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Synopsis Various 3D imaging techniques are routinely used to examine biological materials, the results of which are

usually a stack of grayscale images. In order to quantify structural aspects of the biological materials, however, they must

first be extracted from the dataset in a process called segmentation. If the individual structures to be extracted are in

contact or very close to each other, distance-based segmentation methods utilizing the Euclidean distance transform are

commonly employed. Major disadvantages of the Euclidean distance transform, however, are its susceptibility to noise

(very common in biological data), which often leads to incorrect segmentations (i.e., poor separation of objects of

interest), and its limitation of being only effective for roundish objects. In the present work, we propose an alternative

distance transform method, the random-walk distance transform, and demonstrate its effectiveness in high-throughput

segmentation of three microCT datasets of biological tilings (i.e., structures composed of a large number of similar

repeating units). In contrast to the Euclidean distance transform, the random-walk approach represents the global, rather

than the local, geometric character of the objects to be segmented and, thus, is less susceptible to noise. In addition, it is

directly applicable to structures with anisotropic shape characteristics. Using three case studies—tessellated cartilage from

a stingray, the dermal endoskeleton of a starfish, and the prismatic layer of a bivalve mollusc shell—we provide a typical

workflow for the segmentation of tiled structures, describe core image processing concepts that are underused in

biological research, and show that for each study system, large amounts of biologically-relevant data can be rapidly

segmented, visualized, and analyzed.

Introduction

A common structural motif in biology involves the

use of repeated, self-similar geometric objects or sub-

units to cover surfaces or construct protective layers.

The scales of fish and reptiles are familiar examples,

but such structural tilings are ubiquitous in

Eukaryotes, found in plants, animals, and fungi,

and can be observed at a large range of size

scales, from sub-micrometer mineralized plates, to

sub-millimeter cellular foams and tessellations, to

centimeter-scaled osteoderms (Yang et al. 2012;

Jayasankar et al. 2017). In situ and three-

dimensional investigations of complex biological

architectures has been facilitated by the increased

accessibility of laboratory and synchrotron microCT

(mCT) technologies. This, however, presents a

double-edged sword for data analysis: on the one

hand, mCT techniques permit rapid and high-

resolution visualization of large regions of interest.

On the other hand, quantification of complex,
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multi-component architectures and the morpholo-

gies and arrangements of their structural subunits

becomes a massive and demanding task, especially

when subunits are in close contact or overlapping

and, therefore, difficult to isolate from one another.

Here, we present a general visual data processing

approach for the high-throughput separation (seg-

mentation) of large numbers of objects of interest

in volumetric datasets, such as those from mCT

experiments. We build on specific segmentation sol-

utions that have been used for at least two decades

to separate objects in close contact in image data

(Malpica et al. 1998; Al-Raoush and Alshibli 2006;

Oberlaender et al. 2009; Knötel et al. 2017). Despite

the advancements in image processing, a great deal

of morphology and ultrastructure research still relies

on manual segmentation, which is generally very

time-consuming and often hampers statistical analy-

sis due to the bottleneck of the manual segmentation

process. As such, the aim of the present work is two-

fold. First, with regard to specific approaches, we

advocate and detail the advantages of the random-

walk distance transform in segmentation workflows,

a transformation that has not previously been used

for 3D segmentation, but which we show is far more

generally applicable and more robust than the more

commonly used Euclidean distance transform.

Second, since these techniques are used more often

in computer science fields, where they are discussed

in a manner perhaps less accessible for organismal

biology researchers, we would like to make readers of

this journal aware of the general structure and avail-

ability of workflows like ours and encourage them to

pursue options to incorporate and use these, either

through their collaborations or in the segmentation

software of their choice. While the workflow may

seem far less direct than manual segmentation, we

demonstrate how this technique can result in enor-

mous gains in efficiency, allowing massive datasets to

be analyzed in a comparatively short period of time.

Segmentation workflow

We present our general image processing workflow

and, in the process, summarize several core image

processing concepts; references are provided that

offer a more thorough treatment of individual

techniques.

Assumptions about the data

Our image processing workflow (Fig. 1) is suitable

for 3D datasets of repeated structural elements

(e.g., tiled structures) exhibiting the following

properties:

(1) The tiles/structural units are in direct contact.

As such, the objects lack well-defined interfaces

and cannot easily be separated from one another

by considering the intensity values of the image

slices alone (e.g., through simple thresholding

or more advanced watershed segmentation

approaches on intensity values or the derived

edges).

(2) The material of interest as a whole (i.e., all tiled

structures together) can be easily separated from

the rest of the image (e.g., background voxels).

In our workflow, this step is called binary seg-

mentation (see below).

(3) The tiling structures are of similar size. This

property is less important than the other two

but often makes the processing easier. Here,

similar size does not mean equal size, as the

size of the objects may still vary by a factor of

up to about 10. However, if the structures are of

a completely different scale, problems are likely

to arise because small structures may be consid-

ered as noise and merged into larger ones.

