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Pharmacokinetics of Anti-VEGF Agent Aflibercept in
Cancer Predicted by Data-Driven, Molecular-Detailed
Model

SD Finley1*, P Angelikopoulos2, P Koumoutsakos2 and AS Popel3

Mathematical models can support the drug development process by predicting the pharmacokinetic (PK) properties of the
drug and optimal dosing regimens. We have developed a pharmacokinetic model that includes a biochemical molecular
interaction network linked to a whole-body compartment model. We applied the model to study the PK of the anti-vascular
endothelial growth factor (VEGF) cancer therapeutic agent, aflibercept. Clinical data is used to infer model parameters
using a Bayesian approach, enabling a quantitative estimation of the contributions of specific transport processes and
molecular interactions of the drug that cannot be examined in other PK modeling, and insight into the mechanisms of
aflibercept’s antiangiogenic action. Additionally, we predict the plasma and tissue concentrations of unbound and VEGF-
bound aflibercept. Thus, we present a computational framework that can serve as a valuable tool for drug development
efforts.
CPT: Pharmacometrics & Systems Pharmacology (2015) 4, 641–649; doi:10.1002/psp4.12040; published online 9 October 2015.

Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC? � Aflibercept is a soluble decoy receptor inhibitor of VEGF
approved for the treatment of metastatic colorectal cancer. Current PK models of aflibercept estimate PK parameters for
free and bound aflibercept in patients with solid tumors, but do not identify specific molecular processes that influence
drug distribution. • WHAT QUESTION DID THIS STUDY ADDRESS? � This study applies a data-driven, molecular-
detailed PK model of aflibercept to investigate the specific molecular interactions and transport processes that contribute
to the distribution of aflibercept in the body and its mechanism of action. • WHAT THIS STUDY ADDS TO OUR KNOWL-
EDGE � The model predicts the concentrations of free and bound aflibercept in tissue and plasma for various doses of
the drug. Aflibercept binding to VEGF bound to NRP co-receptors must be included in order for the model predictions
to match clinical measurements. • HOW THIS MIGHT CHANGE CLINICAL PHARMACOLOGY AND THERAPEUTICS
� The model predicts potential mechanisms through which aflibercept targets VEGF. This insight can be combined with
preclinical and clinical drug development studies.

Angiogenesis, the formation of new blood capillaries from a

preexisting vascular network, plays an important role in many

physiological processes, as well as in pathological conditions.

In cancer, a tumor recruits the blood vessels it needs to sur-

vive. Thus, targeting angiogenesis is an attractive approach

to impede tumor growth. Particular emphasis has been

placed on inhibiting the action of vascular endothelial growth

factor (VEGF), a potent promoter of angiogenesis. Therapeu-

tic agents that inhibit VEGF act to bind VEGF directly, bind to

its cell-surface receptors, or inhibit intracellular signaling. Afli-

bercept (VEGF Trap; Regeneron, Tarrytown, NY) is a soluble

decoy receptor consisting of a fusion of the second immuno-

globulin domain of human vascular endothelial growth factor

receptor-1 (VEGFR-1) to the third immunoglobulin domain of

human VEGFR-2 with the constant region (Fc) of human

immunoglobulin G1.1 Aflibercept is approved for the treat-

ment of metastatic colorectal cancer and is being investigated

for its efficacy in treating other cancer types, including glioma,

ovarian, and prostate cancers.

Mathematical models are broadly used during drug

development to understand the pharmacokinetics (PKs)

of the drug. Such models can be useful in establishing

pharmacokinetic-pharmacodynamic relationships, exploring

optimal dosing regimens, and predicting clinical results

based on preclinical studies.2–4 Computational models sim-

ulating drug effects may also aid in reducing the risk and

economic burden associated with drug development.5,6 Var-

ious modeling approaches incorporate different levels of

detail and have certain advantages and limitations. The

selection of which approach to use depends on the objec-

tives and the availability of data needed for systematic

model development and validation.
Several modeling approaches have been applied to study

cancer therapeutics,2 including antiangiogenic agents.7,8 One

example is mechanism-based PK modeling, including work

by Thai et al.,9 who characterize the population PK of the

anti-VEGF agent aflibercept, using data from nine clinical tri-

als.9 Thai et al.10 used population PK data to estimate model
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parameters, and their uncertainty, and predict appropriate
dosing regimens. A similar modeling approach has been
applied to estimate the PK parameters and plasma concen-
trations of bevacizumab in patients with colorectal cancer.11

Another approach is molecular-detailed PK modeling, a

particular type of physiologically based pharmacokinetic

models. Our laboratory has developed models to study the

systemic effects of targeting VEGF in cancer12–15 using a

bottom-up approach. We start with molecular pathways that

characterize interactions between an anti-VEGF agent and

its targets, as well as microenvironmental factors. We link

the detailed biochemical kinetics and molecular transport

with systemic distribution of the VEGF-targeting drug. The

model predicts the distribution of the drug in different

compartments.
In this study, we present a systems biology approach to

study pharmacokinetic-pharmacodynamic of aflibercept. We

construct whole-body molecular-detailed PK models to

explore the effects of drug-target binding and drug elimina-

tion routes. We apply a Bayesian calibration method16–18 to

infer the model parameters and identify the most probable

model, given the available data. We evaluate the effects of

specific molecular interactions between the drug, its target,

and other molecular species in the body.

