (Zhang et al., 2011). To prevent overfitting, SVMminimizes
structural risk rather than focusing solely on minimizing training errors.
The optimal parameters for the SVM model in this study followed the
approach by Zeng et al. (2019). Based on the findings of Xie et al. (2014),
the radial basis function (RBF) kernel, which outperforms other kernels
in classification, was selected. The parameter sigma (σ) defined the
nonlinear mapping from the input space to the high-dimensional feature
space, while the "cost of constraint violation" (C) controlled the penalty
for instances falling outside the margin, balancing bias and variance. A
random hyperparameter search with a tune length of 30 was conducted
to fine-tune the σ and C values across 30 combinations within a pre-
defined range.

Random Forest (RF) is an ensemble machine learning algorithm that
combines multiple classification trees using two powerful randomiza-
tion techniques: bootstrap aggregating and random feature selection.
These methods improve accuracy and make RF resilient against over-
fitting (Breiman, 2001). Its popularity stems from its simplicity in
training, ease of parameter tuning, ability to handle nonlinear models,
and strong classification performance (Cao et al., 2012). The Gini index,
which measures node impurity, is often used to split binary data in RF.
The leaves of the trees represent class labels, while the nodes guide the
samples to a specific class (Breiman, 2001). The random forest algorithm
in this study was executed as follows.

a) The RF model was initially built using default parameters: the
number of trees (ntree) was set to 500, and the number of split
variables (mtry) was defined as the square root of the number of
variables (√n), following de Santana et al. (2019). The ntree value of
500 was chosen after initial tests showed that it stabilized the
out-of-bag (OOB) error, indicating effective performance with min-
imal tuning. In this context, ntree refers to the number of trees, while
mtry specifies the number of variables used to grow each tree.

b) A dual approach was employed to assess and enhance model per-
formance while minimizing overfitting and ensuring good general-
ization to new data. First, automatic internal validation through OOB
error estimation was performed, a process intrinsic to the RF algo-
rithm. RF generates bootstrap subsets (ntree subsets) of the dataset
through bagging, using about two-thirds of the calibration samples
for tree growth, while the remaining OOB samples are used for cross-
validation. These OOB samples estimate model performance. RF
improves the effectiveness of bagging by reducing tree correlation,
with unpruned trees developed at each bootstrap iteration. At every
node, mtry variables are randomly selected to identify the split that
minimizes the Gini index. The final prediction is determined through
majority voting across all trees.

c) Rather than moving directly to external prediction, we employed
ten-fold cross-validation to further optimize the model. A random
search for the best-performing mtry was conducted with a tune
length of 30, ensuring the simplest model selection. This extensive
validation provided a robust estimate of model performance.

d) Finally, the simplest model, selected using the oneSE rule, was
validated with external test samples to assess its generalizability.

Artificial Neural Networks (ANNs) are powerful tools for supervised
pattern recognition in complex datasets. These models simulate neural
processes by using interconnected layers of nodes or neurons, allowing
them to process both linear and non-linear data. In this study, we
employed the nnet model, a single hidden layer feed-forward neural
network. The network architecture consisted of an input layer, one
hidden layer, and an output layer, trained using backpropagation with a
sigmoid activation function. Model performance was optimized by fine-
tuning key hyperparameters, including the number of neurons in the
hidden layer and the decay parameter, which prevents overfitting by
penalizing large weights. Given the risk of overfitting in ANNs, careful
parameter selection was essential. The best hyperparameters were
identified through grid search, cross-validation, and the oneSE rule, with
neuron counts ranging from 1 to 15 and decay values of 0, 0.001, 0.01,
and 0.1. The maximum number of weights (MaxNWts) was set at 1000,
and the maximum iterations (maxit) at 200.

2.8. Statistical analysis

2.8.1. Training and testing of machine learning models
Machine learning models, including PLS-DA, KNN, SVM, RF, Naïve

Bayes, and ANN, were developed using RStudio Posit software (version
4.3.2) with the packages “pls,” “class,” “e1071,” “randomForest,”
“nnet,” and “caret” (Ai et al., 2014; Liland et al., 2022; Meyer et al.,
2022). The “trainControl” function from the “caret” package enabled
stratified 10-fold cross-validation, repeated 10 times (“repeatedcv”).
Models were trained using the methods “pls,” “knn,” “svmRadial,” “rf,”
“naiveBayes,” and “nnet,” implemented via the "train" function of the
"caret" package. A random seed was set prior to running the models to
ensure reproducibility. The "stats" package R Core Team (2022) was
used for PCA, and all visualizations were generated using “ggplot2”.

To address the issue of class imbalance in the dataset, SMOTE
(Synthetic Minority Over-sampling Technique) was applied during
model training using the built-in sampling method in the caret package.
Specifically, SMOTE was incorporated via the sampling = "smote"
argument in the trainControl function. This approach generated syn-
thetic samples for the minority class within each fold of the training set,
ensuring that the models were trained on balanced data without
affecting the external validation or test sets (Kuhn et al., 2023).

Prior to model development, the samples were split into a calibration
set (1380 samples ≈ 70%) and a test set (615 samples ≈ 30%), as out-
lined in Section 2.2. Optimal hyperparameter selection for the calibra-
tion models was performed through exhaustive grid search or random
search, combined with model tuning and 10-fold cross-validation,
repeated ten times. Specifically, nine partitions were used for model
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calibration, while one partition served as the internal validation set. This
iterative process was repeated ten times, with samples randomly
assigned without replacement each time. The grid search procedure not
only enabled optimal parameter selection by estimating the standard
error of prediction (SE), but also improved the accuracy of prediction
error estimates for the calibration models.

Typically, the "carettrain" function selects the model with the highest
performance metric, such as accuracy. In this study, however, the ’one
standard error rule’ (oneSE), recommended by Hastie et al. (2009), was
used. The oneSE rule selects the simplest model that falls within one
standard error of the best-performing model, helping to reduce the risk
of overfitting. The selected parsimonious model was then applied to
independent test sets, which were not used during training, to simulate
real-world conditions. This external validation set, consisting of unla-
beled samples, was used to assess the model’s reliability and prediction
performance.

The "varImp" function from the ’caret’ package was used to identify
the most influential predictors in the predictive model (Kuhn, 2008).
This function calculates the importance of each predictor using various
techniques, enabling the ranking of variables and providing insights into
their overall impact within each model. For instance, in the Random
Forest model, both the Gini importance index and permutation impor-
tance index were used (Li et al., 2024), while in PLS, importance was
determined by the weighted sums of the absolute regression coefficients.
For models lacking intrinsic importance metrics, such as k-NN, SVM, and
ANN, permutation tests were employed to assess the effect of feature
shuffling on model accuracy. All importance scores were scaled to a
maximum of 100, unless the "scale" argument in "varImp" was set to
FALSE (Chen et al., 2020). Previous studies have applied the ’top N
variables’ approach for selecting relevant features in machine learning
models (Cui et al., 2023; Kganyago et al., 2017). Following this frame-
work, the top 20 spectral bands ranked by variable importance were
used to reconstruct the binary classification models in this study.

2.8.2. Evaluation of Model performance
The performance of each binary machine learning classification al-

gorithm was evaluated using metrics such as accuracy, sensitivity, pre-
cision, specificity, F1 score, and Matthews Correlation Coefficient
(MCC), calculated from confusion matrices, as shown in equations (2)–
(7) (de Santana et al., 2018; van Roy et al., 2018).

Accuracy=
TP+ TN

TP+ TN+ FN+ FP
(2)

Sensitivity=
TP

TP+ FN
(3)

Specificity=
TN

TN+ FP
(4)

Precision=
TP

TP+ FP
(5)

F1 Score= 2×
Precision× Sensitivity
Precision+ Sensitivity

(6)

MCC=
(TP× TN − FP× FN)

√(TP+ FN)(TP+ FP)(TN+ FN)(TN+ FP)
(7)

Where TP = true positives, TN = true negatives, FN = false negatives,
and FP = false positives. A classification is considered perfect when all
positives (adulterated samples) are correctly identified as positives and
all negatives (authentic EVOO) are classified as negatives, with all
performance metrics equaling 1 (Chicco and Jurman, 2023). Accuracy
measures the overall proportion of correct predictions, while sensitivity
and specificity assess the model’s ability to correctly identify positive
and negative samples, respectively. Precision focuses on the accuracy of

positive predictions, and the F1 score balances precision and sensitivity,
which is particularly useful for imbalanced datasets. The Matthews
Correlation Coefficient (MCC), a robust metric for assessing agreement
between predicted and actual classes, was also used due to the numerical
imbalance of sample groups. MCC values range from − 1 to 1, where − 1
indicates complete disagreement, 0 represents random chance, and 1
signifies perfect agreement between predicted and actual classes (Chicco
and Jurman, 2023).

2.8.3. Comparison of model performance by inferential statistical methods
The effects of preprocessing techniques and the performance of

different binary classification models were compared using Matthews
correlation coefficient (MCC.p) values from the external test set. MCC.p
is particularly valuable for handling class imbalances, as it provides a
balanced metric that incorporates all elements of the confusion matrix:
True Negatives (TN), True Positives (TP), False Negatives (FN), and
False Positives (FP), offering a comprehensive measure of model effec-
tiveness (Chicco and Jurman, 2020).

Before analysis, the MCC.p data was tested for normality using the
Shapiro-Wilk test and for homogeneity of variance using Levene’s test.
Since the data failed to meet the assumptions of normality (p < 0.05)
and homoscedasticity (p < 0.05), non-parametric statistical methods
were applied. The Kruskal-Wallis H test, using the ’PMCMRplus’ pack-
age (Pohlert and Pohlert, 2022), was first used to assess differences in
MCC scores across multiple models and preprocessing techniques. To
evaluate interactions between model types and preprocessing methods,
the Aligned Rank Transform (ART) for ANOVA was applied via the
"ARTool" package. This method allows the application of conventional
ANOVA techniques on ranked data, facilitating robust interaction
testing in a non-parametric framework (Wobbrock et al., 2011).

Dunn’s Test with Bonferroni correction ("dunn.test" package) was
then used for multiple comparisons to identify statistical differences
between models (Dinno, 2017). Additionally, the Wilcoxon signed-rank
test was conducted to determine statistical differences in MCC scores for
each model, with and without variable selection. This non-parametric
test was selected due to the paired nature of the data and the
non-normal distribution of the differences.

3. Results and discussion

3.1. Spectral reflectance profiles of oils

Fig. 2 presents the averaged spectral profiles of EVOO, adulterant
oils, and adulterated olive oils from unprocessed HSI spectral data.
These profiles display similarities, but notable variations in reflectance
occur at specific wavelengths, particularly between 1114 and 1132 nm,
1139–1146 nm, 1171–1192 nm, 1360–1421 nm, and 1610–1635 nm.
These peaks correspond to functional groups such as C–H, C–C, C–N,
C=O, and O–H, arising from the vibrational modes of fatty acids and
phenolic compounds (Choi and Moon, 2020; Xiaobo et al., 2010; Xie
et al., 2014). Reflectance values for adulterated olive oils consistently
exceed those of EVOO across the spectral range, likely due to the lower
pigment levels, such as carotenoids and chlorophyll, caused by the
refining process. In contrast, EVOO undergoes minimal processing and
retains more natural pigments, resulting in lower reflectance due to
compounds including polyphenols and antioxidants, which strongly
absorb light in the visible and near-infrared regions (Mignani et al.,
2011).

