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Abstract: Leaf veins constitute the transport network for water and photosynthetic assimilates
in vascular plants. The class III homeodomain-leucine zipper (HD-Zip III) gene family is central
to the regulation of vascular development. In this research, we performed an overall analysis
of the HD-Zip III genes in soybean (Glycine max L. Merr.). Our analysis included the phylogeny,
conservation domains and cis-elements in the promoters of these genes. We used the quantitative
reverse transcription-polymerase chain reaction to characterize the expression patterns of HD-Zip III
genes in leaf vein development and analyze the effects of exogenous hormone treatments. In this
study, twelve HD-Zip III genes were identified from the soybean genome and named. All soybean HD-
Zip III proteins contained four highly conserved domains. GmHB15-L-1 transcripts showed steadily
increasing accumulation during all stages of leaf vein development and were highly expressed in
cambium cells. GmREV-L-1 and GmHB14-L-2 had nearly identical expression patterns in soybean
leaf vein tissues. GmREV-L-1 and GmHB14-L-2 transcripts remained at stable high levels at all xylem
developmental stages. GmREV-L-1 and GmHB14-L-2 were expressed at high levels in the vascular
cambium and xylem cells. Overall, GmHB15-L-1 may be an essential regulator that is responsible
for the formation or maintenance of soybean vein cambial cells. GmREV-L-1 and GmHB14-L-2
were correlated with xylem differentiation in soybean leaf veins. This study will pave the way for
identifying the molecular mechanism of leaf vein development.

Keywords: soybean; HD-Zip III gene family; leaf vein; auxin; brassinosteroid

1. Introduction

Leaf veins provide mechanical support and are at the forefront of nutrient and water
transport in photosynthesis and transpiration [1,2]. Leaf veins consist of the xylem, phloem,
and cambium, which are highly organized within the vascular bundle. Cells in the cambium
can differentiate to form either the phloem or the xylem. Then, the xylem and phloem are
further expanded via the differentiation of cells derived from divisions in the cambium [3].
Leaves develop an adaxial side specialized for light capture, and an abaxial side specialized
for gas exchange. Leaf veins are typically positioned where the adaxial and abaxial domains
meet. The xylem is present in the adaxial position, and the phloem is present in the abaxial
position [3,4]. The characteristics of leaf veins are directly or indirectly related to the capacity
for photosynthetic carbon fixation, water absorption, and anti-interference of plants, and are
thus critical factors in adapting to adverse stress [5,6]. The optimization of leaf vasculature is
essential for the efficient performance of crop plants [7]. Therefore, studying the molecular
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mechanism of vein development is of great theoretical significance and application value.
The HD-Zip III gene family regulates almost all the vascular developmental fate decisions
in this process, including vascular specification, patterning, and differentiation [8,9].

HD-Zip III family members have overlapping and antagonistic roles in controlling
vascular development. Five HD-Zip III genes have been found in Arabidopsis (Arabidopsis
thaliana): REV, PHB/ATHB9, PHV/ATHB14, ATHB8, and ATHB15/CAN [10]. PHB and PHV
perform overlapping functions with REV in controlling the abaxial–adaxial patterning of
organs [11]. The REV mutant causes a reduction in interfascicular xylem fibers [12,13]. The
double mutants REV PHB and REV PHV enhance the vascular defects of the REV mutant,
specifically, vascular bundles with remarkably few lignified cells [10]. Loss-of-function
KANADI mutants exhibit vascular patterning defects opposite to that of the rev mutant,
increasing the number of xylem cells [14]. HD-Zip III and KANADI have opposing roles
in ad/abaxial of the organ formation. Once vascular are formed, HD-Zip III and KANADI
are required to coordinate adaxial and abaxial growth [15]. The histological analysis of
the ATHB8 single mutant revealed a regular vascular system without morphological alter-
ations [16]. A functional redundancy might explain the lack of the evident phenotypes of
ATHB8 mutants within the HD-Zip III family. Slight perturbations in vascular development
are seen in CNA single mutant stems; i.e., the vascular bundles are frequently poorly
distributed around the stem periphery [10]. Several pieces of evidence indicate mutual
antagonism among the REV, CNA, and ATHB8 genes during vascular development. The
CNA and ATHB8 mutations suppress the REV phenotype. The lignification of xylem tissue
and interfascicular fibers are restored in ATHB8 CNA REV triple mutants [10].

Auxin is the primary signal involved in the ontogeny of the vascular system [17].
HD-Zip III is a regulatory factor in the regulation of vascular development by auxin (Brandt
et al., 2012). Cambium formation is promoted by high auxin levels activating HD-Zip III
transcription factors in Arabidopsis [18]. Previous studies have proposed the auxin-flow
canalization hypothesis, which states that HD-Zip III genes form an integrated feedback
loop along with auxin, the auxin polar transporter PIN, and the auxin response factor
(MP/ARF) [19,20]. The onset of ATHB8 expression is directly and positively regulated by
MP through an auxin response element in the ATHB8 promoter and is followed by the
induction of the generation and maintenance of procambial cells.

