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Simple Summary: Bladder cancer (BC) development is highly related to immune cell infiltration.
In this study, we aimed to construct a new classification of bladder cancer molecular subtypes
based on immune-cell-associated CpG(Methylation) sites. The classification was accurate and stable.
BC patients were successfully divided into three subtypes based on the immune-cell-associated CpG
sites. The clinicopathologic features, distribution of immune cells, level of expression of checkpoints,
stromal score, immune score, ESTIMATEScore, tumor purity, APC co_inhibition, APC co_stimulation,
HLA, MHC class_I, Type I IFN_respons, Type II IFN response, and DNA stemness score (DNAss)
presented significant differences among the three subgroups. The specific genomic alteration was
also different across subgroups. High-level immune infiltration showed a correlation with high-level
methylation. A lower RNA stemness score (RNAss) was associated with higher immune infiltration.
Cluster 2 demonstrated a better response to chemotherapy. The anti-cancer targeted drug therapy
results are different among the three subgroups.

Abstract: Background: Bladder cancer is highly related to immune cell infiltration. This study
aimed to develop a new classification of BC molecular subtypes based on immune-cell-associated
CpG sites. Methods: The genes of 28 types of immune cells were obtained from previous studies.
Then, methylation sites corresponding to immune-cell-associated genes were acquired. Differentially
methylated sites (DMSs) were identified between normal samples and bladder cancer samples.
Unsupervised clustering analysis of differentially methylated sites was performed to divide the
sites into several subtypes. Then, the potential mechanism of different subtypes was explored.
Results: Bladder cancer patients were divided into three groups. The cluster 3 subtype had the best
prognosis. Cluster 1 had the poorest prognosis. The distribution of immune cells, level of expression
of checkpoints, stromal score, immune score, ESTIMATEScore, tumor purity, APC co_inhibition, APC
co_stimulation, HLA, MHC class_I, Type I IFN Response, Type II IFN Response, and DNAss presented
significant differences among the three subgroups. The distribution of genomic alterations was
also different. Conclusions: The proposed classification was accurate and stable. BC patients could
be divided into three subtypes based on the immune-cell-associated CpG sites. Specific biological
signaling pathways, immune mechanisms, and genomic alterations were varied among the three
subgroups. High-level immune infiltration was correlated with high-level methylation. The lower
RNAss was associated with higher immune infiltration. The study of the intratumoral immune
microenvironment may provide a new perspective for BC therapy.
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1. Introduction

Recently, diverse immunotherapy methods have been proven to successfully treat numerous
lethal cancers [1]. These included cytokine treatment, cellular therapy, immune checkpoint blockades,
and therapeutic vaccines [2]. Immune checkpoint inhibitors showed remarkable anti-tumor functions
in several human cancers, including programmed cell death protein 1 (PD-1), cytotoxic T lymphocyte
antigen-4 (CTLA-4), and PD-1 ligand (PD-L1) antibodies [3–5]. The FDA has approved two cytokines
as anti-tumor agents against kidney cancer and metastatic melanoma [6]. Preventive and therapeutic
anticancer vaccines have a significant anti-tumor function in several cancers, such as hepatitis
B virus vaccine [7], Sipuleucel-T, human papillomavirus vaccine [8], and GVAX vaccine [9,10]. There
is a remarkable heterogeneity in the response rates to treatment across individuals, yet not all
immunotherapy is successful in treating patients [2].

A previous study also revealed the interaction of various immune cells and signaling pathways
between the tumor and immune cells [11]. There are several types of immunotherapy strategies to treat
bladder cancer (BC); for instance, treating high-risk non-muscle invasive bladder cancer (NMIBC) with
intravesical administration of the Bacillus Calmette-Guerin (BCG) [12]. BCG is a standard practical
therapy in NMIBC [13], but, unfortunately, 25–45% of patients with high-risk papillary tumors or
carcinoma in situ did not benefit from BCG therapy [14]. Several immune checkpoint inhibitors
have been utilized to treat BC. Among them, atezolizumab, avelumab, durvalumab, nivolumabis,
and pembrolizumab were recommended for patients with advanced or metastatic tumors [15,16].
In addition, the inhibition of CTLA-4, including ipilimumab and tremelimumab, was suggested to
increase the immune response of BC [17]. Finally, intravesical interleukin 12 (IL-12) activates the
immune system and weakens the status of immunosuppression in tumor cells [18]. However, not all
patients have the same response to the above kinds of therapy [17]. Similarly, research reported that
only approximately 20% of patients can benefit significantly from immunotherapy [19,20]. Therefore,
accurate classification methods must be developed to help to enhance the optimal scheme of BC
patients’ responses to immunotherapy.

Tumor infiltrating lymphocytes (TIL) have an important role in the chemotherapy response
and in enhancing the clinical effect in all subtypes of breast cancer [21]. Furthermore, two previous
studies proved that high immune cell infiltration was associated with a favorable prognosis after
chemotherapy [22,23]. Besides, two previous studies reported that the basal subtype of muscle invasive
bladder cancer with immune infiltration had a sensitivity to chemotherapy [24,25].