3.2. Unsupervised learning by principal component analysis

Unsupervised exploratory data analysis employing principal
component analysis (PCA) was initially conducted on both raw and
preprocessed spectral data. The primary objectives of PCA were to (i)
visualize the samples, categorizing them as authentic EVOO, adulter-
ants, or adulterated olive oil in a reduced-dimensional space, and (ii)
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identify patterns of oil groupings based on varying levels of adulteration.
Fig. 3 shows the resulting plots for the first two principal components
(PC1 and PC2), corresponding to each spectral preprocessing technique.
PC1 and PC2 account for 98.9% of the variance in two datasets, the raw
spectral data and the data treated with Savitzky-Golay alone. In
contrast, the first two principal components explain 70–80% of the
variance in the data subjected to other preprocessing techniques. This is
likely due to noise reduction and enhanced spectral resolution from
preprocessing, which distributes variance across more PCs (Feng et al.,
2013). However, despite preprocessing, no significant improvement in
separation among the three groups (EVOO, adulterants, adulterated oils)
is observed based on PC1 and PC2. As shown in Fig. 3, EVOO and
adulterants cluster closely in most principal component (PC) score plots.
Additionally, some oils adulterated at 1–40% often cluster near or
within the EVOO and adulterant groups, making visual separation based
on adulteration levels challenging. Given these limitations in PCA
visualization, advanced machine learning algorithms were applied to
achieve more accurate and reliable classification.

3.3. Supervised classification algorithms for full-spectrum hyperspectral
imaging data

Following exploratory data analysis, machine learning algorithms
using the full NIR-HSI spectral data were applied for supervised classi-
fication. The objective was to address three key questions: (i) evaluating
the models’ ability to distinguish between authentic and adulterated
olive oil in a binary classification framework (’two Classes’), (ii)
assessing the accuracy of the models in classifying pure EVOO, adul-
terants, and adulterated olive oils (’three Classes’), and (iii) examining
the models’ efficiency in differentiating among EVOO, hazelnut oil
(HZO), olive pomace oil (POO), refined olive oil (ROO), and their mix-
tures with EVOO (EVOO + HZO, EVOO + POO, EVOO + ROO), labeled
as ’seven Classes’. From an industry perspective, classification based on
the exact percentage of adulteration is often less crucial than deter-
mining whether a sample is authentic or adulterated. Instead, a binary or
multi-class classification (e.g., authentic vs. adulterated, or pure vs.
varying adulteration types) offers more actionable insights for con-
sumers and stakeholders. This approach better reflects real-world ap-
plications, providing clearer guidance on product authenticity and
quality assurance. Thus, the models in this study were designed with
these practical industry needs in mind.

3.3.1. Partial Least Squares discriminant analysis (PLS-DA)
Table 1 summarizes the performance parameters for the PLS-DA

classification models. To prevent overfitting, model selection focused
on the simplest models with the optimal number of latent variables (LVs)
based on the one-standard-error (oneSE) rule through cross-validation.
For the ’three Classes’ scenarios, 15 to 23 LVs were needed, while the
’two Classes’ models required only 4 or 5 LVs, as shown in Table 1. In
contrast, the more complex seven-class classification required 30 to 43
LVs. Addingmore LVs beyond a certain threshold did not improve model
performance, especially when these improvements remained within the
standard error margin (Fig. 4a & b). This often leads to overfitting,
where the model captures noise instead of meaningful patterns, reducing
its generalization capability. These findings emphasize the importance
of parsimony in model development, balancing simplicity and accuracy
to avoid overfitting (Hastie et al., 2009).

The cross-validation accuracy (ACC.cv) and external prediction ac-
curacy (ACC.p) for the "seven-class" classification ranged from 95.2 to
96.2% and 92.2–94.8%, respectively. These results align with previous
findings (Malavi et al., 2023), which reported an ACC.p of 93.8% for
distinguishing EVOO from adulterants using hyperspectral imaging. The
highest error rate (7.8%) occurred with PLS-DA combined with
Savitzky-Golay (SG) smoothing, where 4 EVOO samples were mis-
classified as EVOO + HZO and 7 ROO samples as EVOO (Fig. 4c).
Similarly, PLS-DA with SG+1st derivative misclassified 7 EVOO samples
as EVOO + HZO, 1 as ROO, and 3 as POO. Although detecting chemi-
cally similar oils such as HZO is challenging (Zabaras, 2010), PLS-DA
models reliably differentiated HZO, POO, and EVOO, without mis-
classifying adulterated samples (1–40%) as pure EVOO. However,
models using SG, SNV, SNV+2nd derivative, MSC, and MSC+2nd de-
rivative preprocessing misclassified 7, 1, 2, 4, and 2 ROO samples as
EVOO, respectively. These results demonstrate high accuracy but reveal
the challenge in distinguishing pure EVOO from ROO, with most mis-
classifications involving pure EVOO being labeled as mixed with HZO,
POO, or ROO.

The PLS-DAmodels achieved an ACC.p ranging from 96.6%with raw
spectral data to 98.7% using SNV + SG+2nd derivative data for dis-
tinguishing authentic EVOO from adulterants and adulterated oils.
Notably, all PLS-DA models, irrespective of preprocessing techniques,
correctly identified all adulterants and adulterated oils (1–40%). How-
ever, a recurring issue was the frequent misclassification of genuine
EVOO as adulterated. For example, in the model utilizing raw spectral
data, 50% of EVOO samples (21 cases) were incorrectly classified as
adulterants (Fig. 4d). These results indicate that while PLS-DA models

Fig. 2. Averaged hyperspectral imaging raw spectra extra virgin olive oil (EVOO), edible oil adulterants, and adulterated olive oils.
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excel at detecting adulteration, they tend to overestimate adulteration in
authentic EVOO, potentially leading to false positives (Type 1 errors) in
the ’three-class’ classification setup.

PLS-DA models for binary classification (two classes) performed
exceptionally well in detecting adulterated olive oil. Seventy-five
percent of models across various preprocessing techniques achieved
100% accuracy (ACC.p), sensitivity (Sens.p), precision (Prec.p), F1 score
(F1.p), and a Matthews correlation coefficient (MCC.p) of 1.0 on
external test sets (Table 1 & Fig. 4f). These models demonstrated high
specificity and sensitivity, reliably identifying both pure and adulterated
samples, which is crucial for the olive oil industry due to the minimal
risk of misclassification. Their high precision further ensures the accu-
rate detection of adulterated oils while minimizing false positives. These

results affirm the effectiveness of PLS-DA in distinguishing authentic
EVOO from oils adulterated with hazelnut, pomace, or refined olive oil.
These results closely align with previous findings that achieved 100%
accuracy in differentiating EVOO from sunflower, sesame, corn, canola,
and safflower oils (Malavi et al., 2023).

This study marks a key advancement by successfully detecting EVOO
adulteration involving refined HZO and ROO using HSI for the first time.
It builds upon previous research that demonstrated the effectiveness of
hyperspectral imaging and discriminant models, such as PLS-DA and
LDA, in classifying various edible oils, including sesame and flavored
oils (Choi and Moon, 2020; Romaniello and Baiano, 2018; Xie et al.,
2014). However, some PLS-DA models showed misclassifications. For
instance, using SG+2nd derivative data, the model misclassified 7 EVOO

Fig. 3. PCA scores plots illustrate the grouping distribution of EVOO, edible oil adulterants, and adulterated olive oil using unprocessed spectra and different sets of
preprocessed spectral data.
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Table 1
Performance parameters of Partial Least Squares-Discriminant Analysis (PLS-DA) and K-Nearest Neighbors (KNN) classification models for cross-validation and external validation in the detection of adulteration in
extra virgin olive oil (EVOO).

Pre-processing Model Seven-Class Models Three-Class Models Two-Class/Binary Models F1.p MCC.p

LVs/k ACC.cv ACC.p LVs/k ACC.cv ACC.p LVs/k ACC.cv Sens.cv Prec.cv Spec.cv F1.cv ACC.p Sens.p Prec.p Spec.p

Unprocessed PLS-DA 33 95.2 93.5 22 99.6 96.6 5 99.6 99.8 99.8 95.0 99.7 100 100 100 100 100 1.00
SG smoothing PLS-DA 33 95.3 92.2 23 99.5 96.8 5 99.6 99.8 99.8 95.2 99.8 100 100 100 100 100 1.00
SG+1st deriv. PLS-DA 40 95.8 93.0 19 99.7 96.9 5 99.3 99.8 99.5 89.1 99.6 100 100 100 100 100 1.00
SG+2nd deriv. PLS-DA 40 95.8 93.2 19 99.7 97.1 5 99.4 99.8 99.5 89.7 99.7 98.9 100 98.8 83.3 99.4 0.91
SNV PLS-DA 31 96.1 94.2 22 99.8 96.9 4 99.6 99.9 99.7 93.8 99.8 100 100 100 100 100 1.00
SNV + SG Smoothing PLS-DA 41 95.6 94.8 22 99.6 97.9 4 99.6 99.9 99.7 93.8 99.8 100 100 100 100 100 1.00
SNV + SG+1st deriv. PLS-DA 43 95.9 93.0 21 99.6 97.2 4 99.3 99.9 99.4 87.0 99.6 99.0 100 99.0 85.7 99.5 0.92
SNV + SG+2nd deriv. PLS-DA 31 95.2 94.2 15 99.7 98.7 4 99.7 99.8 99.9 97.9 99.8 99.7 99.8 99.8 97.6 99.8 0.97
MSC PLS-DA 30 95.6 93.5 22 99.7 96.9 4 99.6 99.9 99.7 93.4 99.8 100 100 100 100 100 1.00
MSC + SG Smoothing PLS-DA 34 95.2 94.3 22 99.5 97.6 4 99.6 99.9 99.7 93.8 99.8 100 100 100 100 100 1.00
MSC + SG+1st deriv. PLS-DA 40 95.8 93.0 19 99.6 96.9 5 99.3 99.8 99.5 89.1 99.6 100 100 100 100 100 1.00
MSC + SG+2nd deriv. PLS-DA 30 94.6 93.8 17 99.6 98.1 4 99.6 99.9 99.6 92.3 99.8 100 100 100 100 100 1.00
Unprocessed KNN 3 70.4 59.4 3 98.9 95.9 3 98.9 99.5 99.4 88.6 99.4 95.9 97.3 98.2 76.2 97.8 0.70
SG smoothing KNN 3 70.1 59.5 3 98.9 95.9 3 98.9 99.5 99.4 87.5 99.4 95.9 97.4 98.2 76.2 97.8 0.70
SG+1st deriv. KNN 3 80.1 71.5 3 99.8 99.4 3 99.8 99.8 99.9 98.3 99.9 99.4 99.3 100 100 99.6 0.95
SG+2nd deriv. KNN 3 80.2 71.1 3 99.7 99.4 3 99.8 99.8 99.9 98.5 99.9 99.4 99.3 100 100 99.6 0.95
SNV KNN 3 87.9 66.5 3 99.6 99.4 3 99.6 99.7 99.9 97.2 99.8 99.4 99.5 99.8 97.6 99.7 0.95
SNV + SG Smoothing KNN 3 87.7 66.7 3 99.6 99.4 3 99.6 99.7 99.9 97.2 99.8 99.4 99.5 99.8 97.6 99.7 0.95
SNV + SG+1st deriv. KNN 3 85.0 71.2 3 99.7 99.7 3 99.7 99.7 100 100 99.9 99.7 99.7 100 100 99.8 0.98
SNV + SG+2nd deriv. KNN 3 90.7 76.1 3 99.8 100 3 99.8 99.8 100 99.8 99.9 100 100 100 100 100 1.00
MSC KNN 3 87.9 66.5 3 99.6 99.4 3 99.6 99.7 99.9 97.2 99.6 99.4 99.5 99.8 97.6 99.7 0.95
MSC + SG Smoothing KNN 3 87.7 66.7 3 99.6 99.4 3 99.6 99.7 99.9 97.2 99.8 99.4 99.5 99.8 97.6 99.7 0.95
MSC + SG+1st deriv. KNN 3 87.7 71.5 3 99.7 99.4 3 99.8 99.8 99.9 98.3 99.9 99.4 99.3 100 100 99.6 0.95
MSC + SG+2nd deriv. KNN 3 89.1 79.0 3 99.8 100 3 99.9 99.8 100 100 99.9 100 100 100 100 100 1.00