METHODS
Computational model
We have developed a whole-body PK model to predict the effect

of intravenous administration of an anti-VEGF agent in cancer.

The model, illustrated in Figure 1, predicts interstitial and

plasma concentrations of VEGF and aflibercept in three com-

partments: normal tissue (“normal compartment,” represented

by skeletal muscle), the vasculature (“blood compartment”),
and diseased tissue (“tumor compartment”). The tumor com-
partment is parameterized as a breast tumor; however, the
model is broadly applicable to any solid tumor. The geometric
parameters used to characterize the compartments are taken
from the literature, and compiled in the Supplementary
Materials.

The model includes molecular interactions between two
major VEGF isoforms (VEGF121 and VEGF165), VEGF recep-
tors (VEGFR1 and VEGFR2), and co-receptors neuropilins
(NRP1 and NRP2). The VEGF ligands have specific interac-
tions with the receptors because of differential exon splicing,
and the kinetic rates of these interactions are based on experi-
mental data. VEGF is secreted by parenchymal cells (muscle
fibers and tumor cells, in the normal and diseased compart-
ments, respectively), as well as by endothelial cells (both lumi-
nal secretion into the blood compartment and abluminal
secretion into the tissue compartments). The isoform secretion
ratios for the different cell types are taken from the literature.

VEGFRs are present on endothelial cells (both the lumi-
nal and abluminal surfaces) and tumor cells. Additionally,
the co-receptor NRP1 is present on muscle fibers, endothe-
lial cells, and tumor cells, whereas NRP2 is only expressed
in tumor cells in the model. The density of VEGF receptors
and co-receptors is based on quantitative flow cytometric
measurements, which determine the number of receptors
on a cell-by-cell basis.19,20

The model also includes soluble factors: soluble VEGFR1
and a-2-macroglobulin. Soluble a-2-macroglobulin is present
in two forms: native (a2M) and active (a2Mfast). These
species, which are present at nanomolar to micromolar
concentrations in plasma, are �720 kDa in size. Because
of their large size, these species are assumed to be

Figure 1 Schematic of whole-body PK model. The model represents the entire body with three compartments: normal tissue (repre-
sented mostly by skeletal muscle), blood, and tumor. The compartments are connected via macromolecular transport mechanisms:
transendothelial permeability (kp) and lymphatic flow (kL). Soluble species are removed from the blood via clearance (cv) and are sub-
ject to degradation via proteolysis (kdeg). VEGF isoforms are secreted (qv) by muscle fibers, endothelial cells, and tumor cells. The
model includes molecular interactions between VEGF and its receptors, co-receptors, and the anti-VEGF agent, aflibercept. Aflibercept
is administered into the blood via a 60-minute infusion (qA) after the predicted concentrations reach steady state.
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confined to the blood compartment. Both soluble VEGFR1

and a-2-macroglobulin are secreted by endothelial cells,

where the secretion rate is set to match the plasma and tis-

sue concentrations reported in the literature.
Many of the model parameters are based on in vitro

measurements (for example, kinetic binding constants,

clearance, and degradation rates). Geometric parameters

are required to characterize the body compartments and

enable conversion of the concentrations in units used in the

model (moles/cm3 tissue) to more standard units (pM). The

number of VEGFRs and co-receptors are based on quanti-

tative flow cytometry measurements from in vitro and in

vivo studies in our laboratory.19,20 In our previous publica-

tions,12,13,15,21,22 we have performed extensive sensitivity

analyses to quantify how the model outputs (namely, the

concentrations of VEGF in the three compartments) are

affected when model parameters are varied. We found that

most parameters do not significantly change the predicted

VEGF concentrations over a wide range of values (i.e., up

to an order of magnitude above or below the baseline

value). In the current article, we build on the baseline

model to understand the effects of specific molecular inter-

actions involving aflibercept.

Numerical implementation of the model
Altogether, the model is comprised of 161 nonlinear ordi-

nary differential equations: 36 for the normal compartment,

72 for the blood, and 53 for the tumor compartment. These

equations predict the concentrations of the 161 species in

the interstitial space of the normal and tumor tissues and

blood plasma over time, where species found in different

compartments are treated as unique species.
We simulate an intravenous injection of aflibercept to

mimic administration of the drug to patients with cancer, for

various doses of the drug. The 60-minute injection is

administered after the model reaches steady state. The

equations were implemented in MATLAB using the SimBiol-

ogy toolbox and the Sundials solver. All model equations

and parameter values, with citations, for the baseline model

are given in Supplementary Tables S1–S4. Additionally,

Model 2, with the inferred parameter values, is available in

SBML format in the Supplementary Materials.