The treatment response and prognosis of patients were predicted by immune cells with the current
molecular stratification of BC patients [26]. In contrast to that study, our study had some differences as
follows. The first difference is that we analyzed based on multi-omics, including DNA methylation,
RNA, DNA mutations, and copy number variations. The second difference is that we divided the
bladder cancers into three subtypes based on methylation. The third difference is that they did not
show any clinical implications regarding their classification. In our study, BC was divided into three
distinct subtypes based on immune cell-related methylation site profiles. The three methylation site
subtypes are associated with different molecular features, cellular properties, and clinical outcomes.
In fact, the classification of immune-related methylation site subtypes may help to enhance the optimal
scheme of BC patients that are responsive to immunotherapy.

2. Results

2.1. Three Subgroups Based on Differentially Methylated Sites (DMSs)

Seven hundred and eighty-two immune cell biomarker-associated genes were selected from
previous studies [27], and 8703 corresponding immune cell biomarker-associated methylation sites
were acquired. The parameter of infiltration was an adjusted p-value < 0.05 and |deltabeta| > 0.2. Seven
hundred and fifteen DMSs were identified between normal samples and tumor samples (Figure 1A).
Probes revealing the p-value < 0.05 and deltabeta > 0.2 were defined as hypermethylated, and those
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with a p-value < 0.05 and deltabeta < 0.2 were defined as hypomethylated. A total of 553 DNA
hypomethylation sites and 162 hypermethylation sites were obtained.

Figure 1. Three subgroups based on differentially methylated sites. (A). 715 DMSs between normal
samples and bladder cancer samples. (B). The consensus clustering of 715 DMSs was divided into
three CpG subgroups. (C). The heatmap of methylation based on 715 DMSs. (D). Principal component
analysis (PCA) validated the stability of the classification.

2.2. Classification of Methylation Subtypes of BC

The consensus clustering of 715 DMSs was classified into three subtypes (Figure 1C). Cluster 1
showed mid-range-methylation, cluster 2 showed the highest methylation level, whereas cluster 3 had
the lowest methylation. Principal component analysis (PCA) was utilized to check the stability of the
consensus classification (Figure 1D).

The overall survival (OS) curve of BC subsets was obtained using the Kaplan–Meier method
(Figure 2A). Cluster 1 had the poorest prognosis. Cluster 3 had the best prognosis. Next, we carried
outonducted a log-rank test between each pair of subtypes and found a significant difference
only between clusters 1 and 3 (p-value was 0.009). However, several studies reported that it was
unnecessary that there was a significant difference between each pair of clusters [25,28–30]. Furthermore,
the sub-sequence analysis showed that the bio-mechanism had significance, and the clinical significance
was different among the three subgroups. Therefore, we divided the BC into three clusters.

In our study, a barplot demonstrates the relationship between the clinical traits and the biological
characteristics of the subtypes (Figure 2B–H). Excluding age, the other clinicopathologic features had
significant differences among the three subgroups. Our results show that Cluster 3 had more stage I,
more low-grade types, and less T3.
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Figure 2. The overall survival (OS) curve and clinicopathologic features. (A) Overall survival curve.
(B–H) Clinicopathologic features among the three subgroups.

2.3. Identifying Different Methylation Levels and Distinct Gene Expression Levels of the Different Subgroups

We compared the DNA methylation level and immune gene levels among the three subgroups
using the chi-square test with p-value < 0.05. Figure 3A shows the differentially immune cell
biomarker-associated methylation levels. Cluster 1 revealed a mid-range-methylation level, cluster 2
revealed the highest methylation level, and cluster 3 revealed the lowest methylation level. The results
in Figure 3A are consistent with Figure 1C. The DNA methylation levels provided significant differences
among the three subgroups. We also found significantly different immune gene levels across the three
subgroups (Figure 3B).

Figure 3. Methylation level and gene level. (A). Gene level among the three subgroups. (B). Methylation
level among the three subgroups. Three asterisks indicate a p-value less than 0.001.

The methylation expression in one subgroup was compared with the rest of the subgroups using
the Wilcox test. Consequently, we found 14, 540, and 136 methylation sites with higher expression
levels in cluster 1, cluster 2, and cluster 3, respectively. Fourteen methylation sites overlapped between
subtypes cluster 1 and cluster 2. However, no overlapped methylation sites were identified in the
remaining cluster-pairs.

2.4. Immune in Different Subgroups

In Figure 4A, cluster 1 had mid-range immune infiltration. The correlation with high immune
infiltration is shown in cluster 2, unlike cluster 3, which had low immune infiltration. The immune
infiltration was compared among the three subtypes, and there were remarkable differences among
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these subtypes (Figure 4B). Evidently, the immune checkpoints demonstrated significant differences
among these subtypes (Figure 4E).

Figure 4. Immune status among the three subgroups. (A) Immune cell infiltration among the
three subtypes. (B). Immune cells the among three subgroups. (C,D) Innate immune cells
and adaptive immune cells among the three subgroups. (E) Immune checkpoints among the
three subsets. (F–I) The immune microenvironment among the three groups. Three asterisks indicate
a p-value less than 0.001. Two asterisks indicate a p-value less than 0.01.

2.5. Tumor Microenvironment (TME)

The tumor microenvironment contains stromal cells, tumor cells, and immune cells. The higher
the stromal score and immune score, the lower the purity of the tumor. As shown in Figure 4F–I,
cluster 2 presented the highest stromal score, immune score, ESTIMATEScore, and the lowest purity
of tumor. On the contrary, cluster 3 had the lowest stromal score, immune score, ESTIMATEScore,
and the highest tumor purity.