The metric values for the trained models represent averaged classification parameters of 10-fold cross-validation repeated ten times. ACC.cv = Accuracy, Sens.cv = Sensitivity, Prec.cv = Precision, Spec.cv = Specificity,
and F1.cv = F1 Score for cross-validation. ACC.p = Accuracy, Sens.p = Sensitivity, Prec.p = Precision, Spec.p = Specificity, F1.p = F1 Score, and MCC.p =Matthews correlation coefficient for the external validation set
(test set). SNV = Standard Normal Variate; MSC =Multiplicative Scatter Correction; SG = Savitzky-Golay smoothing; 1st deriv. = 1st derivative; 2nd deriv. = second derivative; LVs and k = an optimal number of latent
variables and k-nearest neighbors for the best model after cross-validation. For the Seven-Class system, the classification involves seven groups: extra-virgin olive oil (EVOO), hazelnut oil (HZO), olive pomace oil (POO),
refined olive oil (ROO), EVOO + HZO, EVOO + POO, and EVOO + ROO. The Three-Class system categorizes oils into three groups: authentic extra-virgin olive oil, edible oil adulterant (100%), or adulterated (1–40%
adulteration) olive oil. The Two-Class system is a binary classification distinguishing between pure EVOO and adulterated olive oil (1–100% adulteration).
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cases, reducing ACC.p to 98.9%, specificity to 83.3%, and MCC to 0.91.
PLS-DA with SNV + SG+1st derivative spectra misclassified 6 EVOO
samples, while SNV + SG+2nd derivative misclassified one EVOO
sample and one pure ROO sample. Despite these misclassifications, the
’two-class’ PLS-DA models demonstrated exceptional predictive per-
formance on external test samples, achieving a perfect MCC.p of 1.0.
Overall, this study accentuates the effectiveness of combining HSI with
PLS-DA for distinguishing EVOO from adulterated oils with similar
chemical profiles, such as HZO, POO, and ROO.

3.3.2. K-nearest neighbor (k-NN) classification
The k-NN algorithm, known for its simplicity and effectiveness in

classification, consistently used 3 k-nearest neighbors, determined
through repeated cross-validation and the ’oneSE’ rule (Fig. 5a). Despite
its efficiency, k-NNmodels demonstrated poor to moderate performance
in the more complex seven-class classification tasks, with accuracy rates
between 59.4% and 79.0% (Table 1). Notably, none of the models

misclassified pure EVOO as adulterated with HZO, POO, or ROO
(1–40%) or as pure HZO. However, when misclassifications occurred,
EVOO was incorrectly labeled as pure ROO or POO. The highest error
rates were found in models using raw spectra and SG smoothing alone,
where 8 EVOO samples were misclassified as POO and 2 as ROO.
Additionally, these models misclassified 3 cases of EVOO + HZO as pure
EVOO. On the other hand, no cases of EVOO + POO or EVOO + ROO
were misclassified as pure EVOO across any of the ’seven-class’ k-NN
models. While no POO samples were misclassified as EVOO, several
ROO and HZO samples were misidentified as pure EVOO across most
preprocessing techniques. For instance, models using raw and SG-
smoothed data each misclassified 7 out of 9 ROO samples and 5 out of
9 HZO samples as EVOO (Fig. 5b). k-NN models are particularly sensi-
tive to distortions in the spectral data (Zheng et al., 2014). Mis-
classifications in models using unprocessed or SG-smoothed data likely
result from insufficient noise reduction and an inability to enhance
critical spectral features, making it difficult to distinguish EVOO from

Fig. 4. (a). The optimum number of latent variables for the MSC + SG + 2nd derivative - PLS-DA model used for binary classification and (b) is the optimum number
of latent variables for the MSC + SG+2nd derivative-PLS-DA model for multi-class classification (7 classes). The simplest optimal model (represented by the black
dotted line) is selected based on the ’one standard error rule,’ meaning it falls within one standard error of the highest accuracy model (represented by the red dotted
line). (c) A confusion matrix table showing correct classification and misclassifications by PLS-DA + raw spectra data; (e) PLS-DA plot indicating misclassification of
some adulterants as EVOO with data pre-processed by SG smoothing in cross-validation; (f) A confusion matrix indicating perfect classification with one of the binary
PLS-DA classification models. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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adulterants. The complexity of the seven-class classification further ex-
acerbates these challenges, as more refined and processed data are
required to accurately differentiate between multiple oil types.

Conversely, k-NN models demonstrated higher accuracy in the
’three-class’ classification compared to the ’seven-class’, with most
models achieving over 96% accuracy (ACC.p). Models with SNV +

SG+2nd derivative and MSC+ SG+2nd derivative data achieved perfect
accuracy (ACC.p of 100%). However, models using either unprocessed
or only SG-smoothed data recorded the lowest accuracy (ACC.p =

95.9%), reflecting trends seen in the ’seven-class’ classification. These
models misclassified 10 EVOO samples as adulterants, 12 adulterants (5
HZO and 7 ROO) as EVOO, and 3 adulterated samples (EVOO + HZO,
90:10) as pure EVOO (Fig. 5c). All other k-NN models correctly identi-
fied the adulterated oils (1–40%). Most models also classified EVOO
samples accurately, except those preprocessed with SNV, SNV + SG,
MSC, and MSC + SG, which each misidentified one EVOO sample as
adulterated. While these preprocessing techniques are effective in
reducing noise and correcting baselines, they may not have fully
removed scatter effects in the spectral data (Feng and Sun, 2013),
contributing to the observed misclassifications.

The performance metrics for the ’two-class’ k-NN predictive models
ranged from ACC.p (95.9–100%), Sens.p (97.3–100%), Prec.p
(98.2–100%), Spec.p (76.2–100%), and F1.p (97.8–100%). Models
using MSC + SG+2nd derivative and SNV + SG+2nd derivative pre-
processing achieved perfect scores across all metrics (Fig. 5d), similar to
the ’three-class’ models. In contrast, k-NN models based on unprocessed
spectra or only Savitzky-Golay smoothing performed worse, with an
MCC.p of 0.70. This highlights the importance of combining techniques,
such as smoothing, removing multiplicative and additive effects, and
enhancing key spectral features, to improve k-NN performance on HSI
spectra (Lohumi et al., 2015). he lowest-performing models (k-NN with
raw spectra and k-NN with SG-smoothed spectra) misclassified 10 out of
42 EVOO cases as adulterated, resulting in low specificity (76.2%).

These models also misclassified 15 out of 573 adulterated samples as
pure EVOO, reducing sensitivity to 97.3%. Similar to the ’three-class’
classification, these misclassifications occurred when the models
incorrectly identified pure HZO and ROO as EVOO, likely due to the
spectral similarities at certain wavelengths, reflecting their close
chemical profiles (Datta et al., 2022). Despite these misclassifications,
the k-NN models exhibited higher precision and F1 scores, reflecting
their strong ability to accurately detect adulterated oils. In comparison
to related research, our use of HSI with k-NN models outperformed the
results from Georgouli et al. (2017), where k-NN models paired with
Raman and mid-infrared FTIR achieved classification accuracies be-
tween 69.8 and 82.3% for detecting hazelnut oil adulteration in EVOO.
Our findings are consistent with those of Hwang et al. (2024), who
effectively classified different vegetable oils using HSI and k-NN.
Although k-NN is considered a relatively simple model, our study shows
that when combined with HSI data preprocessed using SNV + SG+2nd
derivative or MSC + SG+2nd derivative, it is highly effective in
screening EVOO samples for authenticity.

3.3.3. Discrimination of oils by random forest classifier
Table 2 illustrates the performance of Random Forest (RF) models in

classification of oil. According to Breiman (2001), both ’mtry’ (variables
sampled at each split) and ’ntree’ (number of trees) are critical factors
influencing model performance (Fig. 6a & b). While higher ’ntree’
values generally improve model robustness, increasing beyond a certain
point leads to diminishing returns, raising computational costs without
significant performance gains. As shown in Fig. 6b, the error rate for the
EVOO class initially exceeds that of adulterated oils but stabilizes with
an increase in the number of trees. A forest size of 500 trees was suffi-
cient to stabilize out-of-bag (OOB) errors across all RF models, with
optimal ’ntree’ values ranging from 7 to 55.

RF models demonstrated ACC.cv and ACC.p ranging from 81.2% to
96.4% and 64.0%–86.2%, respectively, in the seven-class classification

Fig. 5. (a) Selection of optimal k-nearest neighbors by cross-validation and oneSE rule. The simplest optimal k-NN model (represented by the black dotted line) is
selected based on the ’one standard error rule,’ meaning it falls within one standard error of the highest accuracy model (represented by the red dotted line).
Confusion matrixes showing misclassification by (b) ‘seven-class’ k-NN model and Savitzky-Golay data, (c) ‘three-class’ k-NN model using unprocessed spectra and
(d) perfect classification by ‘two-class’ k-NN model coupled with MSC + SG+2nd derivative data. (For interpretation of the references to color in this figure legend,
the reader is referred to the Web version of this article.)
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Table 2
Random Forest (RF), Support Vector Machines (SVM), and Naïve Bayes (NB) classification model parameters for cross-validation and external validation in authenticating extra virgin olive oil.

Pre-processing Model Seven-Class Models Three-Class Models Two-Class/Binary Models

Optimal
Parameters

ACC.
cv

ACC.
p

Optimal
Parameters

ACC.
cv

ACC.
p

Optimal
Parameters

ACC.
cv

Sens.
cv

Prec.
cv

Spec.
cv

F1.
cv

ACC.
p

Sens.
p

Prec.
p

Spec.
p

F1.p MCC.
p

Unprocessed RF mt = 18, nt =
500

81.6 64.2 mt = 43,nt =
500

99.1 97.7 mt = 55,nt =
500

99.4 99.7 99.8 95.6 99.7 99.2 99.1 100 100 99.6 0.94

SG smoothing RF mt = 43, nt =
500

81.2 64.0 mt = 43,nt =
500

99.2 97.7 mt = 72,nt =
500

99.5 99.6 99.8 96.0 99.7 99.2 99.1 100 100 99.6 0.94

SG+1st deriv. RF mt = 14, nt =
500

92.8 82.1 mt = 14, nt =
500

99.9 99.8 mt= 7,nt= 500 99.8 100 99.9 95.7 99.9 99.9 99.7 100 100 99.8 0.98

SG+2nd deriv. RF mt = 14, nt =
500

93.0 80.2 mt = 14, nt =
500

99.9 99.8 mt= 7,nt= 500 99.8 100 99.8 96.7 99.9 100 100 100 100 100 1.00

SNV RF mt = 43, nt =
500

90.3 71.5 mt = 14, nt =
500

99.7 97.4 mt= 7,nt= 500 99.7 99.9 99.8 94.9 99.8 98.0 99.4 98.4 78.6 99.0 0.84

SNV + SG
Smoothing

RF mt = 14, nt =
500

90.6 70.7 mt = 14, nt =
500

99.7 97.4 mt = 7, nt =
500

99.7 99.9 99.8 95.0 99.8 98.0 99.5 98.4 78.6 99.0 0.84

SNV + SG+1st
deriv.