Uncertainty quantification
We use the parallel Transitional Markov Chain Monte Carlo

algorithm16 to perform the Bayesian calibration and model

selection. In order to handle the large computational cost

associated with the Transitional Markov Chain Monte Carlo

algorithm, we use the open source framework Pi4U.18

All parameter values for the computational setup of the

inference algorithms are given in the Supplementary

Tables S5–S7. We quantify uncertainty intervals, termed

total uncertainty (TU), as the quantile points within which

we have 90% probability (5–95th quantile) of the plausible

parameter sets from the posterior probability distribution

functions as inferred from the Transitional Markov Chain

Monte Carlo sampling campaign. This can be written as

TU5½h1
i ; h

2
i � such that

ðh1
i

h2
i

pðhi jD;Mi Þdhi50:9, for each

parameter hi of the PK model Mi .

Bayesian inference methodology
The Bayesian inference methodology provides a quantita-
tive measure as to the probability of the various models
that we have developed given the available literature data.
An overview of the method is provided below, and addi-
tional details are given in the Supplementary Materials.
The Bayesian model selection provides a systematic frame-
work to quantify the plausibility of each model among a
competing set of models, guarding against over-parameterization
with the use of Occam’s razor. The Bayesian model selection
involving the use of the model evidence is always valid, contrary
to the Bayesian/Akaike Information Criterion, which are approxi-
mations valid in the limit of using large amounts of data. A number
of l competing model classes M1; . . . Ml are ranked based on
their probability given the data D, according to the Bayes model
selection equation:

PrðMi jDÞ5
PrðDjMiÞPrðMiÞ
PrðDjM1 . . . MlÞ

5
PrðDjMiÞPrðMiÞXl

i51

PrðDjMiÞPrðMiÞ

where PrðMi Þ is the prior probability of the model class Mi .
The most probable model class is selected as the one that
maximizes PrðMi jDÞ over i. The prior probability of each
model class is set to 1=l. The evidence of each model
class PrðMi jDÞ is evaluated as a byproduct during the
Bayesian calibration.17

RESULTS
Data available for parameter estimation
Plasma concentrations of unbound aflibercept and afliber-
cept bound to VEGF, free and bound aflibercept, respec-
tively, predicted by the model are compared to clinical
measurements from the phase I clinical trial data published
by Lockhart et al.23 In the clinical study, blood samples
were obtained from 47 patients (15 men, 32 women),
whose median age was 56 years, and who had undergone
a median of five previous chemotherapy regimens. The
patients’ tumor site varied, including ovarian/fallopian/
peritoneal, renal, and colorectal. The concentrations of circu-
lating free and bound aflibercept were quantified by enzyme-
linked immunosorbent assay. We digitized the mean plasma
concentration vs. time profiles for free and bound aflibercept in
order to compare to our model predictions. The data range
from 0.03–142 lg/mL (0.3–1.2 3 103 nM) for unbound aflibercept
and 0.01–3.8 lg/mL (0.07–24 nM) for bound aflibercept, given
doses ranging from 0.3–7.0 mg/kg.

Using the data described above, we estimated certain
model parameters (Table 1). These parameters were cho-
sen because little or no data is available with which we can
set their values, and because those parameters were
shown to influence the concentrations of free and bound
aflibercept (results not shown). Our preliminary studies indi-
cated that a major determinant of the VEGF concentrations
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in each of the three compartments is the VEGF secretion

rates from endothelial cells, normal cells (myocytes), and

tumor cells. However, measurements of free and bound afli-

bercept in the blood are not sufficient to determine the

VEGF secretion rates. Therefore, we used the steady state

concentrations of unbound VEGF in the three compart-

ments to further constrain the parameter estimation. These

data are summarized in Supplementary Table S1.

Results of parameter estimation
We started with a baseline model and expanded it systemati-

cally to include a specific transport process or molecular

interaction, based on experimental observations and hypoth-

eses. The various models investigated are presented in

Table 1, and specific results are described below.

Baseline model. We utilized our previous mechanistic

model of VEGF in the body15 to predict the plasma concen-

trations of free and bound aflibercept (“Baseline model”).

A Bayesian inference methodology was used to estimate

the VEGF secretion rates and aflibercept degradation rate

(Table 2). We then sought to expand the baseline model to

incorporate additional transport and interactions discussed
in the literature or hypothesized to occur, in order to fully

capture the molecular features of aflibercept: (1) degrada-

tion of aflibercept via proteolysis; (2) binding of aflibercept
to VEGF that is bound to NRP; and (3) internalization of

the VEGF-aflibercept complex in the peripheral tissue com-
partment. We explored the effects of including these three

features individually (Models 1 through 3) and in combina-

tion (Model 4) to determine how they contribute to the mod-
els’ ability to reproduce the clinical data.