Previous studies on various mutants of vascular patterns have revealed the involve-
ment of another new player, brassinosteroids (BRs). BR is a key regulator of the xylem, by
acting to stimulate cambium cell differentiation [21]. Over expression of the BR biosynthesis
gene showed increased xylem formation [22]. Brassinazole (BRZ), a specific inhibitor of
BR biosynthesis, inhibits the differentiation of tracheary cells from cambium cells; such
suppression is reversed by the addition of BRs [23,24]. HD-Zip III genes function in zinnia
(Zinnia elegans L.) vascular differentiation in response to BR signaling. The expression of
ZeHB-12 and ZeHB-10 (REV homologous transcripts) coincides with the differentiation of
cambium cells into tracheary cells. The expression of ZeHB10 and ZeHB12 is repressed by
BRZ but is rapidly induced by BR [25].

Although considerable evidence indicates that the HD-Zip III gene family is the
essential family in controlling stem and root development, the details of individual HD-
Zip III genes in the development of leaf veins have not been resolved. The structure of
the leaf veins directs the mobilization of photosynthates from source to sink, and the
optimization of leaf vein architecture is essential for the efficient performance of crop
plants [7]. Soybean (Glycine max L. Merr.) is one of the most important crops worldwide
and produces substantial amounts of proteins and oils [26]. Genome-wide investigations
on the HD-Zip gene family in soybean have been reported, and gene expression in soybean
roots under dehydration and salt stress has been studied [5,27]. Updating the HD-Zip III
gene family in soybean has become possible with the release of a new version of the
soybean genome. In this study, we aimed to identify the HD-Zip III gene family in the
soybean genome and analyze their phylogenetic relationship, structural characteristics,
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and cis-element regions. Then, we investigated the functions of HD-Zip III genes during
leaf vein development in soybean.

2. Results
2.1. Identification of GmHD-Zip III Genes and Analysis of Basic Physicochemical Properties

In this work, twelve HD-Zip III genes were found in the soybean genome and named
based on their orthologous in Arabidopsis (Figure S1). According to sequence orthologous,
12 GmHD-Zip III genes were divided into three groups. The largest group was Group 1,
which contained six GmHD-Zip III genes; Group 2 and 3 had two and four genes, respec-
tively (Figure 1). We also identified interspecific orthologous genes. The orthologous gene
pairs were GmHB8-L-1\GmHB8-L-2, GmHB15-L-1\GmHB15-L-2, GmHB15-L-3\GmHB15-
L-4, GmHB14-L-1\GmHB14-L-2, GmHB14-L-3\GmHB14-L-4, and GmREV-L-1\GmREV-
L-2 (Figure S1). As shown in Table S2, a total of 60 HD-Zip III homologous proteins were
identified from five legumes. The phylogenetic tree showed that HD-Zip III proteins had a
high degree of homology across all of the investigated plants (Figure 1).
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Figure 1. Phylogenetic tree of full-length HD-Zip III proteins from soybean, chickpea, peanut, kidney
bean, medicago, wild soybean, strawberry, cucumber, poplar, tomato, rice, and Arabidopsis. The
90 HD-Zip III proteins from 13 plant species can be divided into three groups. The words marked
in blue are Arabidopsis HD-Zip III proteins, and those marked in red are GmHD-Zip III proteins.
The colors of the circles indicate physical distances: gray represents long distances, and red means
short distances.

Chromosomes 4, 5, 6, 9, 11, 12, and 15 contained only one GmHD-Zip III gene, whereas
chromosome 7 contained two GmHD-Zip III genes. Chromosome 8 exhibited the highest
density of GmHD-Zip III genes (Figure S2).
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The results demonstrate that the HD-Zip III proteins have lengths of 838–853 amino
acids and an average length of 844 amino acids. The theoretical isoelectric point value of
GmREV-L-1 was the lowest, and that of GmHB14-L-3 was the highest. Protein hydrophobic
and hydrophilic analysis showed that soybean HD-Zip III proteins were hydrophilic and
unstable. The instability coefficients were between 45.74 and 50.47. Molecular weight
analysis revealed that GmHB14-L-4 (93 958.15 Da) had the maximum protein molecular
weight and that GmREV-L-1 (92 062.93 Da) had the minimum molecular weight (Table S3).
Under the predicted subcellular localization of GmHD-Zip III, all of the genes in this family
were located in the nucleus (Table S3).