Property 1 above can result from two morpholo-

gies, both of which are represented in the case stud-

ies of the present work:

(a) The point of connection between two tiled

structures exhibits a constriction (i.e., a narrow-

ing), but lacks a clear structural boundary (see

the case studies on stingray tessellated cartilage

and starfish ossicles).

(b) The connection between adjacent tiled structures

exhibits a discontinuous boundary that cannot

be fully resolved due to either (i) imaging arti-

facts; (ii) an image resolution that is not high

enough to resolve the boundaries; or (iii) a true

discontinuous boundary in the biological data

(e.g., small connecting bridges between struc-

tures, as in the case of the prismatic layer of

mollusc shells).

General workflow

The general workflow (Fig. 1) can be summarized as

follows; more detailed descriptions of each step are

presented immediately after. The original image data

are rarely in such a good state that one can readily

start segmenting the data immediately after the re-

construction step that follows scanning. Instead, a

pre-processing step involving the application of one

or several image filters and normalization algorithms

is often required. In our workflow, this pre-

processing has the goal to improve the second step

of the processing pipeline, the binary segmentation.
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This second step separates the structures of interest

(foreground), that is, the tiling structures, from the

rest of the image (background). This very important

step may strongly influence further processing (see

Fig. 2) and, hence, needs to be performed with great

care. Yet, it is much less critical using the random-

walk distance transform, due to its robustness, in

comparison with the Euclidean distance transform

(Fig. 2). The third step in the proposed pipeline is

the application of a distance transform, applied to the

foreground voxels of the binary image. The distance

transform extracts implicit knowledge about the ge-

ometry of the respective objects to be segmented

from the binary segmentation. This knowledge

is then used in the next step to create an

over-segmentation of the tiling structures. Here,

over-segmentation means that the segmentation is

imperfect, with some individual structures of interest

represented by several labels instead of just one.

Creating an over-segmentation is preferred over an

under-segmentation, because merging regions is gen-

erally easier than splitting. If additional merging is

necessary, it can be performed in the last step, the

post-processing step.

Detailed processing pipeline

Pre-processing

A vast variety of image filters and normalization

algorithms can be applied in this step (Gonzalez

and Woods 2008) to reduce artifacts and accentuate

natural features to improve segmentation in the fol-

lowing step. These imaging filters are readily avail-

able in a variety of common software tools including

ImageJ, ITK, and Matlab
VR

. The suitable choice of

filter depends very much on the particular type of

data (e.g., the shape of the tiling subunits or their

intensity variation). For the sake of brevity, we list

three filters that are commonly used in image proc-

essing applications (but perhaps less known in

organismal biology work) and that address different

problems. If the imaged material is very dense,

intensity-value shifts often occur at the image bor-

ders, in particular in the corners, so that these

regions appear considerably darker or brighter. For

this kind of problem, local normalization of each

voxel with regard to both the mean and the standard

deviation in a certain neighborhood of each voxel is

suitable (Sage and Unser 2003), as shown in Fig. 1.

One requirement for the normalization to achieve

the desired result, however, is to make each neigh-

borhood large enough so that it contains all relevant

classes of material/intensity values, ideally in consis-

tent proportion. If the data are noisy, two very pop-

ular denoising algorithms are the anisotropic

diffusion algorithm (Perona and Malik 1990) and

the non-local means algorithm (Buades et al.

2005). The first one smooths the image while pre-

serving edges in the image. The second algorithm

removes noise by averaging voxels weighted by the

similarity of intensity values in their neighborhoods.

Binary segmentation

This step separates the image into foreground and

background, where the foreground contains the

structures of interest. The simplest binary segmenta-

tion algorithm is thresholding, which divides the im-

age voxels into foreground and background

according to whether their intensity values are above

or below a certain threshold, respectively. Other

algorithms include local thresholding for each voxel

(Gonzalez and Woods 2008) and the seed-based wa-

tershed method (Beucher and Lantu�ejoul 1979)

which, in addition to the original (filtered/normal-

ized) image or its edge image (an image in which the

boundaries of the structures are highlighted), takes

some foreground and background voxels as input.

More advanced algorithms, sometimes called pixel

classifiers, “learn” to identify the foreground through

Fig. 1 General workflow for the segmentation of tiled biological tissues. Details are explained in the “Segmentation Workflow”

section. The images show the processing of the prismatic shell layer of a bivalve mollusc (Atrina rigida). It should be noted that, while

the depicted images are 2D, the data segmented are 3D (see the online version for color figure).
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training data. For example, the supervised pixel clas-

sifier implemented in the ilastik software (Sommer

et al. 2011) uses random forests (a supervised

machine-learning approach) to segment images into

different pixel classes (categories) based on interac-

tive user input. Here, the user marks certain pixels/

voxels and assigns them to specific classes (e.g., fore-

ground or background). From this classification and

a variety of local image properties, random forests

are trained that are then subsequently used to classify

all pixels/voxels of the image.