2.6. Single Sample Gene Set Enrichment Analysis (ssGSEA)

The biomarkers of APC co_inhibition, APC co_stimulation, endothelial cells, fibroblasts, HLA,
inflammation-promoting, MHC class_I, Type I IFN_Response, and Type II IFN Response were
significantly different among these subtypes (Figure 5).

2.7. Comparing with the Other Classification

As shown in Figure 6, cluster 3 had the highest luminal marker expression and the lowest
squamous and neuronal differentiation marker expression. Cluster 2 had the highest basal and EMT
Claudin marker expression.

2.8. DNAss and RNAss among Subgroups

The DNA hypermethylation of those promoter genes suppressed the gene expression, which,
in turn, benefited the cancer cells. Therefore, down-regulation of those genes may lead to the occurrence
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of cancer stem and progenitor cells by DNA hypermethylation [31,32]. RNAss and DNAss were the
lowest in cluster 2 in Figure 7.

Figure 5. Immune-related molecular biomarkers among the three clusters. (A) MHC_class_I.
(B) Type_I_IFN_Response. (C) Type_II_IFN_Response. (D) APC_co_inhibition. (E) APC_co stimulation.
(F) HLA. (G) Endothelial cells. (H) Fibroblasts. (I) Inflammation-promoting. Three asterisks indicate a
p-value less than 0.001. Two asterisks indicate a p-value less than 0.01. Ns indicates no significance.

Figure 6. The bio markers of other subtypes among three subgroups. (A–F) The biomarkers of other
subtypes among three subgroups. Three asterisks indicate a p-value less than 0.001. Two asterisks
indicate a p-value less than 0.01. One asterisk indicates a p-value less than 0.05. Ns indicates
no significance.
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Figure 7. RNA stemness score and DNA stemness score. (A,B) RNAss and DNAss among the three
subgroups. Three asterisks indicate a p-value less than 0.001. Ns indicates no significance.

2.9. Analysis of Mutations and CNVs among the Three Subgroups

A total of thirty immune-cell-associated genes with the highest mutation proportion in each
subtype are shown in Figure 8A–C. A further fifty-eight immune-cell-associated genes were identified
from the above thirty genes in each subgroup. Together, the results show that there was less overlap
among the three subtypes (Figure 8A–C). In additional, the mutations of ITGA9, ENG, EVI5, ATIC,
and FZD2 in cluster 1 were significantly higher than those in other subtypes. The mutations of CTSZ,
HOXA1, and KLRF1 in cluster 2 were significantly higher as well compared with those in other
subtypes. Likewise, the mutations of DLC1, OSBPL1A, RRP12, C3AR1, MPZL1, and ITK in cluster 3
were significantly higher than those in other subtypes. TMB had a significant difference only between
cluster 1 and cluster 2. (Figure 8D).

Figure 8. Mutations and CNV. (A) Immune-cell-associated gene mutations in cluster 1.
(B) Immune-cell-associated gene mutations in cluster 2. (C) Immune-cell-associated gene mutations
in cluster 3. (D) TMB among the three subtypes. Two asterisks indicate a p-value less than 0.01.
Ns indicates no significance. (E–G) Immune-cell-associated gene CNVs in the three subgroups.

Finally, the CNV data were analyzed, and 391 normal tissue and 410 tumor tissue were extracted.
In a comparison of CNV data of one group with the other two groups (cluster one, two, and three)
(Figure 8E), the results were as follows. The CNV data in one subgroup were compared with the other
two subgroups. One gene with significant copy number gains was in cluster 1, and three genes with
significant copy number losses were in cluster 1. Figure 8F shows four genes with significant copy
number gains and one gene with significant copy number losses in cluster 2. In Figure 8G, there are
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two genes with significant copy number gains and four genes with significant copy number losses in
cluster 3.

2.10. Clinical Implications Regarding Our Classification

We analyzed chemotherapy’s impact on the three subgroups. Three hundred and ninety-eight
cases were treated using chemotherapy in this study. Almost half of the unknown therapy information
was in cluster 3 (Table 1), and cluster 3 had the highest luminal biomarker expression and lowest
immune infiltration, which demonstrated that the luminal subtype had a good survival rate with and
without neoadjuvant chemotherapy [33]. Therefore, we only compared the chemotherapy information
and overall survival rate between cluster 1 and cluster 2. In this study, 80.2% of patients in cluster 2
received chemotherapy, and 95.9% of patients in cluster 1 received chemotherapy.

Table 1. Response to chemotherapy. CPD represents clinical progressive disease, CR represents
complete response, PR represents partial response, and SD represents stable disease.

Variant Cluster 1 (Cases) Cluster 2 (Cases) Cluster 3 (Cases)

CPD 48 27 35
CR 55 46 16
PR 34 2 16
SD 30 2 9
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CPD represents clinical progressive disease, CR represents complete response, PR represents
partial response, and SD represents stable disease. In patients of cluster 2, 59.7% reached a CR after
chemotherapy, while in patients of cluster 1, only 32.9% reached a CR. We found that 62.3% of patients
of cluster 2 had a response to chemotherapy, which included CR and PR; However, 53.2% of patients in
cluster 1 had a response to chemotherapy. In addition, Kaplan–Meier analyses showed that cluster 2
had more improvement in the overall survival after chemotherapy (Table 2 and Figure 1). All the above
results demonstrate that cluster 2 had a higher improvement in the overall survival after chemotherapy.