RF mt = 14, nt =
500

94.7 76.4 mt = 14,nt =
500

100 100 mt= 7,nt= 500 99.9 100 99.9 97.3 99.9 100 100 100 100 100 1.00

SNV + SG+2nd
deriv.

RF mt = 14, nt =
500

96.0 86.0 mt = 14,nt =
500

100 100 mt= 7,nt= 500 99.9 100 99.9 97.1 99.9 100 100 100 100 100 1.00

MSC RF mt = 43, nt =
500

90.8 71.2 mt = 43,nt =
500

99.8 98.9 mt= 7,nt= 500 99.7 99.9 99.8 95.0 99.9 98.5 99.0 98.0 71.4 98.4 0.88

MSC + SG
Smoothing

RF mt = 43, nt =
500

90.8 71.4 mt = 14,nt =
500

99.8 97.4 mt= 7,nt= 500 99.7 99.9 99.7 94.7 99.9 99.2 99.3 99.8 97.8 98.7 0.90

MSC + SG+1st
deriv.

RF mt = 14, nt =
500

92.8 82.1 mt = 14,nt =
500

99.9 99.8 mt= 7,nt= 500 99.8 100 99.8 95.7 99.9 99.7 99.7 100 100 99.8 0.98

MSC + SG+2nd
deriv.

RF mt = 14, nt =
500

96.4 86.2 mt = 43,nt =
100

99.9 99.8 mtry = 7, nt =
500

99.8 100 99.8 96.2 99.9 100 100 100 100 100 1.00

Unprocessed SVM C = 5, σ = 0.01 55.2 55.6 C = 10, σ =

0.01
99.7 99.2 C = 5, σ = 0.01 99.5 99.6 99.9 97.7 99.7 99.5 99.8 99.7 95.2 99.7 0.96

SG smoothing SVM C = 10, σ =

0.01
55.3 55.6 C = 10, σ =

0.01
99.7 99.2 C = 5, σ = 0.01 99.4 99.5 99.9 97.8 99.7 99.4 99.7 99.7 95.2 99.7 0.95

SG+1st deriv. SVM C = 5, σ = 0.01 60.7 56.6 C = 0.05, σ =

0.01
99.6 99.4 C = 0.5, σ =

0.01
99.9 100 99.8 97.0 99.9 98.1 100 100 100 100 1.00

SG+2nd deriv. SVM C = 5, σ = 0.01 60.8 56.7 C = 0.1, σ =

0.01
99.7 99.5 C = 0.5, σ =

0.01
99.9 100 99.8 97.1 99.9 98.0 100 100 100 100 1.00

SNV SVM C = 10, σ =

0.01
58.6 50.7 C = 0.5, σ =

0.01
99.9 97.6 C = 0.5, σ =

0.01
99.8 100 99.8 97.0 99.9 97.6 100 97.4 64.3 98.7 0.79

SNV + SG
Smoothing

SVM C = 0.1, σ =

0.01
57.7 63.1 C = 0.5, σ =

0.01
99.8 97.6 C = 0.5, σ =

0.01
99.8 100 99.8 97.0 99.9 97.6 100 97.4 64.3 98.7 0.79

SNV + SG+1st
deriv.

SVM C = 0.05, σ =

0.01
61.3 55.9 C = 0.05, σ =

0.01
99.7 98.2 C = 0.1, σ =

0.01
99.7 100 99.9 97.6 99.8 100 100 100 100 100 1.00

SNV + SG+2nd
deriv.

SVM C = 0.05, σ =

0.01
63.1 54.0 C = 0.5, σ =

0.01
99.9 99.0 C = 0.05, σ =

0.01
99.9 100 99.9 99.9 99.9 100 100 100 100 100 1.00

MSC SVM C = 10, σ =

0.01
58.6 50.7 C = 0.5, σ =

0.01
99.9 97.6 C = 0.5, σ =

0.01
99.8 99.9 99.8 97.0 99.9 97.6 100 97.4 64.3 98.7 0.79

MSC + SG
Smoothing

SVM C = 0.1, σ =

0.01
57.8 63.3 C = 0.5, σ =

0.01
99.9 97.6 C = 0.5, σ =

0.01
99.8 99.9 99.8 97.0 99.9 97.6 100 97.4 64.3 98.7 0.79

MSC + SG+1st
deriv.

SVM C = 5, σ = 0.01 60.7 55.9 C = 0.05, σ =

0.01
99.6 99.2 C = 0.5, σ =

0.01
99.9 100 99.8 97.0 99.9 100 100 100 100 100 1.00

MSC + SG+2nd
deriv.

SVM C = 1, σ = 0.01 61.3 59.5 C = 0.5, σ =

0.01
99.9 99.0 C = 0.5, σ =

0.01
99.9 100 99.9 98.2 99.9 99.0 100 99.0 85.7 99.5 0.95

Unprocessed NB lc = 0.1, ad =

0.0
51.0 48.6 lc = 0.1, ad =

0.0
97.4 94.3 lc = 0.1, ad =

0.0
96.6 96.5 99.9 97.2 98.2 94.1 93.7 100 100 96.8 0.71

(continued on next page)
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Table 2 (continued )

Pre-processing Model Seven-Class Models Three-Class Models Two-Class/Binary Models

Optimal
Parameters

ACC.
cv

ACC.
p

Optimal
Parameters

ACC.
cv

ACC.
p

Optimal
Parameters

ACC.
cv

Sens.
cv

Prec.
cv

Spec.
cv

F1.
cv

ACC.
p

Sens.
p

Prec.
p

Spec.
p

F1.p MCC.
p

SG smoothing NB lc = 0.1, ad =

0.0
51.1 48.8 lc = 0.1, ad =

0.0
97.4 94.3 lc = 0.1, ad =

0.0
96.5 97.7 99.9 97.7 98.2 94.1 93.1 100 100 96.8 0.71

SG+1st deriv. NB lc = 0.1, ad =

1.0
72.0 68.3 lc = 0.1, ad =

0.0
99.4 98.9 lc = 0.1, ad =

0.0
99.3 99.3 99.0 98.0 99.6 96.8 96.6 100 100 99.4 0.92

SG+2nd deriv. NB lc = 0.1, ad =

1.0
72.2 68.2 lc = 0.1, ad =

0.0
99.4 98.9 lc = 0.1, ad =

0.0
99.2 99.3 99.9 97.8 99.6 98.9 98.8 100 100 99.4 0.92

SNV NB lc = 0.1, ad =

0.0
65.6 60.5 lc = 0.1, ad =

0.0
98.7 94.1 lc = 0.1, ad =

0.0
98.5 98.4 100 99.9 99.2 95.0 95.3 99.3 90.5 97.2 0.70

SNV + SG
Smoothing

NB lc = 0.1, ad =

0.0
65.7 60.5 lc = 0.1, ad =

0.0
98.7 94.1 lc = 0.1, ad =

0.0
98.5 98.4 100 99.9 99.2 95.0 95.3 99.2 90.5 97.2 0.70

SNV + SG+1st
deriv.

NB lc = 0.1, ad =

0.0
80.2 70.5 lc = 0.1, ad =

0.0
99.8 99.5 lc = 0.1, ad =

0.0
99.3 99.4 99.9 98.0 99.6 99.2 99.3 99.3 97.6 99.6 0.94

SNV + SG+2nd
deriv.

NB lc = 0.1, ad =

0.0
84.3 82.4 lc = 0.1, ad =

0.0
99.7 97.6 lc = 0.1, ad =

0.0
99.9 100 99.9 98.0 99.9 97.7 100 97.6 66.7 98.8 0.81

MSC NB lc = 0.1, ad =

0.0
65.6 60.8 lc = 0.1, ad =

0.0
98.7 94.1 lc = 0.1, ad =

0.0
98.4 98.4 100 99.9 99.2 95.0 95.2 99.3 90.5 97.2 0.70

MSC + SG
Smoothing

NB lc = 0.1, ad =

0.0
65.7 60.7 lc = 0.1, ad =

0.0
98.7 94.4 lc = 0.1, ad =

0.0
98.4 98.4 100 100 99.2 95.0 95.2 99.2 90.5 97.2 0.70

MSC + SG+1st
deriv.

NB lc = 0.1, ad =

1.0
72.0 68.2 lc = 0.1, ad =

0.0
99.3 98.9 lc = 0.1, ad =

0.0
99.3 99.3 99.9 98.0 99.6 98.9 98.8 100 100 99.4 0.92

MSC + SG+2nd
deriv.

NB lc = 0.1, ad =

0.0
84.0 82.1 lc = 0.1, ad =

0.0
99.5 99.2 lc = 0.1, ad =

0.0
99.5 99.6 99.9 98.5 99.8 99.3 99.8 99.5 92.9 99.7 0.95

The metric values for the trained models represent averaged classification parameters of 10-fold cross-validation repeated ten times. ACC.cv = Accuracy, Sens.cv = Sensitivity, Prec.cv = Precision, Spec.cv = Specificity,
and F1.cv = F1 Score for cross-validation. ACC.p = Accuracy, Sens.p = Sensitivity, Prec.p = Precision, Spec.p = Specificity, and F1.p = F1 Score for the external validation set (test set). SNV = Standard Normal Variate;
MSC=Multiplicative Scatter Correction; SG= Savitzky-Golay smoothing; 1st deriv.= 1st derivative; 2nd deriv.= second derivative. mt=mtry: optimal the number of features randomly sampled at each split in a decision
tree within the Random Forest using cross-validation and out-of-bag error; nt= ntree, denotes the total number of decision trees created in the Random Forest ensemble based onmodel tuning and cross-validation. C= cost
parameter, σ = Gaussian Radial Basis kernel function for SVM model. Lc = lap lace, ad = adjust parameters for the Naïve Bayes model. For the Seven-Class system, the classification involves seven groups: extra-virgin
olive oil (EVOO), hazelnut oil (HZO), olive pomace oil (POO), refined olive oil (ROO), EVOO + HZO, EVOO + POO, and EVOO + ROO. The Three-Class system categorizes oils into three groups: authentic extra-virgin
olive oil, edible oil adulterant (100%), or adulterated olive oil (1–40%). The Two-Class system is a binary classification distinguishing between pure EVOO and adulterated olive oil (1–100% adulteration).
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(Table 2). The best-performing model combined MSC + SG+2nd de-
rivative preprocessing (Fig. 6d), while the RF model using only SG
preprocessing had the lowest accuracy. Models leveraging SG and de-
rivatives correctly classified all EVOO samples, but those using SNV,
SNV + SG, and MSC spectral data, misclassified 5 EVOO cases as POO.
Models using raw spectra, MSC, and SG misclassified 7, 5, and 6 EVOO
samples as POO, respectively. Notably, none of the adulterated oils
(1–40%) were misclassified as EVOO, except for a single EVOO + ROO

case in the RF-raw model. RF models also effectively distinguished
adulterants, with all HZO samples correctly classified, except for RF-raw
and RF-SG, which each misclassified one HZO as EVOO. Similarly, for
POO, RF-raw and RF-SG models misclassified 5 and 4 cases as EVOO,
respectively. SG, SNV, and SNV + SG preprocessing each led to one
EVOO sample being misclassified as ROO, while RF-MSC and RF-MSC +