Model 1: Include degradation of free aflibercept. In the

baseline model, all soluble species in the tissue compart-

ments are subject to degradation via proteolysis. Although
PK studies of aflibercept indicate that the primary mecha-

nism by which the drug is removed from the body is via
clearance,23 we refined the model to include degradation of

free aflibercept in the tissue interstitium, presumably via

proteolysis. Accounting for another elimination route of afli-
bercept was expected to reduce the predicted concentration

Table 2 Parameter values estimated using Bayesian inference method

Model

EC VEGF

secretion rate, 1022

molecules/cell/s (TU)a

Muscle fiber VEGF

secretion rate, 1026

molecules/cell/s

(TU)

Tumor cell VEGF

secretion rate, 1021

molecules/cell/s (TU)

Degradation rate

of free aflibercept,

1029 s21 (TU)

Internalization rate

of bound aflibercept,

1029 s21 (TU)

Baseline 6.97 3 1023

(2.58 3 1021020.05)

0.706 (2.31 3

1023214.20)

49.2 (45.75–50.75) X X

Model 1 1.46 3 1024

(4.17 3 1021020.67)

48.7 (0.48–397.60) 48.8 (35.62–49.13) 0.144 (0.004–8.04) X

Model 2 3.24 (2.02–3.49) 5.01 3 1023

(6.97 3 102621.36)

3.87 (0.80–20.83) 44.2 (0.96–149.26) X

Model 3 1.74 3 1023 (8.95 3

102624.09 3 1021)

8.41 3 102 (1.11 3

102522133.0)

46.3 (40.23–52.17) 1.98 (0.025–140.82) 0.338 (0.0078–280.41)

Model 4 3.19 (1.41–3.19) 0.171 (3.01 3 102522.08) 4.96 (4.39–29.84) 0.626 (0.0013–0.641) 0.021 (0.0019–1.7944)

EC, endothelial cell; TU, total uncertainty; VEGF, vascular endothelial growth factor.
aTU indicates the range containing 90% of the parameter sets from the posterior probability distribution function.

Table 1 Description of molecular-detailed PK models investigated and Bayesian comparison

Model

Degradation of free

aflibercept

Aflibercept binds

NRP-bound VEGF

Internalization of

bound aflibercept

Parameters

estimated Log (evidence)

Posterior model

probability %

Baseline VEGF secretion rates 2205.46 9.43

Model 1 X VEGF secretion rates 2210.70 0.05

Degradation rate of

free aflibercept

Model 2 X X VEGF secretion rates 2203.23 87.68

Degradation rate of

free aflibercept

Model 3 X X VEGF secretion rates 2211.41 0.02

Degradation rate of

free aflibercept

Internalization rate of

bound aflibercept

Model 4 X X X VEGF secretion rates 2206.67 2.82

Degradation rate of

free aflibercept

Internalization rate of

bound aflibercept

NRP, neuropilin; VEGF, vascular endothelial growth factor.
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of bound aflibercept. Additionally, by including degradation
of free aflibercept, all soluble species in the model would
be treated in the same fashion regarding proteolysis. The
estimated degradation rate of free aflibercept and its inter-
quartile range are provided in Table 2.

Model 2: Include aflibercept binding to NRP-bound VEGF.
Given the molecular detail of the model, we were able to
predict the distribution of VEGF in the tissue compart-
ments and plasma. To do so, the original model (“Baseline
model” with no parameter inference) was run without afli-
bercept injections to determine the steady state distribu-
tion of VEGF among its binding partners (soluble factors,
extracellular matrix, and cellular receptors). The model
predicted that, in all compartments, a large percentage of
VEGF is bound to VEGFRs or co-receptors (Figure 2a).
Specifically, 90%, 96%, and 92% of VEGF in the normal
tissue, plasma, and tumor tissue, respectively, is com-
plexed with its receptors. Furthermore, the most abundant
VEGF complexes involve NRP (Figure 2b), comprising
98%, 97%, and 96% of receptor-bound VEGF in normal
tissue, plasma, and tumor tissue, respectively. The ligand
is complexed to NRP co-receptors either in the form of
binary (VEGF/NRP, red shading) or tertiary complexes
(VEGF/NRP/VEGFR1 or VEGF/NRP/VEGFR2, yellow and
green shading, respectively). Based on these predictions,
we hypothesized that allowing aflibercept to bind to NRP-
bound VEGF would lead to reduced concentrations of
bound aflibercept in the plasma, influencing the fit to the
clinical measurements.

Because aflibercept is a decoy receptor that associates
with the VEGFR1- and VEGFR2-binding domains on
VEGF, the binding sites for NRP and aflibercept are unique.
Therefore, we included this interaction (Model 2). We
assumed that the binding affinity between aflibercept and
NRP-bound VEGF is the same as that for aflibercept and
free VEGF. The VEGF secretion rates and aflibercept deg-

radation rate were free parameters, and their estimated val-

ues are shown in Table 2. Figure 3 shows the robust

posterior predictions for free and bound aflibercept.

Model 3: Include tissue internalization of bound aflibercept.

The mechanism-based model developed by Thai et al.9

includes elimination of the complex in the peripheral tissue

compartment via internalization. PK studies of the drug

indicate that it may be eliminated via pinocytosis or an Fc

receptor-mediated process.24 Therefore, we included this

mechanism in the model. The estimated rates of internal-

ization of the bound aflibercept complex, VEGF secretion,

and aflibercept degradation are provided in Table 2.