Table 2. Kaplan-Meier analyses. Kaplan–Meier analyses between cluster 1 and cluster 2.

Test p-Value

Log Rank 0.058
Breslow 0.027

Tarone-ware 0.029

3. Discussion

In recent years, there has been increased interest in DNA methylation alteration as altered DNA
methylation patterns are hallmarks of tumors. Typically, unmethylated promoters may change into
densely methylated forms such as tumor suppressors which will facilitate gene silencing [32]. Other
sequences may alter into hypomethylated forms in tumors, which results in the abnormal activation
of genes that are usually suppressed by DNA methylation [34]. Hypermethylation events have also
been reported to be biomarkers of human tumors, for an early examination of blood, urine, and other
body fluids for prediction of the response and prognosis of treatment and for monitoring cancer
recurrence [35].

To understand the mechanism of cancer, help guide therapy, and improve prognoses, it is vital to
identify accurate subtypes. Several studies reported identifying subtypes based on DNA methylation,
including colon adenocarcinoma [36], cervical cancer [37], glioblastoma [38], and bladder cancer [39].
This study divided BC into three distinct subtypes based on the immune-cell-related methylation
profiles (Figure 1B–C). To check for the stability and probability of the classification, PCA was utilized
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to validate the stability of the classification (Figure 1D), thus proving that the classification was
stable and accurate. The three immune subtypes were related to different clinical results (Figure 2).
The methylation levels among the three subtypes were significantly different. The distribution
of immune cells, genes corresponding to specific DNA methylation sites, level of expression of
checkpoints, stromal score, immune score, ESTIMATEScore, APC_co_inhibition, APC_co_stimulation,
HLA, MHC_class_I, Type_I_IFN_Response, and Type_II_IFN_Response had significant differences
among the three subgroups. All were used to verify the stability and accuracy of the classification
(Figures 4 and 5).

A meta-analysis proved that the DNA methylation trended toward a poor clinicopathological
result [40]. However, they found no correlation with age [40], which was the same in our study.
An abnormal promoter methylation level was correlated with clinicopathological profiles in BC [41].
Researchers found that higher methylation values of four genes (RASSF1A, CDH1, CDH13, and APC)
were significantly associated with several traits of poorer outcome (tumor stage, growth pattern,
muscle invasion, and tumor grade). Clearly, our study was similar to the previously mentioned studies
(Figure 2). Cluster 2 had the highest methylation and several poor clinicopathological parameters,
including less stage I and II, less M0, less T1 and T2, and no low-grade.

In this current study, different subtypes had different survival rates. This may vary due to the
following reasons: (1) abnormal DNA methylation may lead to a poor prognosis in cancer patients [42].
The progression and prognosis of cancer may be affected by the hyper-methylation of DNA [43].
(2) Tumor cells in the microenvironment can express high levels of immunosuppressive cytokines to
forbid T cell proliferation and activity while facilitating tumor development and progression [44,45].
Tumor-expressing specific molecules can be sufficient to induce immunosuppression and facilitate
immune evasion [46]. Subtle changes in the compositions of immune cells can have different influences
on tumor progression [47]. Previous studies reported that a high density of macrophages in the
microenvironment was correlated with a poor prognosis in bladder cancer patients [48]. (3) Patients
with the luminal subtype presented well with and without neoadjuvant chemotherapy [30,33]. In our
study, cluster 3 demonstrated the lowest methylation level, low immune cell infiltration, more luminal
biomarkers, and less neuronal differentiation biomarkers, which might indicate why it had a good
survival rate (Figures 1C, 3A, 4A and 6).

However, mid-range-methylation and mid-range immune infiltration were found in cluster 1,
which had the worst survival. The highest methylation and the highest immune infiltration were
found in cluster 2, which had intermediate survival. We might find the following reasons.

(1) Up-regulation of the VTCN1 expression in bladder cancer led to poor survival [49,50]. B7x (VTCN1)
was remarkably overexpressed in many human cancers, and it repressed the antitumor immune
effect and regulated the escape from immunosurveillance [51]. A high-level expression of CD80
and CD86 may result in a high survival benefit of patients with nasopharyngeal carcinoma [52].
The absence or low-level expression of CD80 and CD86 in cancers could be one of the mechanisms
in which cancers escape immunosurveillance [52]. The checkpoints illustrated in Figure 4E.
demonstrated significant differences among the three subgroups. Among them, VTCN1 (B7-H4)
had the higher expression in cluster 1. On the contrary, CD80 and CD86 had the lower expressions
in cluster 1.

(2) The frequency of gene mutation and the CNV were different among the three groups. There was
little overlap of mutant genes among the three subtypes, as shown in Figure 8A–C. These CNV
genes among the three subgroups were completely different (Figure 8E).

(3) HLA plays an important role in the presentation of neoantigens [53,54]. Due to HLA loss, a tumor
can escape immune monitoring [53,54].

(4) The downregulation of MHC class I expression also causes immune escape [55]. As shown in
Figure 5, HLA and MHC class I had the highest expression in cluster 2.
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(5) High immune infiltration improved the clinical outcomes from chemotherapy [23,56,57]. In this
study, 80.2% of patients in cluster 2 received chemotherapy, and 95.9% of patients in cluster 1
received chemotherapy. Thus, all previously mentioned factors might cause a poorer overall
survival rate in cluster 1 compared with cluster 2.