2.2. Gene Structure, Conservative Domain, and Motif Analyses

We analyzed the conserved motifs of amino acid sequences (Figure S3). The results
showed that all members of the HD-Zip III family contained almost the same motifs (1–
10). Several had functional implications. For example, motif 6 specified the HD domain,
motif 1 corresponded to the Zip domain, and motifs 12 and 14 represented the methionine–
glutamic–lysine–histidine–leucine–alanine (MEKHLA) domain. Some motifs, such as 2, 4,
and 3, specified the START domain. As revealed by the analysis of genetic structure, HD-
Zip III gene structures were remarkably conserved. Each GmHD-Zip III gene had precisely
18 exons (Figure 2b). Exon length and exon–intron patterns were generally conserved.
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Figure 2. Gene structure, conserved domain, and motif identification. (a) Phylogenetic relationships
and protein domain prediction of HD-Zip III from soybean. The lengths of the proteins and domains
can be estimated by using the scale at the bottom. (b) The gene structures of the 12 GmHD-Zip III
genes. Exons and introns are shown as green and yellow boxes, respectively. Gene structures are
shown in the right panel.
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All of the 12 GmHD-Zip III proteins contained four highly conserved domains
(Figure 2a), namely, START, MEKHLA, HD, and Zip. The closely related HD and Zip
domains are the structural basis of this family of proteins, which together determine their
functions as transcription factors. The START domain was predicted to be a lipid or steroid-
binding receptor that can bind to small hydrophobic molecules, such as phospholipids
and steroids, and is highly conserved in evolution [28]. The HD-Zip III family genes
also contain an additional highly conserved MEKHLA domain. The MEKHLA domain
is unique to the HD-Zip III family [29]. However, studies on the potential role of the
MEKHLA domain in plants are limited. The MEKHLA domain shares high similarity with
the Per-Arnt-Sim (PAS) domain [30]. The PAS domain might have originated from algae,
and may be involved in the regulation of light signals received by plants and related to
photosynthesis [31].

2.3. cis-Elements in GmHD-Zip III Promoters

cis-Acting elements play an important role in modulating the molecular switches of
dynamic transcriptional regulation in response to developmental processes and hormonal
signaling [32]. On the basis of their functions, the cis-acting elements were grouped
into several classes: stress, development, and hormone-responsive elements (Table S4,
Figure S4). All soybean HD-Zip III genes contained ARF elements, which are putative
binding sites for auxin response factor (ARF/MP) proteins [33]. ARF proteins may bind
ARF elements to activate or repress transcription of GmHD-Zip III genes (Figure 3).
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2.4. Expression Patterns of GmHD-Zip III Genes under Hormone Treatment

BRs are positive regulators of xylem differentiation, and BRZ, a specific inhibitor of BR
biosynthesis, suppresses xylem differentiation [34]. We analyzed the effects of BRs and BRZ
on the accumulation of GmHD-Zip III transcripts to investigate the relationships between
the expression of these genes and BRs. Five GmHD-Zip III genes increased expression
after BR treatment (Figure S5). GmHB8-L-1, GmHB14-L-1, GmHB14-L-2, GmREV-L-1, and
GmHB15-L-2 all showed significantly upregulated expression levels. GmHB15-L-2 mRNA
accumulation exhibited the greatest change. Expression analysis showed that BRZ strongly
suppressed the accumulation of the transcripts of GmHB14-L-1, GmHB14-L-2, and GmREV-
L-1 (Figure 4b). The other seven genes showed no significant changes. These results
strongly suggest that the expression of GmHB14-L-1, GmHB14-L-2, and GmREV-L-1 can be
induced or promoted by endogenous BRs. Our study also verified the promoting effect of
BRs on xylem differentiation in leaf veins. The areas of xylem precursor cells, xylem cells,
and lignin content in soybean leaf veins were significantly increased after 10 days of BR
treatment (Figure 5a,b).
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Auxin is involved in the regulation of vascular tissue development [35]. Treatment
with a polar auxin transport inhibitor can mimic the vascular defect caused by HD-Zip III
mutations [36]. Treatments with exogenous IAA and the auxin polar transport inhibitor
NPA were applied to test whether these genes play an essential role in auxin-regulated
vascular development. IAA significantly induced GmHB15-L-1, GmHB15-L-2, GmHB15-L-3,
GmHB15-L-4, and GmHB14-L-4 (Figure S4), but did not induce changes in the other seven
genes. GmHB15-L-2, GmHB14-L-4, and GmHB15-L-4 were not severely suppressed by NPA.
NPA significantly inhibited the expression of GmHB15-L-1 and GmHB15-L-3 (Figure 4b).
No absolute correlation was observed between the number of ARF elements and expression
level. Although all GmHD-Zip III genes had ARF-elements, seven genes were not induced
by auxin at the transcriptional level (Figure S4). These results provided support for the idea
that auxin is the initiator of GmHB15-L-1 and GmHB15-L-3. The areas of leaf vein cambium
cells, xylem percursor cells, and xylem cells were significantly increased after 10 days of
IAA treatment (Figure 5a,b).