SG misclassified 2 cases each. These misclassifications suggest that SG
preprocessing alone may not adequately enhance the spectral features

Fig. 6. (a) Model selection based on 10-fold cross-validation and oneSE rule. The simplest optimal model (represented by the blue dotted line) is selected based on
the ’one standard error rule,’ meaning it falls within one standard error of the highest accuracy model (represented by the red dotted line). (b) Number of trees and
out-of-bag error (OOB) for RF model classifier; the red line indicates how often the model incorrectly predicts the ‘EVOO’ class while the black line reflects the
frequency of incorrect predictions for the ’Adulterated’ class. Confusion matrices showing correct and incorrect classifications: (c) RF-Savitzky-Golay and (d) RF-
MSC + SG+2nd derivative preprocessing model for seven-class classification; (e) RF-unprocessed spectra model for three-class discrimination; and (f) RF-SNV model
for binary classification. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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necessary for multi-class classification (Fig. 6c). Noise and distortions in
raw data likely hinder feature extraction, further affecting model
accuracy.

RF models across various preprocessing methods showed robustness
in three-class discrimination tasks, with all models achieving ACC.cv
above 99% and ACC.p ranging from 97.7% to 100%. Similar findings
were reported by Hwang et al. (2024) in vegetable oil classification
using HSI technology. RF models combining SNV + SG+1st and SNV +

SG+2nd derivatives achieved a perfect ACC.p of 100%, effectively dis-
tinguishing EVOO, adulterants, and adulterated oils. All three-class RF
models using Savitzky-Golay and derivatives correctly classified all 42
EVOO samples. Only the RF-unprocessed model misclassified 2 HZO and
3 ROO samples as EVOO (Fig. 6e). The highest misclassification rate of
13 out of 42 EVOO samples as adulterants occurred in models using SG
alone, SNV, SNV + SG, and MSC + SG preprocessing. However, these
models showed greater sensitivity in detecting adulterated oils (1–40%),
with 3 cases of EVOO + HZO (10%) misidentified as pure EVOO in each
case. Despite some errors, RF models consistently performed well in
classifying pure and adulterated olive oils across different preprocessing
techniques.

In binary classification, RF models achieved high accuracy, ranging
from 99.4% to 99.9% in cross-validation and 98.0%–100% in external
validation. These models balanced error types effectively, as shown by
MCC values (0.84–1.00) and F1 scores exceeding 98%. Spectral treat-
ments including SG+2nd derivative, SNV + SG+1st derivative, SNV +

SG+2nd derivative, and MSC + SG+2nd derivative led to perfect per-
formance (100%) across all metrics on the test set (Table 2), likely due to
enhanced feature extraction and noise reduction. The ACC.p range in
our study corroborates with de Santana et al. (2018), who used RF with
FTIR-HATR spectroscopy for oil discrimination, and outperforms RF
models with laser-based spectroscopy used by Gazeli et al. (2020). Eight
out of twelve RF models classified all pure EVOO samples correctly,
achieving 100% specificity. However, RF-SNV (Fig. 6f) and RF-SNV +

SG misclassified nine EVOO cases, while RF-MSC and MSC + SG mis-
classified five and six, respectively. Though some models misclassified 2
to 5 adulterated oil cases as pure EVOO, they maintained high sensitivity
(>99%). For example, RF-unprocessed and RF-SG eachmisclassified five
adulterated oil cases, while RF-SG and RF-MSC + SG+1st derivative
misclassified two cases. Similarly, RF-SNV, RF-SNV + SG, RF-MSC, and
RF-MSC + SG each misclassified two samples.

3.3.4. Authentication of EVOO using Support Vector Machine (SVM)
SVM models showed suboptimal performance in distinguishing oils

across seven classes, with ACC.p values ranging from 50.7% to 63.3%.
The models using only SNV and MSC exhibited the lowest accuracy.
While most SVM models correctly classified pure EVOO, those utilizing
raw, SNV + SG, and MSC + SG spectra misclassified 3 EVOO samples as
either EVOO + HZO or POO. Notably, none of the models misclassified
EVOO + POO or EVOO + ROO as pure EVOO, but most models, except
those using SNV + SG+2nd derivative and MSC + SG+2nd derivative,
incorrectly labeled 2 or 3 EVOO + HZO (90:10%) samples as pure
EVOO. Additionally, none of the models successfully classified all ROO
samples, with 10 out of 12 models misclassifying all 9 ROO samples as
EVOO. SVM models also struggled with POO, as the SVM-SNV and MSC
models misclassified 5 POO cases, while SVM-SNV + SG and MSC + SG
misclassified 4 cases. Pure HZO presented the greatest challenge, with
10 out of 12 models failing to classify any samples correctly. The SVM +

SG model, in particular, misclassified 11 out of 12 HZO samples as pure
EVOO. These misclassifications may be attributed to the radial decision
boundaries formed by the SVM’s RBF kernel, which can struggle with
multiclass classification when significant spectral overlap occurs. The
similar chemical compositions of EVOO and adulterants, particularly in
triacylglycerols, fatty acids, and sterols (Mignani et al., 2011; Zabaras,
2010), make it difficult for the model to establish clear separability. This
challenge is more pronounced in complex multiclass tasks with over-
lapping features, as seen in this study.

SVM models achieved ACC.p values ranging from 97.6% to 99.5% in
classifying pure EVOO, adulterants, or adulterated samples. The MSC +

SG+2nd derivative model demonstrated perfect classification of all pure
and adulterated olive oil samples (1–40%). Most models accurately
identified adulterated oils, but misclassifications of EVOO as adulterants
occurred in all models except for SVM-SG+2nd derivative and MSC +

SG+2nd derivative. Models using SNV, MSC, SNV + SG, and MSC + SG
preprocessing misclassified 15 EVOO samples, while the SVM-SNV +

SG+1st derivative model misclassified 7 cases. The SG+1st and SNV +

SG+2nd derivative models each misclassified 2 samples. Additionally,
SVM models with SG+1st, SG+2nd derivative, and MSC + SG+1st de-
rivative preprocessing misclassified 3 EVOO + HZO (10%) samples as
pure EVOO. Models using unprocessed and Savitzky-Golay smoothed
spectra misclassified two ROO and one HZO sample as EVOO.

SVM models for binary classification achieved ACC.cv and ACC.p
ranging from 99.4% to 99.9% and 97.6%–100%, respectively, with MCC
values of 0.8–1.0, indicating high accuracy in distinguishing between
authentic and adulterated olive oil. Models incorporating SG+1st de-
rivative, SG+2nd derivative, SNV + SG+1st derivative, SNV + SG+2nd
derivative, and MSC + SG+1st derivative preprocessing achieved per-
fect classification, demonstrating their strong potential for EVOO
authentication. These results align with studies by Deng et al. (2013)
and Xie et al. (2014), which reported high accuracy in discriminating
sesame oils using hyperspectral imaging and SVM. Our SVM models
outperformed those in other studies focused on olive oil discrimination
and quality assessment (Zarezadeh et al., 2021a; Zarezadeh et al.,
2021b). Notably, the radial basis function (RBF) kernel employed in our
study, particularly for ’two-class’ and ’three-class’ classifications,
delivered superior accuracy compared to the linear kernel, as reported
by Gazeli et al. (2020). This further confirms the effectiveness of the RBF
kernel in classification tasks, consistent with findings by Han et al.
(2016) in oil adulteration studies. Despite the strong overall perfor-
mance, several models struggled with identifying pure EVOO, resulting
in lower specificity (64.3%). SVM-SNV, SVM-SNV + SG, SVM-MSC,
SVM-MSC + SG, and SVM-MSC + SG+2nd derivative models mis-
classified between 6 and 15 out of 42 EVOO samples as adulterated.
These misclassifications likely stem from some preprocessing techniques
and models failing to capture subtle compositional differences, such as
campesterol, carotenoids, and chlorophyll, between EVOO and adul-
terated oils (Mignani et al., 2011). While the overall accuracy remains
high, these lower specificity values highlight the importance of selecting
appropriate models and preprocessing techniques to reduce false posi-
tives, especially in commercial settings where the cost of misclassifica-
tion can be significant.

3.3.5. Discrimination of edible oils by Naïve Bayes (NB) classifier
Table 2 shows the performance of the Naïve Bayes (NB) classifier for

olive oil authentication. The ’seven-class’ models ranged from poor to
moderate, with ACC.cv between 51.0% and 84.3% and ACC.p between
48.6% and 82.4%. Models using raw spectra and SG-only performed
worst, while NB-SNV + SG+2nd derivative and NB-MSC + SG+2nd
derivative achieved the best results. NB-SG+1st derivative and NB-MSC
+ SG+1st derivative models perfectly classified EVOO. Most models
misclassified pure EVOO as POO, except for NB-unprocessed and NB-SG,
which misclassified them as HZO or POO. For example, models using
SNV, SNV + SG, MSC, and MSC + SG misclassified 15 out of 42 EVOO
samples as POO, while NB-unprocessed and NB-SG misclassified 13
cases. These models also misclassified 3 EVOO+ HZO (90:10%) cases as
EVOO and wrongly identified 7 to 12 HZO cases as EVOO. The poorest
performance occurred with NB-unprocessed and NB-SG models, which
misclassified all HZO cases as EVOO. Additionally, 4 to 6 POO cases
were incorrectly classified as EVOO, but none misclassified EVOO +

POO or EVOO + ROO (1–40%) as pure EVOO.
In the ’three-class’ discrimination task, NB models exhibited higher

accuracies than in the ’seven-class’ task, with ACC.cv ranging from
97.4% to 99.5% and ACC.p from 94.1% to 99.5%. Only three models,
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Table 3
Performance metrics of Artificial Neural Networks classifiers.