Distance transform

Distance transforms take as input a binary image

(e.g., the array of foreground pixels/voxels isolated

in the previous step) and transform it into a scalar-

valued image containing distances measured from

each pixel of the foreground to the background.

Note the color gradients in the distance-

transformed images in Figs. 1 and 2, hotter colors

indicating foreground pixels further away from the

background. Such transformed image data provide

additional information about the objects to be seg-

mented and are sometimes easier to work with in

segmentation than the original image data. A good

overview of distance transforms can be found in the

survey by Jones et al. (2006). The most popular of

these transforms is the Euclidean distance transform

(Danielsson 1980), for which efficient implementa-

tions (Jones et al. 2006) exist, e.g., in ImageJ, ITK,

and Matlab
VR

. This method measures, for each fore-

ground voxel, the shortest Euclidean distance to any

background voxel, hence its name. However, since it

measures only a single value, namely the shortest

distance, it is very sensitive to noise (Fig. 2). For

the same reason, another drawback is that it cannot

always represent/detect structural constrictions (i.e.,

narrow regions) that only occur in one spatial di-

mension, for example, if the objects are flat. Hence,

in this case, the Euclidean distance transform is

unsuitable for the purpose of separating tiled objects.

For this reason, Knötel et al. (2017) developed a

specialized distance map which measures the shortest

distance only in the plane that approximates the lo-

cal orientation of the object at each voxel (e.g., the

plane of the surface in a single layer tiling). In order

to circumvent the development of such specialized

distance transforms, we propose the use of the ran-

dom-walk distance transform (Gorelick et al. 2006),

which is far more generally applicable (i.e., allows

the determination of all kinds of constrictions) and

is also more robust against noise. This transform

computes, for each foreground voxel, the average

length over all random walks that end in a back-

ground voxel. Due to the fact that it considers

many distances instead of only a single one, a small

amount of noise does not greatly change the appear-

ance of the transform (Fig. 2). As a result, and unlike

the Euclidean distance transform, the random-walk

distance transform describes the global shape rather

Fig. 2 Comparison of Euclidean distance transform and random-walk distance transform showing the susceptibility of the Euclidean

distance transform to noise (bottom row). A portion of the tessellated cartilage dataset (see Fig. 3) is used as an example. Top row:

distance transforms and resulting segmentations for a binary segmentation without noise. Bottom row: same series as in the top row,

but for a binary segmentation with noise (note the black pores inside the foreground objects in the binary segmentation). The

segmentation resulting from the Euclidean distance transform contains errors (see arrows) that cannot be overcome by altering the

merge threshold. In contrast, the random-walk distance transform is able to produce a correct segmentation even when noise is

present and represent the global rather than the local shape of the objects to be segmented (see the online version for color figure).
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than the local one (Fig. 2). This approach also leads

to fewer oversegmented regions following the initial

segmentation (compare the segmentations resulting

from the Euclidean versus random walk distance

transforms in Fig. 2). Despite its favorable proper-

ties, to the best of our knowledge, the random-walk

distance transform has received almost no attention

with regard to object separation in volumetric data-

sets. We therefore believe the current study is the

first to demonstrate its potential as a segmentation

tool for mCT datasets.

Over-segmentation

In order to separate the individual objects of interest

using the distance transformed data generated in the

previous step, two methods can be applied: the

contour-tree segmentation and the watershed algo-

rithm. The contour-tree segmentation (Van Kreveld

et al. 1997; Carr et al. 2003) starts from the local

maxima of the distance transform, the voxels furthest

away from the background/border. From each local

maximum, a region is grown during the contour-tree

segmentation by adding voxels to it in decreasing

order of intensity values. At some point, neighboring

regions that started off from different local maxima

come into contact and then can be merged, or not,

according to some criteria. The most intuitive

method of merging is topological persistence simpli-

fication, where the degree of merging is dictated by a

single threshold (Edelsbrunner et al. 2000).

An alternative to contour-tree segmentation is the

watershed transform (Beucher and Lantu�ejoul 1979),

which starts from local minima and grows regions by

adding voxels in increasing order of intensity values.

For this approach, the distance map needs to be

inverted, converting the maxima of the distance

transform to minima. A common watershed trans-

form that considers recursive merging (i.e., succes-

sive merging steps) is called a hierarchical watershed

(Beucher 1994; Najman and Schmitt 1996).

Regardless of the segmentation tool used, it is im-

portant that the user has control over its parameters.