Model 4: Refined model. Last, the baseline model was

refined to include features found to improve the fit to clinical

data. The refined model accounted for degradation of free

aflibercept, trapping of NRP-bound VEGF, and internaliza-

tion of bound aflibercept. In this case, the three VEGF

secretion rates, aflibercept degradation rate, and the inter-

nalization rate of bound aflibercept were all free parame-

ters. The optimal parameter values determined using the

Bayesian calibration method are given in Table 2.

Comparison of optimized models
The posterior model probabilities, summarized in Table 1,

quantify the plausibility of each model. Models that are

more likely have a higher percentage compared to others.

The model estimated to be most probable is that which,

given the available data, involves the maximum number of

non-redundant (i.e., uncorrelated) parameters. That is, the

model with the largest number of free parameters is not

necessarily the most probable one, because it may contain

redundant mechanisms. It is clear from the Bayesian model

selection procedure that Models 1 and 3 are less plausible

than the other models. Model 4 can fit the data, but con-

tains an additional parameter to achieve this compared to

Figure 2 Distribution of VEGF in the body. (a) Distribution of VEGF in the body at steady state (before administration of the drug).
(b) Detailed distribution of receptor-bound VEGF. The model predicts that receptor-bound VEGF constitutes a significant percentage
of VEGF in the body, and most of VEGF is bound to the neuropilins in some form. sR1, soluble VEGF receptor-1; a2M,
a-2-macroglobulin; ECM, extracellular matrix; VEGFR1, VEGF receptor-1; VEGFR2, VEGF receptor-2; NRP, neuropilin-1 or 22.
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Model 2. It is thus penalized and has a posterior model
probability value smaller than Model 2, indicating that the

additional complexity introduced is not justifiable. In con-

trast, the added complexity of Model 2 enables a better

representation of the clinical data compared to the baseline

model. We note that the steady state VEGF concentrations

in tumor predicted by Models 1 and 3 are significantly

higher than any reported clinical measurements (Supple-

mentary Table S1 and ref.15). In fact, Model 2 is the only

model that predicted steady state concentrations of
unbound VEGF in all compartments that are within the
range of published measurements, even when accounting
for uncertainty (Table 3). Thus, the steady state predictions
provide additional support for the validity of Model 2.

Figure 3 Robust posterior predictions from Model 2. The plasma concentrations of: (a) free aflibercept and (b) bound aflibercept predicted
by the whole-body PK model (lines, neglecting uncertainty), compared to clinical measurements (circles) for different doses of the drug, as
predicted by Model 2. This model includes degradation of free aflibercept and trapping of NRP-bound VEGF. Dark gray shading denotes
the interquantile range (IQR), which contains �50% of posterior probability density function predictions. Light gray bands indicate the
range of predictions given the total uncertainty and contain �90% of predictions.

Table 3 Predicted concentrations of unbound VEGF

Normal tissue Plasma Tumor tissue

Pretreatmenta

(pM)

Post-

treatmentb

(pM)

Fold-change

(mean)c

Pretreatment

(pM)

Post-

treatment

(pM)

Fold-change

(mean)

Pretreatment

(pM)

Post-

treatment

(pM)

Fold-change

(mean)

Baseline model 0.06 0.06 0.89 1.4 0.06 0.04 8.2 3 103 3.2 3.9 3 1024

(0–0.33)d (0–0.33) (0.90) (0–7.1) (0–0.33) (0.04) (0–1.6 3 104) (1.9–4.3) (3.9 3 1024)

Model 1 0.07 0.06 0.87 1.4 0.06 0.04 8.2 3 103 3.2 3.9 3 1024

(0–0.23) (0–0.31) (0.42) (0–4.9) (0–0.31) (0.05) (0–2.9 3 104) (1.0–3.9) (3.4 3 1024)

Model 2 0.99 0.06 0.06 1.5 0.06 0.04 1.52 3 102 0.16 1.1 3 1023

(0.56–1.4) (0–0.28) (0.06) (0.85–2.2) (0–0.29) (0.04) (86–2.2 3 102) (0–0.81) (2.5 3 1023)

Model 3 0.13 0.06 0.45 1.3 0.06 0.05 7.7 3 103 2.8 3.6 3 1024

(0–0.27) (0–0.28) (0.65) (0–2.7) (0–0.29) (0.04) (0–1.6 3 104) (1.5–4.6) (3.8 3 1024)