A previous study reported that muscle-invasive bladder cancer was divided into five
subtypes based on the mRNA expression profiles [30]. The five subtypes were luminal-papillary,
luminal-infiltrated, luminal, basal-squamous, and neuronal. The neuronal subtype had the poorest
overall survival time [30]. However, the luminal-infiltrated subtype and basal-squamous subtype
had medium-level overall survival times [30]. In the present study, cluster 3 had the highest luminal
marker expression and the lowest basal and neuronal marker expression. Cluster 2 had the highest
basal, immune, and EMT Claudin markers with more T-cell infiltration. The neuronal and squamous
markers were the same in cluster 1 and cluster 2. Cluster 1 and cluster 2 with high neuronal marker
expression demonstrated poorer survival times, as shown in Figure 6.

The relationship between methylation and immune infiltration is important. A previous study
reported that the correlation between DNA methylation and gene expression in lung cancer was
identified for approximately 750 genes [58]. They found that one third of these correlations were
positive, which indicates the challenges in finding widespread and strong negative correlations
between gene expression and genome-wide CpG methylation [58]. A previous study reported
that the high methylation subgroup had low infiltration in skin cutaneous melanomas and breast
cancer [59]. However, another study showed no distinct correlation between methylation and immune
infiltration [60]. In addition, another study showed that one subgroup with low methylation had
low infiltration [28]. Cong Liang et al. reported a high concordance between the methylation value
and gene expression level, which predicted the immune infiltration levels in tumors [61]. All the
above publications proved that the positive or negative correlation between immune infiltration
and methylation level depended on the specific CpG sites. In the current study, cluster 2 with high
methylation levels had a high immune infiltration (Figure 3).

The scores of stromal and immune cells were based on specific biomarkers associated with the
infiltration of stromal and immune cells in the tumor samples. The stromal and immune scores formed
ESTIMATE scores. These scores of stromal and immune cells were negatively correlated with the
tumor purity. The ESTIMATE scores also had a negative correlation with the tumor purity [62,63].
In this study, cluster 2 had the highest immune infiltration and the highest stromal cells (Figure 4).
Overall, cluster 2 had the highest stromal score, immune score, ESTIMATE scores, and the lowest
tumor purity, in contrast to cluster 3 (Figure 4F–I). The distribution of immune scores among the three
subgroups was consistent with the distribution of immune cells (Figure 4F–I).

Endothelial cells can remodel the local immune microenvironment and help tumor cells to
escape immunosurveillance in different ways [64]. Endothelial cells not only release chemokines
to promote leukocyte migration into tumor tissues, but also express adhesion proteins to facilitate
peripheral leukocyte capture [65]. Thus, endothelial cells can forbid the activation and chemotaxis of
immune cells and mediate inhibitory molecules to facilitate immune tolerance [66,67]. Endothelial
cells also show an increased expression of PD-L1 to repress T cell activation [68–70]. In addition, FasL
expression in endothelial cells promotes their ability to suppress the activation of CD8+ T cells, causing
endothelial-cell-associated immune cell death and promoting tumor escape [71,72]. In the present
study, the density of the endothelial cells in cluster 2 was the highest, and immune infiltration was
the highest in cluster 2 (Figure 5). This implies that the endothelial cells might help tumor cells to
escape immunity.

Cancer cells interacted with cancer-associated macrophages and tumor-associated fibroblasts,
which promote tumor progression in bladder cancer [73]. In the present study, the distribution of
fibroblasts among the three subgroups was consistent with the macrophage distribution (Figure 5).
This indicates a correlation between fibroblasts and macrophages.
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This can be an effective part of a patient’s cancer treatment regimen due to the numerous
inflammatory molecules that play an important role in the progress and development of cancer [74].
The role of inflammatory molecules is far from being fully understood [74]. Chronic inflammation
plays an important role in inducing aberrant methylation [75–80]. However, the molecular mechanisms
are not yet understood [75–80]. A previous reviewer emphasized the importance of the inflammatory
response in the recurrence risk and progression of BC [81]. The inflammatory cells and inflammatory
cytokines in the chronic inflammatory microenvironment of solid tumors contributed to BC generation
and progression via multiple mechanisms [81].

The proinflammatory cells, including immune cells, such as macrophages, myeloid-derived
suppressor cells, regulatory T cells, dendritic cells, mast cells, neutrophils, and lymphocytes [81,82],
belong to immune infiltration cells. In this study, the distribution of inflammation-promoting
cells among the three subgroups was consistent with the distribution of immune cells (Figure 5).
This demonstrates that the inflammation-promoting cells and immune cells might affect each other.
However, the precise role of the inflammation promotion requires further study.

A study divided triple-negative breast cancer into three subgroups based on immune profiling [83]:
the immunity-high group had the most HLA genes with higher expression, the immunity-mid had
medium expression, and the immunity-low group had HLA genes with lower expression. Similarly,
the immunity-high group also had high MIC class I, Type I IFN response, Type II IFN response,
and APC [29,83,84]. However, the immunity-low group had MIC class I and APC with a lower
expression [29,83,84]. In the present study, as shown in Figure 5, we found the same as the above studies.