In particular, to attain the slightly over-segmented

dataset desired in our workflow, the degree of merg-

ing must be controllable. It is often unlikely that a

single merge threshold can be found that results in a

perfect segmentation (i.e., where all objects of inter-

est are neither merged with other objects nor sub-

divided into multiple pieces), and therefore post-

processing steps are typically necessary.

Post-processing

This step polishes the result of the previous step,

starting from the over- (or under-segmented) data

in the previous step to generate a more accurate seg-

mentation. This can be accomplished using manual

proofreading, where regions are interactively merged

or split (e.g., as would be necessary in the Euclidean

distance transform segmentation result in Fig. 2), and/

or using automatic methods that merge regions

depending on criteria other than mathematical persis-

tence (Edelsbrunner et al. 2000). One possibility to

automatically merge over-segmented objects of inter-

est is to incorporate model-based information (i.e.,

prior knowledge of the investigated system) into the

watershed algorithm (Lin et al. 2003). For example,

for the mollusc shell dataset discussed below, we use

prior knowledge of the tissue organization in the

post-processing merging step by letting the algorithm

preferably merge in the growth direction of the pris-

matic columns. Another possibility for automatic

merging is to formulate the final image segmentation

as a mathematical optimization problem that incor-

porates expert biological knowledge in the form of

mathematical constraints (Andres et al. 2011; Beier

et al. 2016). In the case studies presented here, we

perform little or no post-processing, in order to dem-

onstrate 1) the statistical robustness of the results to

normal segmenting errors, which are quite rare when

upstream workflow steps are performed carefully; and

2) examples of the types of errors that require post-

processing (see Figs. 2 and 3D).

Case studies

We apply the workflow to three separate mCT data-

sets: a complete stingray hyomandibula, covered in

mineralized tesserae; the entire dermal endoskeleton

of a starfish; and the prismatic layer from a portion

of a bivalve mollusc shell. Each dataset contains

thousands of structural elements, yet it should be

stressed that the analyses reported here are for indi-

vidual specimens and therefore should not be extrap-

olated to species-level implications. Unless otherwise

mentioned, all data processing and volumetric image

rendering was performed with an extended version

of the Amira software (AmiraZIBEdition 2019.14)

(Stalling et al. 2005), in which we implemented the

random-walk distance transform. However, many of

the segmentation and transformation tools discussed

here can also be found in a variety of platforms

designed for image analysis. In particular, several

image filters, the Euclidean distance transform, and

the watershed algorithm are available in platforms

such as ImageJ, ITK, and Matlab
VR

, as mentioned

above. Manual proofreading requires more special-

ized 3D image segmentation software (e.g., Amira,

VGStudio MAX) and the random-walk distance
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transform is not available in these platforms as stan-

dard. It is our hope that the current work will en-

courage the wider inclusion of this tool in image

segmentation platforms.

Processing was performed on an Ubuntu system

with two Intel(R) Xeon(R) CPU E5-2650 v2 at

2.60GHz (8 cores each), 64 GB of RAM, and a

GeForce GTX 1080 Ti graphics card. For each dataset,

we demonstrate the power of high-throughput seg-

mentation through basic downstream morphological

analyses, quantifying biologically-relevant aspects of

the segmented objects en masse.

Fig. 3 Shape, size, and density quantification of stingray tesserae. (A) A microCT scan of the skeleton of a stingray (Urobatis

halleri) shows the hyomandibula (B), the skeletal element investigated. Tesserae covering the surface of the skeleton (B-inset) were

segmented (C) using the proposed workflow, allowing quantification of all tesserae in a high-throughput fashion in terms of (D) tesseral

volume, number of neighbors/sides, and (E) average intensity value. Tesserae in D and E are color-coded according to scales

at the bottom of each image; the pie chart in D shows the proportion of each tile shape in the full dataset. In D, note the under-

segmented label containing two connected tesserae, marked by the white arrow in the inset; this segmenting error was easily

identified as an outlier in volume and neighbor analyses, allowing targeted repair in manual proofreading (see the online version for

color figure).
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Shark and ray tessellated cartilage

Background

The skeletons of all living sharks and rays are char-

acterized by a distinct surface tiling (Dean et al.

2009; Seidel et al. 2016; Jayasankar et al. 2017;

Knötel et al. 2017; Fig. 3A, B). Unlike most other

fishes, which have skeletons composed of bone,

shark and ray skeletons are cartilaginous, comprised

of a cartilage similar to human hyaline cartilage.

Sandwiched between the cartilage and the outer fi-

brous wrapping of the skeleton (the perichondrium),

however, is a layer of mineralized tiles called tesserae.

Tesserae are typically hundreds of micrometers wide

and thick and cover the surface of nearly the entire

skeleton (excepting the centra of the vertebrae),

meaning that even a small skeletal element such as

the stingray hyomandibula in Fig. 3B (�1.5 cm long)

is armored by several thousand tesserae (Knötel et al.