Model 4 0.97 0.12 0.13 1.5 0.14 0.09 2.8 3 102 0.67 2.4 3 1023

(0.04–1.9) (0–0.33) (0.09) (0.06–3.0) (0–0.33) (0.04) (11–5.5 3 102) (0.02–1.5) (2.7 3 1023)

aPretreatment is the steady state concentration before any drug infusion.
bAflibercept was administered once per week for two weeks at a dose of 3 mg/kg. Post-treatment is the concentration 7 days after the second dose. The fold-

change is calculated as the post-treatment concentration of unbound vascular endothelial growth factor divided by the pretreatment concentration.13

cMean of the calculated fold-change for all Transitional Markov Chain Monte Carlo samples.
dRanges shown for pretreatment and post-treatment concentrations are the ranges containing 90% of the parameter sets from the posterior probability distribu-

tion function (total uncertainty, TU).
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Clinically relevant predictions
We can use the most probable model to provide new predic-
tions. Specifically, the model is applied to predict the con-
centrations of VEGF and unbound and bound aflibercept in
the tissue compartments, which are difficult to quantify
experimentally. Model 2 predicts the concentrations of
unbound VEGF before administration of aflibercept to be
1.0, 1.5, and 152 pM in normal tissue, plasma, and
tumor tissue, respectively (Table 3). We simulated two
administrations of aflibercept at a dosage of 3 mg/kg,
and the predicted concentration profiles for free and
bound aflibercept in all three compartments are shown in
Figure 4. Similar results are predicted for other doses;
therefore, we only present predictions for a single, inter-
mediate dose. The concentration of unbound VEGF in
the tumor is predicted to be an order of magnitude
higher than the plasma concentration, which agrees with
clinical measurements. We have previously defined the
“fold-change” to quantify the concentration of unbound
VEGF at a specific time after anti-VEGF treatment rela-
tive to the steady state level before treatment.13 The
model predicts that one week after the second dose
(t 5 21 weeks), the fold-change in unbound VEGF in nor-
mal tissue, plasma, and tumor tissue is 0.06, 0.04, and
1.1 3 1023, respectively (Table 3). The concentration of
unbound aflibercept in the tissue compartments is pre-
dicted to track closely with the plasma concentration
over the simulated time range, with the exception of
12 hours immediately after each dose. In contrast, the
concentration of the aflibercept/VEGF complex in tumor

tissue is several fold higher than the concentration
of bound aflibercept in plasma and normal tissue
(Figure 4).

DISCUSSION AND CONCLUSION

We have presented a molecular-detailed PK model that

predicts the transport and distribution of VEGF and afliber-

cept, an antiangiogenic agent that targets VEGF in the

human body. The concentrations of free and bound afli-

bercept in plasma predicted by the model match clinical

measurements obtained from human patients with cancer.

By inferring, through a Bayesian framework, the model

structure and parameters using clinical data, we gain

insight into the mechanisms involved in aflibercept’s anti-

angiogenic activity and are able to estimate PK parame-

ters of interest, including the rates of degradation and

internalization of the drug. We also estimate the rates at

which muscle cells, endothelial cells, and tumor cells

secrete VEGF. Additionally, the molecular detail of the

model enables identification of specific interactions and

transport processes that influence the distribution of the

anti-VEGF agent.
Based on the data-driven Bayesian inference method, we

found that including degradation of aflibercept (bound and

unbound) in the tissue compartments and permitting afliber-

cept to bind NRP-bound VEGF are necessary to provide

the most plausible network structure given the available

Figure 4 Predicted aflibercept concentrations from Model 2. Concentration profiles predicted by the most probable model with afliber-
cept treatment of 3 mg/kg. Free and bound aflibercept in the three compartments: (a) normal; (b) plasma; and (c) tumor. Dark gray
shading denotes the interquantile range (IQR), which contains �50% of posterior probability density function predictions. Light gray
bands indicate the range of predictions given the total uncertainty and contain �90% of predictions.
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clinical data. Specifically, our results suggest that account-
ing for aflibercept clearance as the primary means of afli-
bercept’s removal from the body, as found in clinical PK
studies23 (and represented in the baseline model), is not
sufficient to describe the clinical measurements of unbound
and bound aflibercept in plasma. Instead, proteolysis in tis-
sues must also be accounted for. Thus, the clearance rate
obtained by PK studies may be an overestimation, as it
also includes aflibercept removal via proteolysis in the tis-
sue. Additionally, the ability of aflibercept to bind NRP-
bound VEGF may be another mechanism by which afliber-
cept inhibits angiogenesis signaling. Thus, quantifying the
effects of aflibercept molecular interactions provides novel
and clinically relevant insight and proposes new, testable
hypotheses.

The Bayesian inference methodology provides a quantita-
tive measure as to the probability of the various models
given the available clinical data. The Bayesian model infer-
ence estimates Model 2 to be most probable, indicating
that aflibercept binding to NRP-bound VEGF contributes to
the distribution of aflibercept in the body. Our previous
local13–15 and global21 sensitivity analyses support the
importance of NRP-bound VEGF, in which the binding affin-
ity of VEGF for NRPs, the density of the co-receptors, and
the rate at which NRPs are internalized strongly influence
the amount of unbound VEGF in the body. Thus, NRPs are
shown to contribute to VEGF distribution, and it is important
to consider the effect of trapping NRP-bound VEGF. To our
knowledge, clinical measurements of the number of VEGF-
bound NRPs and the formation of anti-VEGF/VEGF/NRP
complexes have not been obtained. In the absence of these
data, our model provides a framework to test hypotheses
regarding the molecular interactions of aflibercept and how
those interactions contribute to its plasma concentration.