In the present study, most checkpoints had the highest expression levels in cluster 2. There
are several factors that affect the expression of checkpoints. First, aberrant methylation causes
abnormal mRNA expression. The CD28, CTLA4, CD80, and CD86 expression values are mediated by
DNA methylation [85]. The positive or negative correlation between the expression levels of those
checkpoints and methylation levels depends on the specific CpG sites [85]. However, a previous
publication showed a significantly positive correlation between the PD-L1 promoter methylation level
and protein expression level in advanced gastric cancer [86]. Secondly, the distribution of immune
checkpoints varied in different subtypes. A publication showed that the basal-squamous subtype
had high CD274 (PD-L1) and CTLA4 expression [30]. Thirdly, high immune infiltration may be one
of the factors. Several previous studies reported high immune infiltration with high LD-1(PDCD1)
expression [29,83,84]. Similarly, another study reported that tumoral B7-H3 (CD276) overexpression
was correlated with high tumor-infiltrating cytotoxic lymphocytes [87]. Two articles showed PDCD1,
CD274, PDCD1LG2, CD86, CTLA4, and CD80 overexpression in the subtype with high immune
infiltration [29,84].

The DNA hypermethylation of those promoter genes suppressed gene expression, which in turn
gave the cancer cells the maximum benefits. Therefore, down-regulation of those genes may lead to
the occurrence of cancer stem and progenitor cells by DNA hypermethylation [31,32]. The range of
scores was from 0 to 1. Zero indicates high differentiation, and one indicates undifferentiation [88].
However, in this study, the RNA stemness score and DNA stemness score were the lowest in cluster 2
(Figure 7). This challenged the above findings in which down-regulation of those genes may lead to the
occurrence of cancer stem and progenitor cells by DNA hypermethylation. The previous study found
that for several tumor types, such as BLCA, LUSC, HNSC, and GBM, there was a negative correlation
between DNAss and the leukocyte fraction and/or lower PD-L1 expression [88]. In this study, cluster 2
had the highest immune infiltration and a high-level expression of CD274 (Figure 4E); however, cluster
3 had the lowest DNAss. This result in the current study is the same as the previous work. In this
study, we also found that the lower RNAss was associated with higher immune infiltration and a
higher-level expression of CD274 (Figures 4E and 7).

The high TMB, non-small-cell lung cancer group had more DNA methylation aberrations,
including hypermethylation [89]. The correlation between TMB and the DNA methylation level was
negative in head and neck squamous cell carcinomas [85]. Unlike the previous study, in the present
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study, TMB demonstrated a remarkable difference only between cluster 1 and cluster 2. (Figure 8D).
There are two potential reasons for this. The first reason is that the correlation between TMB and the
methylation level in different tumors is varied. The second reason is that the correlation between
TMB and the methylation level in different subtypes is also well diversified. Further studies must be
performed to verify this.

The correlation between mutation and DNA methylation is also important. A previous
study reported that the hypomethylated blocks might promote mutation [90]. The methylation
of cytosine can cause mutations to thymine [91]. However, another study reported that differential
promoter methylation and somatic mutations interacted with each other in head and neck cancer [92].
The composition of the genes of mutations was different among the three subtypes. Figure 8. shows
that there was less overlap among the three subtypes (Figure 8A–C). The mutations of ITGA9, ENG,
EVI5, ATIC, and FZD2 in cluster 1 were significantly higher than those in the other subtypes. These
genes are the biomarkers of mast cells, plasmacytoid dendritic cells, Type 2 T helper cells, immature
dendritic cells, and macrophages [27].

The mutations of CTSZ, HOXA1, and KLRF1 in cluster 2 were significantly higher than those
in the other subtypes. These genes are the biomarkers of natural killer cells, CD56 bright natural
killer cells, and gamma delta T cells [27]. The mutations of DLC1, OSBPL1A, RRP12, C3AR1, MPZL1,
and ITK in cluster 3 were significantly higher than those in the other subtypes. These genes are the
biomarkers of Type 2 T helper cells, eosinophils, effector memory CD8 T cells, activated CD8 T cells,
and activated CD4 T cells [27]. These immune cells with mutant genes were different among the three
subgroups. The mutant genes could be promising drug targets.

Hypomethylated loci in cancer often coordinate with DNA break hotspots and may therefore
contribute to copy number changes [90]. In Figure 7E, the CNV data in one subgroup was compared
with the other two subgroups. AKNA with significant copy number gains was in cluster 1, and this
gene is the biomarker of activated B cells. PARVG, SIK1, and UPK3A with significant copy number
losses were in cluster 1, and these genes are the biomarkers of MDSC, effector memory CD8 T cells,
and monocytes [27]. Figure 7F shows CLTB, GEMIN6, SIRPA, and SIRPG with significant copy number
gains. These genes are the biomarkers of immature dendritic cells, activated CD8 T cells, plasmacytoid
dendritic cells, and central memory CD4 T cells. DYRK2 with significant copy number losses was
in cluster 2, and this gene is the biomarker of CD56 dim natural killer cells [27]. Likewise, CSF1R
and GUSB with significant copy number gains were in cluster 3 (Figure 8G), and these genes are
the biomarkers of T follicular helper cells and central memory CD8 T cells. CDC7, CHST12, CSF3R,
and OGT with significant copy number losses were in cluster 3. These genes are the biomarkers of
Type 2 T helper cells, T follicular helper cells, immature dendritic cells, and plasmacytoid dendritic
cells [27]. These immune cells with mutant genes among the three subgroups were completely different.
They also have a high chance as promising drug targets based on these CNV genes.