Pre-processing Model Seven-Class Models Three-Class Models Two-Class/Binary Models

Optimal
Parameters

ACC.
cv

ACC.
p

Optimal
Parameters

ACC.
cv

ACC.
p

Optimal
Parameters

ACC.
cv

Sens.
cv

Prec.
cv

Spec.
cv

F1.
cv

ACC.
p

Sens.
p

Prec.
p

Spec.
p

F1.p MCC.
p

Unprocessed ANN dec = 0.001,
size = 2

73.6 78.9 dec = 0.001,
size = 4

100 98.9 dec = 0.001,
size = 2

99.7 100 99.7 94.5 99.8 99.7 99.7 100 100 99.8 0.98

SG smoothing ANN dec = 0.001,
size = 3

83.6 79.8 dec = 0.001,
size = 4

100 100 dec = 0.001,
size = 2

99.6 100 99.6 92.5 99.8 99.7 99.7 100 100 99.8 0.98

SG+1st deriv. ANN dec = 0.001,
size = 3

87.7 76.6 dec = 0.001,
size = 3

99.9 100 dec = 0.001,
size = 1

99.8 99.9 99.9 98.0 99.9 99.8 99.8 100 100 99.9 0.99

SG+2nd deriv. ANN dec = 0.001,
size = 3

87.9 78.3 dec = 0.001,
size = 2

99.6 100 dec = 0.001,
size = 1

99.8 99.9 99.9 99.0 99.9 99.8 99.8 100 100 99.9 0.99

SNV ANN dec = 0.01,size
= 3

92.0 79.5 dec = 0.01,size
= 3

100 100 dec = 0.01,size
= 1

99.9 99.9 99.9 98.5 99.9 99.8 99.8 100 100 99.9 0.99

SNV + SG
Smoothing

ANN dec = 0.001,
size = 2

73.0 68.1 dec = 0.01,size
= 3

100 100 dec = 0.01,size
= 1

99.9 99.9 99.9 98.5 99.9 99.8 99.8 100 100 99.9 0.99

SNV + SG+1st
deriv.

ANN dec = 0.001,
size = 3

93.7 83.4 dec = 0.001,
size = 2

99.8 100 dec = 0.001,
size = 1

99.9 100 99.9 98.5 99.9 100 100 100 100 100 1.00

SNV + SG+2nd
deriv.

ANN dec = 0.001,
size = 3

93.2 77.9 dec = 0.001,
size = 2

99.9 100 dec = 0.001,
size = 1

99.9 100 99.9 97.0 99.9 100 100 100 100 100 1.00

MSC ANN dec = 0.01,size
= 2

71.6 57.1 dec = 0.001,
size = 1

99.2 98.7 dec = 0.001,
size = 2

99.7 99.9 99.7 93.5 99.8 99.8 99.8 100 100 99.9 0.99

MSC + SG
Smoothing

ANN dec = 0.001,
size = 3

84.8 81.1 dec = 0.001,
size = 1

99.2 99.3 dec = 0.001,
size = 2

99.6 99.9 99.6 91.5 99.8 99.7 99.7 100 100 99.8 0.98

MSC + SG+1st
deriv.

ANN dec = 0.001,
size = 3

87.7 76.6 dec = 0.001,
size = 3

99.9 100 dec = 0.001,
size = 1

99.8 99.9 99.9 98.0 99.9 99.8 99.8 100 100 99.9 0.99

MSC + SG+2nd
deriv.

ANN dec = 0.001,
size = 3

83.9 77.4 dec = 0.001,
size = 3

99.7 100 dec = 0.001,
size = 1

99.8 99.9 99.9 97.2 99.9 100 100 100 100 100 1.00

The metric values for the trained models represent averaged classification parameters of 10-fold cross-validation repeated ten times. ACC.cv = Accuracy, Sens.cv = Sensitivity, Prec.cv = Precision, Spec.cv = Specificity,
and F1.cv = F1 Score for cross-validation. ACC.p = Accuracy, Sens.p = Sensitivity, Prec.p = Precision, Spec.p = Specificity, and F1.p = F1 Score for the external validation set (test set). SNV = Standard Normal Variate;
MSC=Multiplicative Scatter Correction; SG= Savitzky-Golay smoothing; 1st deriv.= 1st derivative; 2nd deriv.= second derivative. Size is the number of optimal number of neurons in the hidden layers selected based on
cross-validation and oneSE rule. Dec = decay, regularization parameter. For the Seven-Class system, the classification involves seven groups: extra-virgin olive oil (EVOO), hazelnut oil (HZO), olive pomace oil (POO),
refined olive oil (ROO), EVOO + HZO, EVOO + POO, and EVOO + ROO. The Three-Class system categorizes oils into three groups: authentic extra-virgin olive oil, edible oil adulterant (100%), or adulterated (1–40%
adulteration) olive oil. The Two-Class system is a binary classification distinguishing between pure EVOO and adulterated olive oil (1–100% adulteration).
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those paired with SG+1st derivative, SG+2nd derivative, or MSC +

SG+2nd derivative, correctly classified all authentic EVOO samples.
Other models misclassified some EVOO as adulterated. The highest
misclassification rates occurred with NB-raw spectra and NB-SG, each
misclassifying half (21 samples) of EVOO as adulterants. Models using
SNV, SNV+ SG, MSC, and MSC+ SG preprocessing also misclassified 15
cases. Importantly, none of the models misclassified adulterated oils
(1–40%) as EVOO. However, except for NB-SNV + SG+1st derivative
and MSC+ SG+2nd derivative, all models misclassified some adulterant
cases as EVOO. For instance, NB models pretreated with SNV, SNV+ SG,
MSC, and MSC + SG misclassified over half (18 cases: 9 ROO, 3 POO, 6
HZO) of adulterants as EVOO, while NB-raw and NB-SG models mis-
classified 11 cases (5 POO, 4 HZO, 2 ROO).

Despite its simplicity and assumption of feature independence, the
NB classifier demonstrated strong performance in the ’two-class’ clas-
sification scheme. ACC.cv, ACC.p, and MCC values ranged from 96.5 to
99.9%, 94.1–99.6%, and 0.70–0.95, respectively. These accuracy rates
align with those reported by Zarezadeh et al. (2021b) (ACC.p = 95.5%)
and slightly exceed those from an earlier study (ACC.p = 90.2%) by
Zarezadeh et al. (2021a). NB models using raw spectra, SG smoothing,
SG+1st derivative, SG+2nd derivative, and MSC + SG+1st derivative
achieved perfect specificity (Spec.p= 100%), correctly classifying all 42
pure EVOO samples. In contrast, models with other preprocessing
methods showed misclassifications. For instance, NB-SNV + SG+2nd
derivative misclassified 14 EVOO samples, while models using SNV,
SNV + SG, MSC, and MSC + SG+1st derivative each misclassified 4
EVOO samples as adulterated. Although NB-SNV + SG+2nd derivative
had the lowest specificity, it accurately identified all adulterated oils
(1–40%), achieving 100% sensitivity and precision. The highest
misclassification errors (5.9%) occurred with NB-raw spectra and
NB-SG, which falsely classified 36 out of 573 adulterated samples (12
HZO, 12 POO, 9 ROO, and 3 EVOO + HZO) as authentic. Other models,
including NB-SNV, NB-SNV + SG, NB-MSC, and NB-MSC + SG+1st
derivative, each misclassified 27 adulterated samples as EVOO. While
these models performed well, there remains potential for type I and type
II errors, where pure EVOO may be misclassified as adulterated, and
adulterated oils as authentic.

3.3.6. Use of Artificial Neural Networks (ANN) in authentication of olive
oil

Table 3 summarizes the performance metrics for the ANN models in
oil classification. The optimal number of neurons ranged from 1 to 4,
with most models employing an L2 regularization decay of 0.001 or 0.01
to mitigate overfitting. In the ’seven-class’ classification, ANN models
achieved moderate accuracy (ACC.p up to 83.4%). Most models accu-
rately classified EVOO, but misclassifications occurred, with authentic
EVOO often labeled as POO or ROO. For example, the ANN-SNV model
misclassified 5 EVOO samples as POO and 2 as ROO, while ANN-SNV +

SG+2nd derivative misclassified 2 EVOO cases. While no models mis-
classified EVOO + POO or EVOO + ROO as pure EVOO, some wrongly
identified EVOO + HZO as EVOO. Specifically, ANN-SNV + SG+2nd
derivative misclassified 9 EVOO + HZO cases: 2 at 10%, 1 at 20%, and 6
at 40% adulteration. Additionally, some models struggled with correctly
identifying adulterants, frequently misclassifying HZO as EVOO. For
instance, the ANN-MSC and ANN-unprocessed models misclassified all
12 HZO samples, while ANN-SG and ANN-SG+2nd derivative mis-
classified 11 HZO samples. Though models using SNV, SNV + SG, and
MSC + SG preprocessing showed perfect classification, none accurately
identified all ROO samples. Despite moderate overall accuracy, the
tendency of ANN models to misclassify adulterants as EVOO emphasizes
the complexity of the task and the challenges inherent in detecting
subtle differences among oils.

Compared to other models in the study, ANN models performed best
in the ’three-class’ discrimination task. Nine out of twelve ANN models,
utilizing various spectral preprocessing techniques, achieved 100% ac-
curacy (ACC.p), underscoring the effectiveness of combining HSI with

ANN for distinguishing EVOO from chemically similar adulterants and
adulterated oils. Even models with some misclassifications maintained
high accuracy, ranging between 98.9% and 99.3%. For instance, the
ANN model with MSC preprocessing misclassified 7 EVOO samples as
adulterants and 1 ROO as adulterated oil. Similarly, the ANN model
using raw spectra misclassified 7 EVOO samples, while the model with
MSC + SG preprocessing misclassified 1 ROO as EVOO, 2 adulterated
oils as adulterants, and 1 EVOO sample as an adulterant. These results
highlight ANN models’ strong potential in complex classification tasks
involving EVOO authenticity.

The ANN binary classifiers exhibited exceptional prediction accu-
racy, ranging from 99.7% to 100% on the external test set. Models using
spectral data preprocessed with SNV or MSC, combined with Savitzky-
Golay and derivatives, consistently achieved perfect classification re-
sults, with ACC.p, Sens.p, Spec.p, Prec.p, F1 score, and MCC all reaching
1.0. All 42 EVOO samples were correctly classified across all pre-
processing techniques, achieving 100% specificity and precision. These
findings are consistent with Aroca-Santos et al. (2016), who appied
visible spectroscopy and neural networks for EVOO characterization,
but they surpass the results of Zarezadeh et al. (2021a), who reported an
ACC.p of 86.3% using ANN with ultrasound technology for olive oil
fraud detection. Despite minimal misclassification errors (0.2%–0.3%),
with only 1 or 2 out of 573 adulterated samples incorrectly identified as
EVOO, the models maintained sensitivity rates between 99.7% and
100%. This demonstrates their strong ability to detect adulterated oils.
Overall, the ANN models displayed robust predictive capabilities, with
MCC values ranging from 0.98 to 1.0, confirming their effectiveness in
distinguishing authentic EVOO from adulterated samples while mini-
mizing both Type I and Type II errors.

3.4. Binary classification based on selected important features

Hyperspectral imaging (HSI) generates high-dimensional data,
necessitating significant storage and computational resources. To
enhance the practicality of HSI, selecting relevant variables simplifies
models, reduces storage and processing demands, shortens training
times, and minimizes the risk of overfitting, thereby addressing the
challenges associated with high dimensionality (Chen et al., 2020). In
the olive oil industry, food regulators focus on determining whether
extra virgin olive oil (EVOO) is genuine or adulterated. Binary classifi-
cation offers an efficient and reliable approach to automate quality
control, optimizing computational resources while ensuring accurate
results.