2.5. Expression of GmHD-Zip III Genes in Leaf Vein Development in Soybean

We analyzed the changes in the gene expression of GmHD-Zip III in samples obtained
at different leaf vein developmental stages to understand the possible functions of GmHD-
Zip III genes in leaf vein development in soybean. Figure 6a shows the transverse sections
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of leaf veins taken at five different soybean developmental stages. The results revealed
that GmHB15-L-1 and GmREV-L-1 were very specifically expressed in vascular tissues at
all stages, including the 0, 12, 24, 48, and 96 h stages, of vascular maturation (Figure 6a).
GmHB15-L-1 was the earliest expressed gene in leaf vein development (Figure 5b). The
first group genes (GmHB15-L-1, 4) exhibited similar expression patterns. As the leaf vein
developed, the relative expression levels of the two genes gradually decreased. GmREV-L-1
and GmHB14-L-2 transcripts steadily accumulated during 12 to 48 h of development. As
shown in Figure 6a, these time points corresponded to key xylem developmental stages.
Subsequently, we examined gene expression in the cambium and the developing xylem and
phloem. GmHB15-L-1 was expressed at low levels in the developing xylem and phloem but
was highly expressed in the vascular cambium (Figure 7). GmREV-L-1 and GmHB14-L-2
were expressed at low levels in the developing phloem but expressed at high levels in the
vascular cambium and xylem (Figure 7). The distinctive expression patterns of these genes
in leaf veins imply their functional diversity in association with vascular development.
These results suggest that GmHB15-L-1, GmREV-L-1, and GmHB14-L-2 play essential roles
in leaf vein development.
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3. Discussion
3.1. Phylogeny of GmHD-Zip III Genes Reflects Their Functional Conservation in Soybean

HD-Zip is a vital transcription factor family and exists only in the plant kingdom. HD-
Zip transcription factors can be generally classified into the I, II, III, and IV subfamilies in
accordance with their conserved sequences [37]. The majority of the reports available on HD-
Zip I subfamilies respond to abiotic stresses and are crucial for maintaining plant growth
under unfavorable environments [11]. The HD-Zip II gene family regulates the shade-
avoiding mechanism during the photosynthetic process [38]. Genes in HD-Zip IV have well-
characterized functions in trichome formation and epidermal cell differentiation [39,40].
Members of the third subfamily (HD-Zip III) control leaf polarity, embryogenesis, and
vascular development [41]. The purpose of this study was to investigate the role of the
HD-Zip gene family in soybean vein development. so we focused on the HD-Zip III
subfamily rather than other subfamilies. In this work, 12 HD-Zip III genes were identified
in the current version of the soybean genome (Figure 1). A previous work identified 11
GmHD-Zip III genes in the soybean genome (v1.01, JGI Glyma1.0) and investigated their
responses to salt and dehydration stress [27]. Compared with the study of Belamkar et al.,
our study identified one more HD-Zip III member, namely, GLYMA_12G075800. All of the
soybean HD-Zip III proteins that we identified belonged to the HD-Zip III family because
they contained the four conserved domains of the HD-Zip III transcription family, START,
MEKHLA, HD, and Zip. The difference between our results and the findings of Belamkar
et al. may have been due to the use of the different released versions of the soybean
genome. Eight HD-Zip III genes have been identified in poplar [42], four in barley [43], six
in medicago [44], five in rice [45], four in strawberry [46], and five in cucumber [47]. The
HD-Zip III gene family in soybean is by far more prevalent than in other plant species. The
large number of GmHD-Zip III genes in soybean could have resulted from whole-genome
duplication events. The soybean genome is believed to have undergone at least two
independent duplications from a diploid ancestor to yield the actual polyploid plant [48].

The HD-Zip III gene family is very conserved. All of the identified HD-Zip III
genes include four conserved domains [43,47,49,50]. In tomatoes and cotton, the loca-
tions and lengths of the motifs in the HD-Zip III protein sequences were also completely
conserved [49,50]. The gene structures of the members of the soybean HD-Zip III family
were highly similar in terms of exon and intron numbers and conserved protein motifs
(Figure 2a,b). This high similarity further supported the reliability of the phylogenetic
relationship analysis. The results of the phylogenetic analyses showed a high degree of
the conservation of HD-Zip III protein sequences from different species. HD-Zip III genes
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may have similar functions in different species due to their conserved structure. Recent
analyses on Arabidopsis, tomato, rice, and poplar have indicated that the HD-Zip III family
is a key transcriptional regulator of vascular development and is highly expressed in the
vascular tissues of roots, stems, and leaves [10,42,45,50]. The tissue-specific expression
profiles obtained in this work suggested that soybean HD-Zip III genes were specifically
expressed in the root, stem, and leaf (Figure S6). The first group was specifically expressed
in leaves and stems. The expression level of the third group in roots was significantly
higher than that in other sites. The GmHD-Zip III gene family is specifically expressed in
different tissues with various subfamilies, and it may be involved in vascular development
in certain sites.