Triple-negative breast cancers with high tumor-infiltrating lymphocytes may show increased
PD-L1 expression, which may be the reason that triple-negative breast cancers respond robustly
to immune checkpoint inhibitor therapy [21]. Likewise, better responses to Atezolizumab were
correlated with higher PD-L1 expression in the tumor-infiltrating leukocytes in BC [16]. In the current
study, cluster 2 had the highest PD-L1 expression and cluster 1 had PD-L1 expression in the middle.
This suggests that cluster 2 would be the most likely to respond to the PD-L1–Blocking Antibody and
that cluster 1 might have a mid-range response to the PD-L1–Blocking Antibody.

Next, we analyzed chemotherapy’s impact on the three subgroups. Wang et al. reported that high
immune scores were associated with therapeutic benefits from chemotherapy [23]. Similarly, breast
cancer with high immune infiltration responded to chemotherapy, with pathologic complete response
rates of 42% and 40% in the training cohort and validation cohort, respectively [56]. In contrast, those
tumors without any immune infiltration had pathologically complete response rates of 3% and 7% in
the training cohort and validation cohort, respectively [56]. A study reported that all subtypes of breast
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cancer with tumor-infiltrating lymphocytes benefited from chemotherapy, in particular, triple-negative
breast cancers (TN) with >50% lymphocytic infiltration [21].

The basal subtype of muscle-invasive bladder cancer with immune infiltration had a good response
to chemotherapy [24,25]. One study reported the basal subtype with CD19+ tumor-infiltrating B-cells
received a significant benefit from adjuvant chemotherapy [24]. Likewise, in the present study, cluster 2
had a greater response to chemotherapy compared with cluster 1, as shown in Table 1. Cluster 2 also
had a better survival rate after chemotherapy, as shown in Figure 9 and Table 2.

Figure 9. Kaplan–Meier curves. Kaplan–Meier curves based on CR and PR after chemotherapy with a
log-rank test. C1 represents cluster 1 and C2 represents cluster 2.

All the above results suggest that cluster 2 is associated with more improvement in the overall
survival after chemotherapy. There are two reasons: the first is that cluster 2 has high immune cell
infiltration; the second is that cluster 2 has more basal markers (Figure 6). Then, we analyzed cluster 3.
A previous study reported that the luminal subtype with low immune infiltration had a good survival
with and without neoadjuvant chemotherapy [33]. In the present study, cluster 3 had the highest
luminal marker expression and the lowest immune infiltration, and so this suggests that the cluster 3
might have a good survival rate with or without chemotherapy.

Finally, the three subgroups had specific methylation sites, specific DNA mutations, and CNV,
as shown in Figure 8. All these will be promising targets for anti-cancer drug development. These
results indicate that the anti-cancer targeted drug therapy are different among the three subgroups.

In conclusion, the classification was accurate and stable. BC patients were successfully divided
into three subtypes based on the immune-cell-associated CpG sites. The three subgroups demonstrated
different clinicopathologic features. The distribution of immune cells, level of expression of checkpoints,
stromal score, immune score, ESTIMATEScore, tumor purity, APC co_inhibition, APC co_stimulation,
HLA, MHC class I, Type I IFN response, and Type II IFN response demonstrated significant differences
among the three subgroups. The distribution of genomic alterations was also different among the
groups. High-level immune infiltration was correlated with high-level methylation. A lower RNAss
was associated with higher immune infiltration and a higher level of expression of CD274. Cluster 2
was associated with a better response to chemotherapy. The anti-cancer targeted drug therapy are
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different among the three subgroups. The study of the intratumoral immune microenvironment may
provide a new perspective for therapy in BC.

4. Materials and Methods

4.1. Data Pre-Processing

Four hundred and thirty-seven samples were used in this study. Methylation data using Illumina
Human Methylation 450 arrays were obtained from UCSC Xena (https://xenabrowser.net/datapages/).
DNAss, RNAss, and RNA-Seq from 430 BC samples and clinical data also were downloaded from
the UCSC Xena website. The Masked Somatic Mutation data (MuTect2. Variant0. Maf) and the CNV
data set (Masked Copy Number Segment, affymetrix snp 6.0) were collected from the TCGA website
(https://portal.gdc.cancer.gov/repository). The CNV data comprised 814 samples. Due to the fact that
the collected databases were public, the publishing policies of these databases were strictly obeyed by
us, and ethical approval was not required.

4.2. Immune-Cell-Associated Gene Selection

Previous studies found that the DNA methylation sites in promoter regions strongly influenced
gene expression [93,94]. The promoter regions were within 2 kb upstream to 0.5 kb downstream
from the transcription start sites [93,94]. Immune-cell-associated biomarkers were obtained from
previous studies (Table S1). Their corresponding methylation sites in promoter regions were obtained.
The analysis showed that the exclusion probe criteria were as follows: (1) if the CpG site data had
more than 70% of the samples missing, then the CpG sites were excluded from the analysis [95].
(2) Cross-reactive genome CpG sites were deleted [96]. (3) Probes on the X and Y chromosomes were
excluded from the analysis [96]. The remaining sites were imputed with the k-nearest neighbors (KNN)
imputation procedure [36].