2017). Although tesserae have characterized shark

and ray cartilage for hundreds of millions of years,

the patternings and variations of the tessellation have

not been quantified due to the challenges of imaging

and analyzing the network on a large scale. As a

result, for example, although the shape of tesserae

have been visualized in a variety of techniques,

from camera lucida drawings to light microscopy

to mCT images (see references in Dean et al.

[2009] and Seidel et al. [2016]), there are still no

quantifications of the shape variation of tesserae

over size scales relevant to understanding the role

tesserae play in the growth and mechanics of the

skeleton.

Scanning method

For the current work, we scanned a single hyoman-

dibula from a Haller’s stingray (Urobatis halleri, sub-

adult male, 11 cm disc width) with a Skyscan 1172

desktop mCT scanner (Bruker lCT, Kontich,

Belgium), with scanning parameters as described in

previous studies (Seidel et al. 2016; Knötel et al.

2017). The resultant reconstructed voxel size was

9.78 lm after resampling.

Segmentation method

Pre-processing and binary segmentation was per-

formed as described in Knötel et al. (2017). On the

binary segmentation, the random-walk distance

transform was computed and the segmentation was

carried out using contour-tree segmentation with a

persistence threshold of 0.15. No post-processing was

done for this dataset. The whole segmentation pro-

cess took <2 h as opposed to several days that would

be needed when doing the processing manually

(Knötel et al. 2017).

Results and discussion

A vital step in understanding the functional role of

tesserae in tessellated cartilage is mapping their

arrangements and geometries and determining how

they vary (e.g., within skeletal elements or individuals,

or among individuals or species). Our current analysis

provides the first window into the topological arrange-

ments of tesserae over an entire portion of the skele-

ton. Our segmentation (Fig. 3C) isolated 2,768 tesserae

covering the surface of the hyomandibula, with dimen-

sions (2056 42mm wide�77 6 24mm thick, maxi-

mum: 453�247mm) that are in keeping with those

previously reported for tesserae of this species (Dean

et al. 2009; Seidel et al. 2016).

Our analysis used the number of neighbors sur-

rounding a tessera as a proxy for tesseral geometry

(i.e., the number of sides). In this dataset, tesserae

had as many as eight sides and as few as four, but

six-sided tesserae predominated (1,282 or 47% of

segmented tesserae; Fig. 3D). The demonstrated ge-

ometries indicate that tesserae tile the surface of this

hyomandibula, on average, with a hexagonal packing

arrangement, where local “defects” in the tessellation

(non-hexagonal tesserae) are balanced (i.e., with five-

sided tesserae nearby to seven-sided ones; Fig. 3D).

This is similar to the mean hexagonal packings seen

in the lattice networks of honeycombs and graphite

crystals (Hillert 1965). The distribution of tesseral

shapes in this dataset is slightly left-skewed to geom-

etries with fewer sides (i.e., more five- than seven-

sided tesserae) resulting in tesserae having an average

of 5.84 neighbors/sides. This slight bias toward five-

sided tiles indicates that tesserae here follow topo-

logical laws for the covering of a “closed” shape by a

continuous tiling, where the insertion of five-sided

tiles can allow otherwise hexagonal tilings to cover

surfaces with positive Gaussian curvature (e.g., as in

the mix of pentagons and hexagons on a soccer ball)

(Kotschick 2006).

Although there were no obvious trends to the dis-

tributions of tesserae of different geometries in this

dataset when these were color-coded on the hyoman-

dibula (Fig. 3D), we observed two distinct trends

linked to tesseral shape. First, tesserae with more sides

were larger, with the volume of eight-sided tesserae

on average >3.2� larger than that of four-sided tes-

serae (Fig. 3D). Second, tesserae with more sides had

higher average grayscale intensity values (a proxy for

tissue mineral density; Stock 2008), with those of

eight-sided tesserae on average 10% higher than those

of four-sided tesserae (Fig. 3E). As sharks and rays
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age, tesserae increase in size by accreting mineral at

their margins (Dean et al. 2009; Seidel et al. 2016).

Our current analysis suggests that larger (older) tes-

serae are also those with more sides, indicating that

such high-throughput segmentations may be effective

for quickly highlighting older regions of the skeleton.

We explore these and other growth relationships in an

ongoing work, where several datasets are analyzed and

compared in tandem.

Starfish dermal ossicles

Background

Echinoderms (starfish and their relatives) all possess

an endoskeleton, comprised of mineralized ossicles

embedded in the dermis. There is an incredible di-

versity of ossicle form, connectivity, and organiza-

tion among taxa. Dermal ossicles can be either

loosely distributed as in the sea cucumbers

(Holothuroidea), organized into serially repeating

units as in the brittle stars (Ophiuroidea) and feather

stars (Crinoidea), or fused into a rigid hemispherical

shell-like structure as in the sea urchins (Echinoidea)

(Brusca et al. 2016). Since ossicle architecture plays a

critical role in species identification and for inform-

ing evolutionary relationships between echinoderms

(Pisera 1979), the ability to reliably depict the spatial

relationships of the constituent skeletal elements in

the mature skeletal systems is critical.