3.2. Auxin Activating GmHB15-L-1 in the Regulation of Soybean Leaf Veins’
Cambium Development

The HD-Zip III family is at the center of a complex network required for initiating
and maintaining plant vascular tissues [51]. However, such information is limited to
roots and stems, and the general roles of HD-Zip III genes in the development of soybean
leaf veins are still unknown. Despite the great variety of patterns in vascular systems, a
common mechanism likely underlies the regulation of vascular tissue formation. In our
study, GmHB15-L-1 was found to be a key player in the regulation of cambium formation
in soybean leaf veins.

Considerable evidence indicates that auxin is the essential signal in promoting vascu-
lar cambium zone development. Decapitation of seedlings prevents the auxin supply from
reaching the shoots and represses cambium activity, while application of exogenous IAA
restores cambium activity [52]. Our results confirmed that auxin promoted the formation
of the leaf vein cambium and showed that the area of leaf vein cambium cells increased
significantly after 10 days of exogenous auxin treatment (Figure 5). In Arabidopsis, ATHB8
is a regulatory factor involved in the regulation of vascular cambium cell development
by auxin [53]. The auxin element in the ATHB8 promoter is required for both ATHB8 pro-
cambial expression and auxin inducibility [20]. GmHB8-L-1 and GmHB8-L-2 had ARF
elements, but these genes were not induced by auxin (Figure 3 and Figure S5). In poplar,
PtrHB8 is highly expressed in the vascular cambium and developing xylem tissue [42].
This expression pattern is different from that of GmHB8-L-1,2 in soybean. The expression
level of GmHB8-L-1,2 was low during vein development (Figure 5a). A likely candidate
for regulating the cambium cell development is GmHB15-L-1, which is most similar to
GmHB8-L-1. First, the expression of GmHB15-L-1 was significantly induced by IAA. The
expression level of GmHB15-L-1 was significantly inhibited under treatment with the auxin
polar transport inhibitor NPA (Figure 4a). Second, the expression pattern results revealed
that GmHB15-L-1 expression levels were related to leaf vein development and showed
steadily increasing transcript accumulation during all stages of leaf vein development
(Figure 6b). The heat map data revealed that GmHB15-L-1 was the earliest expressed gene
during vascular development (Figure 7). Third, GmHB15-L-1 was highly expressed in
the vascular cambium. ZeHB-13, a homolog of the ATHB15 gene in zinnia, is localized
preferentially in cambium cells. Histochemical promoter analysis using ATHB15::GUS
transgenic Arabidopsis indicated that, consistent with the expression patterns of GmHB15-
L-1 in soybean, ATHB15 is active specifically in the cambium [54]. Overall, these results
strongly suggest that a member of the HD-Zip III family, namely, GmHB15-L-1, may be an
essential transcriptional regulator responsible for cambial tissue formation or maintenance.

The positive feedback loop auxin-flow–MP–HD-Zip III–PIN1–auxin-flow is typical
in cambial cell development, a crucial mechanism in determining vascular cell fates [55].
The auxin response factor MP directly bound the auxin response element in the promoter
sequence of ATHB8, thereby regulating ATHB8 expression [20]. ATHB8 is required to
stabilize PIN1 expression against auxin transport perturbation in cambial cells, resulting in
the formation and maintenance of procambial cells [16,19]. We found that GmHB15-L-1 had
ARF elements and was significantly induced by IAA, which is highly expressed in the
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vascular cambium. Soybean PIN1 genes show the same expression pattern in the cambial
cell [56]. Whether the conserved pathway also appears in soybean remains to be clarified.

3.3. Soybean HD-Zip III Genes Perform Overlapping Functions in Promoting Xylem
Differentiation in Leaf Veins

Previous studies have linked BRs to vascular development. BR treatment promotes
poplar stem growth and xylem formation [21]. In cultured zinnia cells, the levels of BR
increase drastically prior to tracheary cell differentiation, and this increase is indispensable
for progressing to the last stage of xylem cell differentiation (Yamamoto et al., 1997).
The role of BR during soybean leaf veins development is not as well explored. After
BR treatment, the areas of xylem cells and lignin content in leaf veins were significantly
increased (Figure 6a,b). Our results are consistent with previous reports in poplar and
zinnia that point to BRs promoting the differentiation of xylem cells. HD-Zip III functions
in xylem cell differentiation by responding to BR signaling [51,54]. The xylem cell-specific
accumulation of ZeHB10 (the homologous gene of ATHB8) mRNA has also been observed
in xylogenic cell culture [57]. The expression of ZeHB11 and ZeHB12 (REV homologous
transcripts) is repressed by BRZ but is rapidly induced by BR [25]. Although HD-Zip III
have been suggested to be involved in xylem cell development, the details of individual
HD-Zip III functions in soybean leaf vascular differentiation have not been clarified. We
characterized the expression patterns of HD-Zip III genes in leaf vein differentiation and
analyzed the effects of BR and BRZ on the accumulation of GmHD-Zip III transcripts.