Another valuable output of the Bayesian inference
approach is parameter estimation. Of particular interest is
the rate of VEGF secretion by endothelial cells, muscle
fibers, and tumor cells, as there is a lack of experimental
measurements with which to specify these rates. The total
uncertainty provides an indication of the identifiability of an
estimated parameter. In all of the Models examined, the
rate of VEGF secretion by endothelial cells and tumor cells
could be estimated with low uncertainty. For the most prob-
able model, the tumor VEGF secretion rate is estimated to
be more than an order of magnitude higher than the esti-
mated endothelial cell VEGF secretion rate (0.387 vs.
0.0324 molecules/cell/s). The uncertainty in the inferred val-
ues for the rates of degradation of unbound aflibercept and
internalization of bound aflibercept can span up to five
orders of magnitude, indicating that these parameters are
difficult to estimate given the available data. The main rea-
son for the large TU estimated for these parameters is that
the available clinical data only measure concentrations of a
subgroup of species and not of all the species interacting in
the system ordinary differential equations. Thus, it is possi-
ble to find alternative mechanisms to generate the observed
quantities. As an example, the concentration of free VEGF
can decrease because of either degradation or binding with
aflibercept. Thus, we can find manifolds in the parameter
space that result in the same quantities of interest using dif-

ferent reaction mechanisms. The large TU highlights the

need to perform experiments that can quantify more of the

species included in the model and alleviate the parameter

identifiability.
Our recent computational study of VEGF concentrations

in humans before and after anti-VEGF treatment21 provides

interesting comparisons to the current study. The previous

model predicted, under certain conditions, a “counter-

therapeutic” response of plasma VEGF after administration

of the anti-VEGF agent bevacizumab.15 Interestingly, a

counter-therapeutic response of tumor VEGF is only pre-

dicted to occur in cases in which the tumor cells secrete a

low amount of VEGF, and unbound VEGF in normal tissue

is not predicted to increase after anti-VEGF treatment. In

contrast, after a single dose of aflibercept, unbound VEGF

is essentially depleted in all three compartments, even after

a single dose. A detailed study of the differences in

responses to bevacizumab and aflibercept is outside of the

scope of the current investigation; however, the molecular-

detailed nature of our model provides a framework with

which to examine the mechanisms that contribute to those

differences.
Although the model complexity, in terms of the number of

equations and parameters, can be viewed as a potential

disadvantage of the model, the molecular detail allows us

to interpret the results mechanistically. For example, it is

not possible to lump the two VEGF isoforms (VEGF121 and

VEGF165), because they have different binding partners

and affinities. Because of the intrinsic properties of the two

isoforms, they are present in the tissue compartments in

very different forms: VEGF165 is primarily bound to the

extracellular matrix, whereas VEGF121 is largely in soluble

form in the plasma and interstitial spaces. Our model pre-

dicts these different distributions.15 Thus, we believe that

the model must retain the current level of detail in order to

capture the unique dynamics of the VEGF isoforms and

aflibercept and provide novel mechanistic insight into the

effects of the species’ molecular interactions, which are not

possible with less molecular-detailed models.
In summary, our data-driven, molecular-detailed model

enables evaluation of the effect of specific molecular inter-

actions between the drug, its target, and other molecular

species in the body. Thus, the model is useful in discrimi-

nating between alternative mechanisms of action of the

anti-VEGF agent aflibercept. Our model can aid drug devel-

opment efforts, particularly with respect to personalized

medicine. The model would serve as an “in silico clinic” to

predict the effects of various drugs with molecular targets

in specific patient populations. We have already identified

model predictions that are relevant to personalized medi-

cine,15 and the work described herein also contributes to

these efforts.

Acknowledgments. This work was supported by the National Insti-
tutes of Health (R01 CA138264 to A.S.P. and F32 CA154213 to S.D.F.)
and the UNCF-Merck Science Initiative (to S.D.F.). P.K. and P.A. acknowl-
edge support from the European Research Council (Advanced Investiga-
tor Award No. 341117).

Pharmacokinetics of Anti-VEGF Agent Aflibercept
Finley et al.

648

CPT: Pharmacometrics & Systems Pharmacology



Author Contributions. S.D.F., P.A., P.K., and A.P. wrote the manuscript.
S.D.F. and A.P. designed the research. S.D.F. and P.A. performed the
research. S.D.F., P.A., P.K., and A.P. analyzed the data.

Conflict of Interest. The authors declared no conflict of interest.

1. Rudge, J.S. et al. VEGF Trap complex formation measures production rates of
VEGF, providing a biomarker for predicting efficacious angiogenic blockade. Proc.
Natl. Acad. Sci. USA 104, 18363–18370 (2007).

2. Zhou, Q. & Gallo, J.M. The pharmacokinetic/pharmacodynamic pipeline: translating
anticancer drug pharmacology to the clinic. AAPS J. 13, 111–120 (2011).