4.3. Unsupervised Hierarchical Cluster Analysis

The methylation sites corresponding to immune-cell-associated genes were acquired. DMSs were
identified between normal samples and bladder cancer samples with adjusted p-value < 0.05 and
|deltabeta| > 0.2. Unsupervised hierarchical clustering was performed based on immune-cell-associated
methylation data to identify subtypes of BC with the “sparcl” R software package (https://CRAN.R-
project.org/package=sparcl). The overall survival curve of the BC subsets was obtained using the
Kaplan–Meier method and with the “survival” package in R software. PCA was performed to validate
the classification. A barplot was established to demonstrate the correlation between the clinical traits
and the biological characteristics of the subtypes. Chi-square tests were performed, and p values less
than 0.05 were considered significant.

4.4. Single Sample Gene Set Enrichment Analysis (ssGSEA) Based on Immune Cells Biomarker

ssGSEA was used to quantify the infiltration of immune cells that were obtained from the
previous study [27]. The ssGSEA ranked the genes based on their absolute expression in a sample
with the “GSEABase” and “GSVA” R packages. The enrichment score was calculated by integrating
the differences between the empirical cumulative distribution functions of the gene ranks [97,98].
Activated B cells, activated CD8 T cells, effector memory CD8 T cells, central memory CD8 T cells,
activated CD4 T cells, effector memory CD4 T cells, central memory CD4 T cells, regulatory T cells,
gamma delta T cells, immature B cells, memory B cells, type 17 T helper cells, T follicular helper
cells, type 1 T helper cells, and type 2 T helper cells are adaptive immune cells. CD56 dim natural
killer cells, CD56 bright natural killer cells, eosinophils, activated dendritic cells, immature dendritic
cells, MDSCs, macrophages, monocytes, mast cells, plasmacytoid dendritic cells, natural killer cells,
natural killer T cells, and neutrophils are innate immune cells. Immune cells were compared among
subgroups using the Kruskal–Wallis test. Apart from this, immune checkpoints were selected from

https://xenabrowser.net/datapages/
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previous studies [29,84] in order to compare them among the subtypes. Then, the Kruskal–Wallis test
was performed.

4.5. Tumor Microenvironment (TME)

An algorithm called ESTIMATE was used for the estimation of stromal and immune cells in
malignant tumor tissues based on the expression data [63]. The ESTIMATE algorithm was obtained
from the public source website (https://sourceforge.net/projects/estimateproject/) to estimate the stromal
scores and immune scores based on specific biomarkers associated with the infiltration of stromal
and immune cells in tumor samples [62]. The stromal scores and immune scores were analyzed
separately to predict the level of stromal and immune cells in tumor tissue, and these were combined
to reference the tumor purity by ssGSEA [62,99,100]. The stromal scores, immune scores, tumor purity,
and ESTIMATE scores were calculated for each sample. Subsequently, they were compared among
the subtypes.

4.6. Single Sample Gene Set Enrichment Analysis (ssGSEA)

The biomarkers of APC_co_inhibition, APC_co_stimulation, endothelial cells, fibroblasts, HLA,
inflammation-promoting, MHC_class_I, Type_I_IFN_Response, and Type_II_IFN_Response were
selected from similar studies [82,101] (Table S2). Luminal biomarkers, basal biomarkers, squamous
biomarkers, neuronal-differentiation biomarkers, and EMT-Claudin biomarkers were obtained from a
previous study [30] (Table S3). Single sample gene set enrichment analysis was used to rank the genes
based on their absolute expression in a sample.

4.7. DNAss and RNAss among Subgroups

The differentiated phenotype was rapidly lost during cancer progression, and progenitor
and stem-cell-like characteristics were acquired [102]. The DNA hypermethylation of those
genes suppressed gene expression, which was significantly benefited by cancer cells. Therefore,
down-regulation of those genes may lead to the occurrence of cancer stem and progenitor cells by DNA
hypermethylation [31,32]. RNAss based on mRNA expression and DNAss based on DNA methylation
were utilized to measure the tumor stemness [88]. The range of scores was from 0 to 1. Zero indicates
high differentiation, and 1 indicates undifferentiation [88]. Finally, the DNAss and RNAss among the
three subgroups were analyzed.

4.8. Analysis of Mutations and CNVs among Subgroups

The ‘maftools’ software package was utilized to analyze and visualize the immune cell
biomarker-associated mutation data [103]. The immune cell biomarker-associated mutation data were
compared between one group and the other groups using the chi-square test. A p-value of less than
0.05 was considered significant. The TMB, which indicates the density of tumor gene mutations,
was compared among subtypes based on the immune cell biomarker-associated mutation data.

The immune cell biomarker-associated CNV data were analyzed. The genomic identification of
significant targets in cancer (GISTIC) algorithm was utilized to classify the copy number variant genes
with remarkable gains and losses [104,105]. The parameter thresholds were adjusted to 0.2 and −0.2
for genomic gains and losses, respectively [104,105]. Immune cell biomarker-associated copy number
variant data were compared between one group with the remaining groups using a chi-square test.
A p-value of < 0.01 was considered significant.

5. Conclusions

The classification was accurate and stable. BC patients were successfully divided into three
subtypes based on the immune-cell-associated CpG sites. Specific biological signaling pathways,
immune mechanisms, and genomic alterations were found to have variations among the three

https://sourceforge.net/projects/estimateproject/
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subgroups. High-level immune infiltration was correlated with high-level methylation. The lower
RNAss was associated with higher immune infiltration.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/12/10/3054/s1,
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