On the basis of the findings shown here, GmREV-L-1 and GmHB14-L-2 play pivotal
roles in the differentiation of the xylem. Expression analysis showed that GmHB14-L-2
and GmREV-L-1 expression was induced by BR but was suppressed strongly by BRZ
(Figure 4b). In zinnia, the rapid induction of ZeHB12 occurs upon BR treatment. Consistent
with that of GmREV-L-1 in soybean, the expression of ZeHB12 is repressed by BRZ. We
used qRT-PCR to check the expression patterns of GmREV-L-1 and GmHB14-L-2 in leaf
veins at different developmental stages (Figure 6a). Our results showed that GmREV-L-1
and GmHB14-L-2 were expressed in all of the examined stages. Throughout these stages,
the relative transcript levels of GmREV-L-1 and GmHB14-L-2 were stably maintained at
high levels in leaf veins at 12, 24, and 48 h of development (Figure 6b). As shown in
Figure 5a, these time-points corresponded to vital developmental stages of the xylem. In
Arabidopsis, ATHB14/PHV and REV exhibit overlapping expression in the adaxial domains
in vascular bundles [58]. The REV PHV double mutant enhances the vascular defects of
the rev mutant, i.e., vascular bundles with remarkably few lignified cells [10]. Consistent
with a previous work, this work showed that GmREV-L-1 and GmHB14-L-2 had nearly
identical expression patterns in soybean vascular tissues and were primarily expressed in
vascular cambium cells and developing xylem cells (Figure 7). GmHB14-L-2 may perform
overlapping functions with GmREV-L-1 in vascular cell differentiation. These facts suggest
that GmREV-L-1 and GmHB14-L-2 play pivotal roles in xylem differentiation.

Given the relationship between BRs and HD-Zip III genes, the START domain deserves
future investigation. The START domain has lipid binding capability [59]. In plants, the
START domain is predominantly found in HD-Zip gene family. Lipid/sterol ligands can
directly modulate HD-Zip transcription factor activity [60,61]. Consequently, soybean HD-
Zip III genes may be activated through the binding of sterols or lipids to their START domain.
Given that BRs are the initiators of soybean HD-Zip III genes, they may be candidates for
binding to the START domain and act as pivotal signals that activate proteins.

4. Materials and Methods
4.1. Identification and Phylogenetic Tree Construction

To identify the GmHD-Zip III genes in soybean, we used the sequences of five Arabidop-
sis HD-Zip III proteins [10] downloaded from the TAIR website (http://www.arabidopsis.
org/ (accessed on 10 November 2021) as query sequences in the TBLASTP searches
against the soybean genome (Glycine_max_v4.0), on the NCBI database (https://www.
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https://www.ncbi.nlm.nih.gov/genome/
https://www.ncbi.nlm.nih.gov/genome/
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ncbi.nlm.nih.gov/genome/ (accessed on 10 November 2021) [62]. All sequences with
an e-value below 10−10 were candidate soybean HD-Zip III proteins. Twelve GmHD-
Zip III proteins were initially isolated in this research. Next, we performed BLASTP
separately using each of the 12 HD-Zip III proteins as a query sequence in the soy-
bean genome database. This process was repeated until no new HD-Zip III protein was
found. The PLAZA database was used to obtain the orthology gene pairs for soybean
(https://bioinformatics.psb.ugent.be/plaza/versions/plaza_v4_5_dicots/ (accessed on
16 June 2022)) [63]. We identified the homologous proteins of HD-Zip III in another four
legumes, namely, chickpea (Cicer arietinum), peanut (Arachis hypogaea), kidney bean (Phaseo-
lus vulgaris), and wild soybean (Glycine soja). Five Arabidopsis HD-Zip III proteins were in-
put as query sequences into BLASTP searches with the barrel medic genome (MtrunA17r5.0-
ANR), chickpea genome (A SM33114v1), peanut genome (arahy. Tifrunner. gnm1.KYV3),
kidney bean genome (PhaVulg1_0), and wild soybean genome (A SM419377v2) in the NCBI
database. We downloaded the protein sequences of HD-Zip III family genes that were newly
identified in recent years in six plants, including strawberry (Fragaria vesca) [46], cucumber
(Cucumis sativus L.) [47], poplar [42], tomato [50], medicago (Medicago truncatula) [44], and
rice (Oryza sativa) [64].

The amino acid sequences of HD-Zip III were aligned using MEGA7.0 software. Phy-
logenetic analysis was constructed using the neighbor-joining method and 1000 boot-
straps [65].

4.2. Chromosomal Mapping and Analysis of Basic Physical and Chemical Properties

All GmHD-Zip III genes were mapped on the 20 chromosomes of soybean using gene
annotation (Glycine_max_v4.0_genomic.gff) acquired from NCBI by TBtools software [35].
The molecular characteristics of the soybean HD-Zip III proteins, including the theoretical
predictions of isoelectric point and molecular weight, were analyzed using ExPASy Prot-
param Tool (https://web.expasy.org/compute_pi/ (accessed on 7 November 2021) [36].
Plant-mPLoc (http://www.csbio.sjtu.edu.cn/bioinf/plant-multi/ (accessed on 1 Novem-
ber 2021) was used to predict the subcellular localizations of the HD-Zip III proteins.