This study leveraged key spectral bands, identified by their ’Feature
Importance Rankings’, to build binary classification models (Fig. 7).
These key regions span 957–975 nm, 1000–1025 nm, 1117–1157 nm,
1175–1200 nm, 1364–1421 nm, 1510–1528 nm, 1635–1642 nm, and
1650–1696 nm, corresponding to molecular vibrations. The 957–975
nm range reflects O-H stretching from hydroxyl groups or phenolics,
while the 1000–1025 nm, 1117–1157 nm, and 1364–1421 nm ranges
relate to C-H stretching vibrations in –CH2– and –CH3– groups of fatty
acids (Xiaobo et al., 2010). The 1510–1528 nm range is attributed to
O-H bending (Shang et al., 2024), and the 1635–1696 nm range corre-
sponds to O-H stretching in phenolic compounds (Nicolaï et al., 2007).

Tables 4 and 5 outline the performance of PLS-DA, k-NN, Random
Forest (RF), SVM, and ANN models using selected wavelengths for
discrimination of pure and adulterated olive oil. PLS-DA models
demonstrated superior predictive performance, with accuracy (ACC.p)
and F1 scores ranging from 99.7% to 100% and Matthews correlation
coefficient (MCC) values between 0.95 and 1.00. Spectral preprocessing
techniques such as SG smoothing, SNV + SG + derivatives, and MSC +

SG+2nd derivative optimized classification, resulting in perfect speci-
ficity and precision, with over half the models correctly identifying all
42 EVOO samples. Misclassification rates were low (0.6%), primarily in
SNV and MSC-pretreated samples, with models maintaining 99.7%
sensitivity in identifying adulterated oils. Similarly, k-NN models
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showed strong classification performance, with ACC.p values exceeding
98%, and k-NN + SNV + SG+2nd derivative achieving 100% accuracy.
MCC values ranged from 0.90 to 1.00, and F1 scores between 99.0% and
100%. While most models accurately classified EVOO, k-NN + SG mis-
classified 10 adulterated samples as EVOO, leading to a 1.8% error rate.

Despite these minor errors, the k-NN models generally maintained high
precision and specificity. RF models performed comparably well, with
RF-SNV + SG+1st derivative achieving perfect accuracy (ACC.p =

100%, F1 = 100%, MCC = 1.0). However, RF-SNV + SG showed a 2.1%
error rate, misclassifying 5 EVOO and 8 adulterated samples.

Fig. 7. Performance heat map displaying key features selected by models built from spectral data preprocessed with SNV + Savitzky-Golay + second derivative.

Table 4
Partial Least Squares-Discriminant Analysis (PLS-DA) and K-Nearest Neighbors (KNN) classification models based on variable selection for cross-validation and
external validation in the classification of oils as either pure EVOO or adulterated olive oil.

Pre-processing Model Cross-Validation External Validation

LVs/k ACC.cv Sens.cv Prec.cv Spec.cv F1.cv ACC.p Sens.p Prec.p Spec.p F1.p MCC.p

Unprocessed PLS-DA 5 99.5 100 99.5 90.0 99.7 99.7 99.8 99.8 97.6 99.8 0.97
SG smoothing PLS-DA 5 99.4 100 99.4 88.4 99.7 100 100 100 100 100 1.00
SG+1st deriv. PLS-DA 6 98.2 99.8 98.4 66.6 99.1 99.8 100 99.8 97.6 99.9 0.99
SG+2nd deriv. PLS-DA 4 99.2 100 99.1 82.4 99.6 99.8 99.8 100 100 99.9 0.99
SNV PLS-DA 3 98.6 99.9 98.7 73.9 99.3 99.4 99.7 99.7 95.2 99.7 0.95
SNV + SG Smoothing PLS-DA 3 98.6 99.9 98.7 73.9 99.3 99.8 99.8 100 100 99.9 0.99
SNV + SG+1st deriv. PLS-DA 4 99.4 99.9 99.5 90.1 99.7 100 100 100 100 100 1.00
SNV + SG+2nd deriv. PLS-DA 5 99.6 100 99.6 92.5 99.8 100 100 100 100 100 1.00
MSC PLS-DA 3 98.6 99.9 98.7 74.4 99.3 99.4 99.7 99.7 95.2 99.7 0.95
MSC + SG Smoothing PLS-DA 3 98.6 99.8 98.7 73.7 99.3 99.8 99.5 100 100 99.9 0.99
MSC + SG+1st deriv. PLS-DA 6 98.2 99.8 98.4 66.6 99.1 99.8 100 97.6 97.6 99.9 0.99
MSC + SG+2nd deriv. PLS-DA 4 99.3 99.9 99.3 86.0 99.6 100 100 100 100 100 1.00
Unprocessed KNN 3 99.9 99.9 99.9 98.3 99.9 98.7 98.8 99.8 97.6 99.3 0.91
SG smoothing KNN 3 99.9 99.9 99.9 98.3 99.9 98.2 98.3 99.8 97.6 99.0 0.88
SG+1st deriv. KNN 3 99.3 99.6 99.7 93.8 99.6 98.7 99.0 99.6 95.3 99.3 0.90
SG+2nd deriv. KNN 3 99.2 99.5 99.7 93.4 99.6 98.7 98.9 99.6 95.2 99.3 0.90
SNV KNN 3 99.8 99.9 99.8 95.8 99.9 99.2 99.1 100 100 99.6 0.94
SNV + SG Smoothing KNN 3 99.8 99.9 99.8 95.8 99.9 99.2 99.2 100 100 99.6 0.94
SNV + SG+1st deriv. KNN 3 99.6 99.9 99.7 94.6 99.8 99.8 100 99.8 97.6 99.9 0.99
SNV + SG+2nd deriv. KNN 3 99.8 100 99.8 95.7 100 100 100 100 100 100 1.00
MSC KNN 3 99.8 99.9 99.8 95.8 99.9 99.2 99.1 100 100 99.6 0.94
MSC + SG Smoothing KNN 3 99.8 99.9 99.8 95.8 99.9 99.2 99.1 100 100 99.6 0.94
MSC + SG+1st deriv. KNN 3 99.3 99.6 99.7 93.8 99.6 98.7 99.0 99.6 95.2 99.3 0.90
MSC + SG+2nd deriv. KNN 3 99.5 99.8 99.7 94.0 99.7 98.9 99.4 99.3 90.4 99.4 0.91

The values represent averaged classification parameters of 10-fold cross-validation repeated ten times. ACC.cv = Accuracy, Sens.cv = Sensitivity, Prec.cv = Precision,
Spec.cv= Specificity, and F1.cv= F1 Score for cross-validation. ACC.p= Accuracy, Sens.p= Sensitivity, Prec.p= Precision, Spec.p= Specificity, F1.p= F1 Score, and
MCC.p = Matthews correlation coefficient for the external validation set (test set). SNV = Standard Normal Variate; MSC = Multiplicative Scatter Correction; SG =

Savitzky-Golay smoothing; 1st deriv. = 1st derivative; 2nd deriv. = second derivative; LVs = optimal latent variables and k = optimal k-nearest neighbors for the best
model after cross-validation.
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Table 5
Artificial Neural Network (ANN), Random Forest (RF), and Support Vector Machines (SVM) binary classification model based on variable selection for cross-
validation and external validation in the classification of oils as either pure EVOO or adulterated olive oil.

Pre-processing Cross-Validation External Validation

Model Optimal Parameters ACC.cv Sens.cv Prec.cv Spec.cv F1.cv ACC.p Sens.p Prec.p Spec.p F1.p MCC.p

Unprocessed RF mtry = 3, ntree = 500 99.5 99.7 99.8 95.3 99.8 99.3 99.3 100 100 99.6 0.95
SG smoothing RF mtry = 3, ntree = 500 99.6 99.8 99.8 95.3 99.8 99.3 98.6 100 100 99.3 0.95
SG+1st deriv. RF mtry = 5,ntree = 500 99.6 99.9 99.7 93.7 99.8 99.5 99.5 100 100 99.7 0.96
SG+2nd deriv. RF mtry = 3, ntree = 500 99.6 99.9 99.7 94.3 99.8 99.5 99.5 100 100 99.7 0.96
SNV RF mtry = 3, ntree = 500 99.5 99.8 99.6 92.8 99.7 99.3 99.5 99.8 97.6 99.7 0.95
SNV + SG Smoothing RF mtry = 14, ntree = 500 99.3 99.7 99.6 91.6 99.6 97.9 98.6 99.1 88.1 98.9 0.84
SNV + SG+1st deriv. RF mtry = 3, ntree = 500 99.8 99.9 99.8 96.5 99.9 100 100 100 100 100 1.00
SNV + SG+2nd deriv. RF mtry = 3, ntree = 500 99.7 99.9 99.8 95.5 99.9 99.8 99.8 100 100 99.9 0.99
MSC RF mtry = 3, ntree = 500 99.5 99.8 99.7 92.9 99.7 99.2 99.5 99.7 95.2 99.6 0.94
MSC + SG Smoothing RF mtry = 3, ntree = 500 99.5 99.8 99.7 94.0 99.7 99.5 99.5 100 100 99.7 0.96
MSC + SG+1st deriv. RF mtry = 7, ntree = 500 99.6 99.9 99.7 93.9 99.8 99.5 99.5 100 100 99.7 0.96
MSC + SG+2nd deriv. RF mtry = 3, ntree = 500 99.4 99.9 99.5 90.6 99.7 98.9 99.3 99.5 92.9 99.4 0.91
Unprocessed SVM Cost = 50, σ = 0.01 99.8 99.9 99.9 98.3 99.9 99.5 99.5 100 100 99.7 0.96
SG smoothing SVM Cost = 50, σ = 0.01 99.8 99.9 99.9 97.6 99.9 99.5 99.5 100 100 99.7 0.96
SG+1st deriv. SVM Cost = 10, σ = 0.01 99.1 99.5 99.6 91.8 99.6 98.2 99.7 98.4 78.6 99.0 0.85
SG+2nd deriv. SVM Cost = 10, σ = 0.01 99.3 99.6 99.6 92.4 99.6 98.0 100 97.9 71.4 99.0 0.84
SNV SVM Cost = 5, σ = 0.01 99.6 99.8 99.8 95.0 99.8 99.5 99.5 100 100 99.7 0.96
SNV + SG Smoothing SVM Cost = 5, σ = 0.01 99.6 99.9 99.7 94.7 99.8 99.5 99.5 100 100 99.7 0.96
SNV + SG+1st deriv. SVM Cost = 5, σ = 0.01 99.2 99.7 99.5 90.7 99.6 98.9 99.5 99.3 90.5 99.4 0.91
SNV + SG+2nd deriv. SVM Cost = 1, σ = 0.01 99.6 99.7 99.9 98.4 99.8 99.5 99.5 100 100 99.7 0.96
MSC SVM Cost = 5, σ = 0.01 99.6 99.9 99.7 94.9 99.8 99.5 99.5 100 100 99.7 0.96
MSC + SG Smoothing SVM Cost = 5, σ = 0.01 99.6 99.9 99.7 94.6 99.8 99.5 99.5 100 100 99.7 0.96
MSC + SG+1st deriv. SVM Cost = 10, σ = 0.01 99.1 99.5 99.6 91.8 99.6 98.2 99.7 98.4 78.6 99.0 0.85
MSC + SG+2nd deriv. SVM Cost = 1, σ = 0.01 99.5 99.8 99.6 92.1 99.7 99.4 99.3 100 100 99.6 0.95
Unprocessed ANN decay = 0.001, size = 1 99.4 99.7 99.7 94.5 99.7 99.5 99.5 100 100 99.7 0.96
SG smoothing ANN decay = 0.001, size = 1 99.4 99.7 99.7 95.0 99.7 99.5 99.5 100 100 99.7 0.96
SG+1st deriv ANN decay = 0.001, size = 1 99.8 99.9 99.9 98.5 99.9 100 100 100 100 100 1.00
SG+2nd deriv. ANN decay = 0.001, size = 1 99.8 99.9 99.9 99.9 99.9 100 100 100 100 100 1.00
SNV ANN decay = 0.001, size = 2 99.6 99.9 99.7 93.9 99.8 99.5 99.5 100 100 99.7 0.96
SNV + SG Smoothing ANN decay = 0.001, size = 2 99.6 99.9 99.7 94.6 99.8 99.5 99.5 100 100 99.7 0.96
SNV + SG+1st deriv. ANN decay = 0.001, size = 1 99.8 99.9 99.9 98.8 99.9 100 100 100 100 100 1.00
SNV + SG+2nd deriv. ANN decay = 0.001, size = 1 99.9 100 99.9 98.3 99.9 100 100 100 100 100 1.00
MSC ANN decay = 0.001, size = 1 99.5 99.7 99.8 95.2 99.7 99.5 99.5 100 100 99.7 0.96
MSC + SG Smoothing ANN decay = 0.001, size = 1 99.9 100 99.9 98.7 99.9 100 100 100 100 100 1.00
MSC + SG+1st deriv. ANN decay = 0.001, size = 1 99.8 99.9 99.9 97.8 99.9 100 100 100 100 100 1.00
MSC + SG+2nd deriv. ANN decay = 0.001, size = 1 99.8 99.9 99.8 96.9 99.9 100 100 100 100 100 1.00