In the fossil record, echinoderm skeletons are often

found disarticulated, represented only by isolated

ossicles. While skeletal reconstructions from isolated

ossicles can be routinely performed in some groups

with only limited prior information (e.g., due to the

relatively simple and/or intuitive relationships of the

ossicles) (Brower and Veinus 1978), the starfish

(asteroidea) represent a notable exception. In starfish,

the thousands of individual ossicles are assembled

into a complex, loosely articulated network, which

encloses the internal organs in a flexible, but protec-

tive cage (Blowes et al. 2017). Because of this struc-

tural complexity, CT scans of starfish skeletons can be

notoriously difficult to interpret, and it is virtually

impossible to infer any useful information regarding

skeletal organization from the examination of disar-

ticulated starfish skeletal systems. Due to these limi-

tations, the ability to differentially label specific ossicle

types in mature starfish skeletal systems is of great

value for understanding structure–kinematic relation-

ships in these complex mineralized networks.

Scanning method

A 7 cm-diameter (arm tip to arm tip), ethanol-

preserved starfish (Pisaster giganteus) from the tem-

perate Eastern Pacific was fixed between two

low-electron density foam plates and scanned in an

XRA-002 X-Tek micro-CT system at 115 keV and

80lA. The resulting transmission image set

was reconstructed using CT-Pro software

(NikonMetrology) with a final voxel size of 38 lm,

and the resulting image stack was exported using

VGStudio Max.

Segmentation method

No pre-processing was performed for this dataset. To

hone in on an effective segmentation, the computa-

tion of the binary segmentation and the random-walk

distance transform were repeated for multiple

intensity-value thresholds, ranging from 22,000 to

30,000 in steps of 100. For each threshold, the ran-

dom-walk distance map was computed and normal-

ized to the range from 0.0 to 1.0. All normalized

distance maps were averaged and the result was

used as input to the contour-tree segmentation. We

used the segmentation where no merging of any kind

was performed, and the segmentation was not post-

processed in any way. Very small, unconnected com-

ponents (which corresponded to the pedicellaria)

were removed in order to retain only the major skel-

etal ossicles, resulting in the segmentation depicted in

Fig. 4B, which consists of approximately 15,000 seg-

ments. The different ossicle types were then manually

classified based on shape and position (Fig. 4C).

Results and discussion

The computation of a large number of binary seg-

mentations and their respective random-walk dis-

tance maps helped identify constrictions (narrow

connections) between adjacent ossicles that were

only visible for certain intensity-value thresholds.

In this way, we were able to first semi-

automatically isolate �15,000 individual objects,

most of which representing complete ossicles of the

skeleton, and then classify and color code the ossicles

based on their specific morphologies and locations.

This proved particularly useful in effectively demon-

strating large-scale skeletal symmetry (Fig. 4D), but

also allowed rapid quantification and comparison of

ossicle features (e.g., grayscale intensity values,

Fig. 4C). In addition to providing an intuitive illus-

tration of the distribution of the different ossicle

types, this approach also yielded some unexpected

results such as the discovery of the kinked and bi-

furcated organization of the (blue) carinal ossicles in

the right arm in Fig. 4D. These results suggest either

a developmental anomaly or perhaps evidence of sig-

nificant damage incurred early in life, and could thus

be used as a potential proxy for mapping out the

prevalence of injuries in starfish populations. Due to
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its ability to efficiently clarify network connectivity

in asteroid skeletal systems, we are currently adapt-

ing this approach for investigating skeletal matura-

tion and growth stages in a single species, and for

comparing skeletal articulation patterns in closely or

distantly related species.

Prismatic ultrastructure in mollusc shells

Background

Mollusc shells are comprised of highly mineralized

tissues, primarily composed of calcium carbonate

building blocks, in the form of needles, platelets, or

columns, joined together by an organic matrix

(Bøggild 1930). Providing the animals with protec-

tion against predation, these shells exhibit a unique

combination of high strength, high stiffness, and

high toughness that is believed to stem from the

spatial organization of the different tissue compo-

nents. As a result, mollusc shells often serve as model

systems to study structure–function relationships in

biological materials (Currey and Taylor 1974).