4.3. Gene Structure, Conserved Domains, and Motif Identification

Intron/exon structures were downloaded from the NCBI genome database. We used
the NCBI Conserved Domains Database (CDD) (https://www.ncbi.nlm.nih.gov/Structure/
bwrpsb/bwrpsb.cgi/ (accessed on 10 November 2021) to predict the conserved domains of
the soybean HD-Zip III proteins [66,67]. MEME-MAST programs (http://meme.nbcr.net/
meme/meme.html (accessed on 15 November 2021) were used to predict the conserved
protein motifs, with the motif length set to 6–200 and the e value to <1 × 10−10 [68].

4.4. Plant Transcription Factor Binding Sites in the Promoters

For this study, the 2000 bp region upstream of the annotated transcription start site
for each gene was evaluated for promoter motifs [66]. TBtools was utilized to extract
GmHD-Zip III genes’ CDS (Coding Sequences) in the promoter sequences and visualization
mapping. We used Plantcare (http://bioinformatics.psb.ugent.be/webtools/plantcare/
html/ (accessed on 20 December 2021) for the prediction of cis-elements and visualization
mapping [49]. To identify the binding sites of transcription factors in the promoter region of
each GmHD-Zip III gene, we searched via the database PlantRegMap (http://plantregmap.
cbi.pku.edu.cn/binding_site_prediction.php (accessed on 16 June 2022) with the following
parameter: e-value ≤ 1 × 10−6 [69]. The visualization of the motifs was performed on the
LOGO website (https://weblogo.berkeley.edu/logo.cgi (accessed on 12 June 2022).

4.5. Plant Materials and Growth Conditions

The Williams 82 soybean variety was used in this study. The soybean cultivar was
grown in a growth room (12 h light, 25 ◦C, 12 h dark, 22 ◦C) using a light-emitting diode.
The light intensity in the growth chamber was 500 µmol m−2 s−1.
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4.6. Tissue Specificity Expression Analysis

Roots, leaves, stems, shoot apical meristems, flowers, pod walls, seeds, and petioles
of soybean were collected for tissue-specific expression analysis. The roots, leaves, stems,
shoot apical meristems, and petioles were collected from soybean seedlings in the V2 stage
(the unfolding of second trifoliate leaves). Flowers were picked three days after flowering.
The pod walls and seeds were collected 14 and 30 days after flowering, and each sample
was collected thrice independently. Total RNA was extracted from tissues, as described for
qRT-PCR. The normalized gene expression values were log2-transformed and visualized in
the form of heatmaps constructed using TBtools.

4.7. Collection of Leaf Veins Cells

To obtain the high quality RNA of the vascular tissue of soybean plants, the tissues
were fixed in Carnoy–acetone fixative (/v/v = 70/30) for 12 h at 4 ◦C. Finally, the tissues
were transparentized and mounted with t-butyl alcohol. The cells of the cambium, de-
veloping xylem, and developing phloem were collected from leaf cross-sections through
laser microdissection by using a Veritas Automated Laser Capture Microdissection System
(Thermo Fisher Scientific, Inc., Waltham, MA, USA). A minimum of 500 cells were collection
from each sample [70,71]. The RNA extracted from laser-captured samples was extracted
using the PicoPure RNA Isolation Arcturus Kit. The RNA was amplified to generate cDNA
using the Target Amp 2-round aRNA amplification kit for expression analysis [72].

4.8. Leaf Anatomy

GmHD-Zip III expression was examined during leaf vein development in soybean, and
leaf veins were sampled at 0, 12, 24, 48, and 96 h. Vein tissue development was observed
by using cross-sections stained with safranin-O/fast green. The 0.5 cm × 1 cm sections
were cut from the central leaflet of six different leaves for each treatment for fixation with
FAA. Tissues were embedded in paraffin, and serially, paraffin sections were cut into 10 µm
thickness. The sections were stained with safranin-O/fast green. Sections were scanned
under a Nikon Eclipse 80i microscope, and images were acquired with the ACT-2U imaging
software (Nikon Corporation) [73].

4.9. Exogenous Hormone Treatments

The following processes were set to elucidate the probable functions of GmHD-Zip
III in leaf vein development. Seedlings that had been grown for 10 days were sprayed
with 100 µmol L−1 indole-3-acetic acid (IAA) [45], 100 µmol L−1 N-1-naphthylphthalamic
acid (NPA) [36], 10 mmol L−1 BR, or 5 µmol L−1 BRZ [25]. Leaf vein tissues were obtained
at 4 h after these treatments. Three individual plant materials were collected, frozen in
liquid nitrogen, and stored in a refrigerator at −80 ◦C. After 10 days of hormone treatment,
soybean leaf vein tissue development was observed by using cross-sections stained with
safranin-O/fast green. Image J (Image J Software, National Institutes of Health, Bethesda,
MD, USA) was employed to measure the areas of xylem, phloem, and cambium of leaf
veins. Leaf vein lignin content was quantitatively measured by using the lignin Kit (BC4200,
Solarbio, Beijing, China) according to the manufacturer’s protocols.