The values represent averaged classification parameters of 10-fold cross-validation repeated ten times. ACC.cv = Accuracy, Sens.cv = Sensitivity, Prec.cv = Precision,
Spec.cv = Specificity, and F1.cv= F1 Score for cross-validation. ACC.p= Accuracy, Sens.p = Sensitivity, Prec.p= Precision, Spec.p = Specificity, and F1.p= F1 Score
for the external validation set (test set). SNV = Standard Normal Variate; MSC = Multiplicative Scatter Correction; SG = Savitzky-Golay smoothing; 1st deriv. = 1st
derivative; 2nd deriv. = second derivative Lc = lap lace, ad = adjust for the best model after cross-validation.

Fig. 8. Box Plots demonstrating MCC values based on model type and spectral preprocessing techniques. The symbol on each plot indicates the mean MCC value.
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Nonetheless, RF models maintained strong overall accuracy and pre-
dictive reliability across various preprocessing methods. SVM models
also achieved high accuracy, with MCC.p values exceeding 0.95 and
ACC.p rates above 98%. Misclassification rates varied from 0.5% to
2.0%, with SVM-SG+2nd derivative misclassifying 12 EVOO samples as
adulterated. ANN demonstrated the highest classification performance,
particularly with SG + derivatives or MSC/SNV + SG + derivatives
preprocessing. Seven ANN models achieved perfect metrics, with MCC
values of 1.0. The remaining models maintained strong MCC values of
0.96, with minimal misclassification (0.5%). Only 3 adulterated samples
were misclassified as EVOO, underscoring the superior performance of
ANN models in extracting critical spectral features for accurate
classification.

3.5. Comparison of binary classification models: effects of spectral
preprocessing and feature selection

The Aligned Rank Transform Analysis of Variance (ART ANOVA)
identified the ‘model type’ as the only significant factor (F = 6.487, p =

0.021) affecting the performance of binary classifiers using full spectra
data (224 variables) (Fig. 8). There was no significant interaction be-
tween ’model type’ and preprocessing techniques (F = 0.473, p =

0.932), indicating that model performance remains independent of
spectral pretreatment. PLS-DA, SVM, RF, and ANN models significantly
outperformed the Naïve Bayes model (χ2 = 27.16, p < 0.05), though
differences between k-NN and NB models were not statistically signifi-
cant (p = 0.347). Similarly, ’model type’ had a significant effect (F =

8.531, p = 0.019) on the Matthews correlation coefficient (MCC.p) re-
sults in models using selected important variables. ANN models signif-
icantly outperformed k-NN (p = 0.0004), RF (p = 0.0073), and SVM (p
= 0.0055), while PLS-DA outperformed k-NN (p = 0.0010), RF (p =

0.0144), and SVM (p = 0.0110). However, there was no significant
difference between the performances of ANN and PLS-DA (p > 0.05).
The superior performance of PLS-DA and ANN can be attributed to their
robustness in handling complex data patterns and their ability to extract
essential features from spectral data, making them particularly effective
at distinguishing subtle differences between pure and adulterated oils.
This capability highlights their suitability for accurate and efficient food
authentication applications.

The overall (combined) and individual model performance (except
for Naïve Bayes) was compared using full-length spectra and selected
features. The Wilcoxon signed-rank test indicated no significant differ-
ence in model performance before and after variable selection (p =

0.424). Performance remained consistent across individual models,
including PLS-DA (p = 0.797), k-NN (p = 0.444), RF (p = 0.824), SVM
(p = 0.472), and ANN (p = 0.188). This suggests that even with fewer
but relevant variables, the models retain essential predictive informa-
tion. Thus, employing a simplified model offers advantages such as
lower computational costs and faster processing times without sacri-
ficing accuracy, making them suitable for practical, real-world
applications.

3.6. Comparison of HSI and machine learning with advanced
spectroscopic techniques

The performance of HSI andML algorithms was compared with other
spectroscopic techniques to validate their application in combating olive
oil fraud. Squeo et al. (2019) achieved 96–100% accuracy using FTIR
and LDA to distinguish EVOO from virgin olive oil based on ethyl ester
content. However, the specificity rate with SIMCA (40–67%) was
significantly lower than the models in our study, which reported spec-
ificity values up to 100%. Similarly, Mossoba et al. (2017) applied
FT-NIR and PLS to successfully detect ROO adulteration in commercial
EVOO. Georgouli et al. (2017) reported accuracies of 82% for Raman
and 69% for FTIR using CLPP and k-NN to identify HZO in EVOO at low
concentrations. While their classification was based on percentage

adulteration, our multi-class classification models outperformed their
results.

Front-face total fluorescence spectroscopy combined with second-
order chemometric methods demonstrated the potential to detect
adulteration in EVOO, with detection limits of about 15% for ROO and
3% for POO (Durán Merás et al., 2018). In contrast, the HSI-NIR and ML
models in our study detected adulteration as low as 1%. Furthermore,
Zade et al. (2023) proposed a classification strategy combining PLS-DA
and DD-SIMCA with Raman spectroscopy, achieving 100% accuracy,
sensitivity, and specificity in detecting HZO adulteration in EVOO.
These comparisons highlight the effectiveness of NIR-HSI in detecting
adulteration, particularly at lower concentrations, and emphasize the
advantages of combining HSI with machine learning.

Tachie et al. (2024) used ATR-FTIR and machine learning models to
classify pure oils and margarines. However, our models outperformed
theirs, which achieved 97% accuracy with k-NN, 93% with logistic
regression, 83% with SVM, 53% with LightGBM, and 50% with a deci-
sion tree. In contrast, Hwang et al. (2024) demonstrated the potential of
HSI and ML for classifying edible vegetable oils, achieving over 98.9%
accuracy, comparable to fatty acid composition-based methods. Simi-
larly, Aqeel et al. (2024) reported even higher accuracy using hyper-
spectral identification and ML techniques. These findings align with our
current results and underscore the effectiveness of NIR-HSI combined
with machine learning for detecting oil adulteration.

3.7. Pixel-level visualization of adulteration using Spectral Angle Mapper
(SAM) and Spectral Information Divergence (SID) classification

Hyperspectral imaging, though commonly applied to heterogeneous
samples, also demonstrates potential for use with homogeneous samples
such as edible oils (Aqeel et al., 2024). In this study, Spectral Angle
Mapper (SAM) and Spectral Information Divergence (SID) were used to
detect and map adulteration levels in EVOO ranging from 0% to 100%.
SAM calculates the spectral angle between reference and pixel spectra,
with smaller angles indicating closer matches, while SID measures
spectral divergence, where lower values suggest higher similarity (Qin
et al., 2009). As shown in Fig. 9, scattered red, pink, and brown pixels at
0% adulteration, indicate misclassifications, suggesting that pure EVOO
may be falsely flagged as adulterated due to noise and overlapping
spectral feautures. At 1% adulteration, both SAM and SID detect the
presence of the adulterants, but overestimation occurs, especially in
SAM, where the adulterant color is more prominent than expected. As
adulteration levels increase (5–40%), the maps more clearly the pres-
ence of adulterants, with their respective colors dominating the image.
Both classifiers effectively detect adulteration, showing no mis-
classifications up to 40% adulteration. However, at 100% adulteration,
residual blue pixels persist, particularly in the SID classification, indi-
cating that pure adulterants are frequently misclassified as pure EVOO.
The subtle spectral differences caused by chemical similarity make it
challenging for these techniques to distinguish between pure EVOO and
pure adulterants.

While SAM and SID effectively detect adulteration at levels between
1% and 40%, they struggle with separating pure EVOO from pure in-
dividual adulterants such as hazelnut, olive pomace, and refined olive
oils. To overcome these limitations, future studies should explore pixel-
level machine learning techniques including Convolutional Neural
Networks (CNNs) or deep learning to capture finer spectral details.
Hybrid or ensemble models could also improve detection performance,
particularly in areas where SAM and SID struggle in performance,
enhancing pixel-based adulteration detection in EVOO.

4. Conclusions

In summary, this study successfully integrates near-infrared hyper-
spectral imaging (NIR-HSI) with advanced machine learning (ML)
techniques to effectively detect adulteration in extra virgin olive oil
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(EVOO), particularly involving chemically similar oils such as refined
olive oil (ROO), olive pomace oil (POO), and hazelnut oil (HZO).

ANN models excelled in this study, achieving 100% accuracy across
most preprocessing techniques in three-class classification. Further-
more, models such as kNN + SNV + SG+2nd derivative, kNN + MSC +

SG+2nd derivative, RF + SNV + SG+1st derivative, and RF + SNV +

SG+2nd derivative also attained 100% classification accuracy in
discrimination of pure EVOO, adulterants and adulterated olive oil.
Other models performed robustly as well, consistently exceeding 97%
accuracy.

Binary classification models performed exceptionally well in dis-
tinguishing pure EVOO from adulterated samples. Preprocessing tech-
niques including SNV and MSC, combined with Savitzky-Golay (SG)
smoothing and derivatives, outperformed models based on raw spectral
data. Remarkably, RF, kNN, PLS-DA, and ANN consistently achieved
100% accuracy, sensitivity, precision, F1 scores, and a perfect MCC of
1.0 with these preprocessing methods.

The study further demonstrated that models built on selected key
features, including k-NN, SVM, PLS-DA, RF, and ANN, matched the
performance of those using full-length spectra, highlighting the poten-
tial to streamline computational processes without compromising ac-
curacy. This approach offers greater efficiency and scalability for larger
datasets in practical applications.

Ultimately, integrating NIR-HSI with machine learning techniques
provides a powerful, highly sensitive method for detecting EVOO
adulteration, even at levels as low as 1%. This approach shows great
potential for enhancing the authenticity and quality control of extra
virgin olive oil, particularly in the ongoing fight against food fraud.
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