Typically, shells are made of a number of discrete

mineralized ultrastructures, arranged in layers paral-

lel to the outer surface of the shell. Each layer exhib-

its distinctive morphological characteristics: in the

shape and the size of the mineral building blocks,

and the thickness of the organic matrix that binds

them (Currey and Taylor 1974). For example, some

bivalve shells (Fig. 5A) contain an internal nacreous

ultrastructure that is composed of mineral platelets

(�1 mm thick) separated by a small amount of or-

ganic material (�40 nm thick) to form a brick-and-

mortar-like assembly, and an external prismatic layer

(Fig. 5B) that is made of elongated columns joined

by a relatively thick (�1mm) organic interprismatic

matrix (Currey and Taylor 1974; Bayerlein et al.

2014). The three-dimensional distribution of the dif-

ferent components is key to the mechanical perfor-

mance of both tissue layers and of the entire shell

(e.g., Frølich et al. 2017). Whereas 3D morphological

studies of nacre are extremely challenging due to the

exceedingly small dimensions of the organic phase,

the architecture of the prismatic layer is a perfect

Fig. 4 Endoskeleton segmentation and ossicle-type color-coding in starfish. Using mCT data of the entire dermal endoskeleton of

Pisaster giganteus (A), the individual ossicles can be readily identified (B). Using morphology-based classification schemes, the different

ossicle classes can be segregated and their average electron density profiles (proxy for porosity and mineral density) calculated (C).

The resulting ossicle groupings can then be color-coded for the entire skeletal system (D) (see the online version for color figure).
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candidate for X-ray-based microtomography imaging

(Bayerlein et al. 2014; Reich et al. 2019).

Scanning method

The prismatic layer of the shell of Atrina rigida

(Nudelman et al. 2007) was studied by

synchrotron-based microtomography at beamline

ID19 of the European Synchrotron Radiation

Facility (ESRF, Grenoble, France) (Fig. 5A and B).

The samples were scanned using an X-ray photon

energy of 34 keV at a sample detector distance of

91 mm. A total of 5000 radiographic projections

were recorded over 180 degrees with an exposure

time of 0.1 s. A multilayered monochromator was

used to narrow the bandwidth of the radiation im-

pinging on the sample and ESRF in-house code

(PyHST2) was used to reconstruct the data. Simple

back-projection reconstruction was used for

automated data processing. The grain-boundary con-

trast was enhanced by Paganin-based filtering. Thus,

a spatial resolution high enough to resolve the dif-

ferent prismatic mineral units was achieved, with a

voxel size of 0.649mm. To allow for faster processing,

the dataset was resampled to a voxel size of

1.298mm.

Segmentation method

The major steps of the processing pipeline for this

dataset are depicted in Fig. 1. Pre-processing con-

sisted of application of the Local Normalization

ImageJ plugin (Sage and Unser 2003). Binary seg-

mentation was performed using simple thresholding.

To compute the over-segmentation, the random-

walk distance transform was computed on the binary

segmentation, followed by contour-tree segmentation

without persistence merging. In the post-processing

Fig. 5 Growth analysis of the prismatic ultrastructure in (A) the mineralized shell of the bivalve Atrina rigida. (B) A 3D reconstruction

obtained from the segmented microtomography data of the prismatic ultrastructure. The growth direction of the shell in thickness is

denoted by the z axis. (C) The radius of all segmented prisms as a function of thickness of the prismatic layer, z. The black curve

represents the average prism radius in the entire prismatic tissue. The radius of each prism was calculated as prism-area-equivalent

circles using R¼�(A/p). (D) 2D microtomography sections obtained perpendicular to the growth direction of the prismatic layer at

different thicknesses, z. (E) A 3D reconstruction obtained from the segmented microtomography data of only the shrinking prisms. (F)

Rate of radius change of the shrinking prisms as a function of their relative curvature. Despite the large data spread, a linear trend is

observed. In C and D, blue and orange represent growing and shrinking prisms, respectively (see the online version for color figure).
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step, the over-segmented regions were merged into

full prisms with a newly developed algorithm that

allowed directed merging, preferentially in the direc-

tion of the prismatic columns (the growth direction

of the prisms); this ensured that, when merging the

over-segmented portions of a single prism, neighbor-

ing prisms would not be included accidentally.

Parameters for this algorithm were set manually

based on visual inspection of the results. Details of

this algorithm will be presented elsewhere since it is

out of the scope of this article. Finally, some remain-

ing, still-broken prismatic columns were manually

merged. Post-processing took less than 1 h.

Results and discussion

Recent studies of the structural and textural evolu-

tion of different biomineralized shell ultrastructures

suggest that classical concepts from the field of phys-

ics of materials have the capacity to analytically de-

scribe the morphogenesis of molluscan shells

(Schoeppler et al. 2018; Reich et al. 2019).

Focusing on the prismatic architecture in the shells

of a variety of organisms, these studies have demon-

strated that by following the growth of individual

prisms and the average coarsening behavior of the

entire prismatic assembly (i.e., the degree to which

prisms increase in cross-sectional area as a function

of the thickness of the prismatic layer), we can quan-

tify the different thermodynamic boundary condi-

tions that are responsible for the formation of

species-specific prismatic morphologies.