4.10. Expression Analysis

Total RNA was extracted with an RNA prep pure Plant Kit (R6827-01, Omega Bio-tek,
Norcross, GA, USA), and the RNA quality was determined by agarose gel electrophore-
sis [66]. The RNA concentration was determined by NanoDropTMOne /OneC (Thermo
Fisher Scientific Inc., Waltham, MA, USA). gDNA Eraser (TaKaRa Biotechnology, Dalian,
China) was used to remove the possible DNA content of the total RNA to avoid detection
error when generating the level of gene expression. The first-strand cDNA (Complementary
DNA) of RT was synthesized using the PrimeScriptTM RT reagent Kit with gDNA Eraser
Kit from Takara.
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qRT-PCR was conducted on a qRT-PCR system operated on the Quant Studiotm 7 Flex
series (Thermo Fisher Scientific Inc., Waltham, MA, USA), using a qRT-PCR Kit (Takara,
Dalian, China). The total reaction system had a volume of 10 µL, including 5 µL TBGreen
Fastq PCR Mix (2×), 10 µmol L−1 upstream and downstream primers (0.4 µL each), and
cDNA template (20 ng·µL−1), and the total reaction system was 10 µmol L−1. The reaction
conditions were 95 ◦C for 3 min, with denaturation at 95 ◦C for 30 s, annealing at 60 ◦C
for 30 s, and extension at 72 ◦C for 30 s. A total of 40 PCR cycles were performed. The
reaction results obtained by 2−∆∆CT method were input to QuantStudioTM Real-Time PCR
software for analysis [74]. The GmActin gene (GLYMA_19G147900) was used as the internal
reference gene (Du et al., 2011), and the specific primers are shown in Table S1. The relative
expression values were normalized based on the expression levels of the control. The
processed data were log2 transformed, and TBtools software was used to visualize as
heatmaps [75].

4.11. Statistical Analysis

Statistical analysis was carried out by using one-way ANOVA in SPSS software Version
24 (IBM SPSS Statistics, Armonk, NY, USA). The graphs were drawn by GraphPad Prism
8.0 software (GraphPad Software, Inc., La Jolla, CA, USA).

5. Conclusions

We systematically characterized the GmHD-Zip III gene family in the soybean genome
and the expression profiles of all GmHD-Zip III members during leaf vein development
in soybean. Twelve GmHD-Zip III genes were identified and were found to be unevenly
distributed on nine chromosomes. All GmHD-Zip III gene family members had similar
gene structures and motif arrangements. GmHB15-L-1 showed stable high expression
during leaf vein development and was highly expressed in cambium cells. GmREV-L-1 and
GmHB14-L-2 maintained stable high expression levels at all xylem developmental stages
and were expressed at high levels in vascular cambium cells. Therefore, GmHB15-L-1 is an
essential regulator that is responsible for soybean vein cambial cell formation. GmREV-L-1
and GmHB14-L-2 are key components in xylem differentiation. This study will pave the
way for research on the different molecular mechanisms of leaf vein development. We will
use transient overexpression experiment methods to study the roles of the HD-Zip III gene
in soybean leaf vein development in the future.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/plants11131728/s1. Figure S1: Orthologous genes of soybean and Ara-
bidopsis. List of orthologous gene pairs obtained from PLAZA. Figure S2: Chromosomal distributions
of the identified soybean HD-Zip III genes. Chromosomal locations are shown from top to bottom on
the corresponding chromosomes. The bar on the left side indicates chromosome sizes in megabases.
The scale represents chromosome length. Figure S3: Motif of the 12 GmHD-Zip III proteins. Different
colored boxes stand for different motifs. The length of each box in the figure represents the actual
size of the motif in the proteins. Figure S4: Analysis of cis-acting elements in the promoter regions of
GmHD-Zip III family genes. Figure S5: Expression profiles of GmHD-Zip III under IAA and BR treat-
ment. Asterisks on top of the bars indicate statistically significant differences (* p < 0.05, ** p < 0.01).
Figure S6. Expression profiles of GmHD-Zip III genes in eight soybean tissues in reads/Kb/million.
The normalized values of gene expression were log2-transformed and visualized in the form of
heatmaps. Table S1: Primers sequences used in qRT-PCR. Table S2: The homologous proteins of
HD-Zip III in legumes. Table S3: Basic physical and chemical information of soybean HD-Zip III
proteins. Table S4: cis-acting elements in the promoter region of GmHD-Zip III family gene.
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