Our segmentation of a portion of the prismatic

layer of A. rigida shell (Fig. 5A) isolated over 1,400

unique prisms, allowing aspects of their morphology

to be analyzed in a high-throughput fashion

(Fig. 5B–F). The whole segmentation process, includ-

ing post-processing, required approximately 3 h; by

comparison, segmenting 18 prisms manually in a

previous study required approximately 1 week

(Bayerlein et al. 2014). Measurements taken on the

current dataset provide unique information on prism

morphogenesis when considered in the scope of

grain growth and coarsening theories, which were

classically developed to describe the behavior of ge-

neric polycrystalline structures during annealing

(Atkinson 1988). For example, using a curvature-

driven grain growth model, Hillert (1965) argued

that the growth of a single grain in a polycrystalline

system during coarsening (an increase in average

grain size) could be predicted by the average mor-

phology of all grains in the structure. Specifically, he

hypothesized that if the size of a specific grain is

larger than the average size of all the grains in the

material, it will grow, and if its size is smaller than

the average, it will shrink and disappear. The pris-

matic layer of A. rigida shells offers an important

biological system for testing this prediction, since

the change in the morphology of the individual

prisms along their length (their growth axis) can

be used to understand the growth dynamics of the

entire prismatic array over time (Fig. 5C, D).

Hillert’s prediction was supported in previous shape

analyses of a small number of isolated prisms from

the prismatic layer of the shells of other molluscan

species (Bayerlein et al. 2014); however, our current

data from the prismatic layer of A. rigida confirm

that this prediction also holds for prisms on a mas-

sive, more tissue-relevant scale (i.e., for more than

one thousand individual prisms; Fig. 5C). In addi-

tion, Hillert proposed a linear relationship between

the rate of growth or shrinkage of an individual

grain and its curvature. Similarly, our data from all

investigated prisms corroborate this prediction for all

the segmented shrinking prisms (Figs. 5E and 5F).

Further analyses of these data are ongoing, using a

variety of analytical correlations for average coarsen-

ing behavior, such as the curvature-driven growth

model, in conjunction with other geometrical and

topological theories, having the capacity to provide

fundamental knowledge on the process of molluscan

shell biomineralization.

Conclusion

Our proposed workflow—incorporating a series of

common image analysis tools—is capable of seg-

menting quite different types of structurally-

complex, biological datasets with a speed and quality

that allows statistical analysis of huge numbers of

data points. Our three case studies demonstrate the

efficacy of the workflow, while also highlighting sev-

eral particular features for consideration:

– Our segmentation of stingray tesserae produced

results quite similar to those obtained in a pre-

vious work (Knötel et al. 2017), where a specific

distance transform was deemed necessary to ac-

count for particular aspects of tissue morphology.

That the random-walk distance transform was

effective without specific implementation shows

that it can be considered as a very general tool

for object separation and therefore can be useful

for quite different types of data.

– Our starfish endoskeleton segmentation allowed

effective and rapid identification of a huge num-

ber of ossicles, yet required manual selection of

series of ossicles during the classification process.

Ideally, such manual steps would be avoided

by involving a supervised automatic pre-
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classification step, where manual classification

would only be performed for a rather small num-

ber of ossicles based on several diagnostic prop-

erties (e.g., intensity/density, geometry, size), and

then the manually-classified ossicles would act as

training sets for semi-automatic classification of

the remaining ossicles. We are planning this in

future work.

– In our Atrina segmentation, knowledge of the

biological system proved necessary to achieve a

largely automated, high-quality segmentation,

guiding “smart” merging of prisms in a

physiologically-relevant orientation (i.e., the di-

rection of growth). This approach demonstrates

how, even in workflows that rely on manual seg-

mentation to a very small degree, “expert knowl-

edge” of a system can play an important role,

through the incorporation of system-specific

rules into the segmentation process or a down-

stream (semi-)manual proofreading step.

We hope that our presentation of this workflow

will make modern segmentation approaches more vis-

ible and accessible to a wider audience, while encour-

aging interdisciplinary collaborations for visual data

analysis problems in biological systems. We believe

such cross-disciplinary interactions are the key for

more effective visual data processing and, thereby,

richer, more statistically-powerful data analyses.
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Probabilistic image segmentation with closedness con-

straints. 2011 International Conference on Computer

Vision. Barcelona, Spain: IEEE. p. 2611–8.

Atkinson HV. 1988. Theories of normal grain growth in pure

single phase systems. Acta Metallur 36:469–91.

Bayerlein B, Zaslansky P, Dauphin Y, Rack A, Fratzl P,

Zlotnikov I. 2014. Self-similar mesostructure evolution of

the growing mollusc shell reminiscent of thermodynami-

cally driven grain growth. Nat Mater 13:1102.
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