3. Gallo, J.M. Pharmacokinetic/pharmacodynamic-driven drug development. Mt. Sinai J.
Med. 77, 381–388 (2010).

4. Mager, D.E. & Jusko, W.J. Development of translational pharmacokinetic-
pharmacodynamic models. Clin. Pharmacol. Ther. 83, 909–912 (2008).

5. Kuepfer, L., Lippert, J. & Eissing, T. Multiscale mechanistic modeling in pharmaceuti-
cal research and development. In: Advances in Systems Biology (eds. Goryanin, I.I.
& Goryachev, A.B.) 543–561 (Springer New York, New York, 2012).

6. Rowland, M., Peck, C. & Tucker, G. Physiologically-based pharmacokinetics in drug
development and regulatory science. Annu. Rev. Pharmacol. Toxicol. 51, 45–73
(2011).

7. Sharan, S. & Woo, S. Systems pharmacology approaches for optimization of anti-
angiogenic therapies: challenges and opportunities. Front. Pharmacol. 6, 33
(2015).

8. Finley, S.D., Chu, L.H. & Popel, A.S. Computational systems biology approaches to
anti-angiogenic cancer therapeutics. Drug Discov. Today 20, 187–197 (2015).

9. Thai, H.T., Veyrat-Follet, C., Mentr�e, F. & Comets, E. Population pharmacokinetic
analysis of free and bound aflibercept in patients with advanced solid tumors. Cancer
Chemother. Pharmacol. 72, 167–180 (2013).

10. Thai, H.T., Mentr�e, F., Holford, N.H., Veyrat-Follet, C. & Comets, E. Evaluation of
bootstrap methods for estimating uncertainty of parameters in nonlinear mixed-effects
models: a simulation study in population pharmacokinetics. J. Pharmacokinet. Phar-
macodyn. 41, 15–33 (2014).

11. Panoilia, E. et al. A pharmacokinetic binding model for bevacizumab and VEGF165
in colorectal cancer patients. Cancer Chemother. Pharmacol. 75, 791–803 (2015).

12. Stefanini, M.O., Wu, F.T., Mac Gabhann, F. & Popel, A.S. A compartment model of
VEGF distribution in blood, healthy and diseased tissues. BMC Syst. Biol. 2, 77
(2008).

13. Finley, S.D., Engel-Stefanini, M.O., Imoukhuede, P.I. & Popel, A.S. Pharmacokinetics
and pharmacodynamics of VEGF-neutralizing antibodies. BMC Syst. Biol. 5, 193
(2011).

14. Finley, S.D. & Popel, A.S. Predicting the effects of anti-angiogenic agents targeting
specific VEGF isoforms. AAPS J. 14, 500–509 (2012).

15. Finley, S.D. & Popel, A.S. Effect of tumor microenvironment on tumor VEGF during
anti-VEGF treatment: systems biology predictions. J. Natl. Cancer Inst. 105, 802–811
(2013).

16. Angelikopoulos, P., Papadimitriou, C. & Koumoutsakos, P. Bayesian uncertainty
quantification and propagation in molecular dynamics simulations: a high performance
computing framework. J. Chem. Phys. 137, 144103 (2012).

17. Hadjidoukas, P.E., Angelikopoulos, P., Rossinelli, D., Alexeev, D., Papadimitriou, C.
& Koumoutsakos, P. Bayesian uncertainty quantification and propagation for discrete
element simulations of granular materials. Comput. Methods Appl. Mech. Eng. 282,
218–238 (2014).

18. Hadjidoukas, P.E., Angelikopoulos, P., Papadimitriou, C. & Koumoutsakos, P. P4U:
A high performance computing framework for Bayesian uncertainty quantification of
complex models. J. Comput. Phys. 284, 1–21 (2015).

19. Imoukhuede, P.I. & Popel, A.S. Quantification and cell-to-cell variation of vascular
endothelial growth factor receptors. Exp. Cell Res. 317, 955–965 (2011).

20. Imoukhuede, P.I. & Popel, A.S. Expression of VEGF receptors on endothelial cells in
mouse skeletal muscle. PLoS One 7, e44791 (2012).

21. Finley, S.D., Dhar, M. & Popel, A.S. Compartment model predicts VEGF secretion
and investigates the effects of VEGF trap in tumor-bearing mice. Front. Oncol. 3, 196
(2013).

22. Stefanini, M.O., Wu, F.T., Mac Gabhann, F. & Popel, A.S. The presence of VEGF
receptors on the luminal surface of endothelial cells affects VEGF distribution and
VEGF signaling. PLoS Comput. Biol. 5, e1000622 (2009).

23. Lockhart, A.C. et al. Phase I study of intravenous vascular endothelial growth factor
trap, aflibercept, in patients with advanced solid tumors. J. Clin. Oncol. 28, 207–214
(2010).

24. Dixon, J.A., Oliver, S.C., Olson, J.L. & Mandava, N. VEGF Trap-Eye for the treatment
of neovascular age-related macular degeneration. Expert Opin. Investig. Drugs 18,
1573–1580 (2009).

VC 2015 The Authors. CPT: Pharmacometrics & Systems
Pharmacology published by Wiley Periodicals, Inc. on
behalf of American Society for Clinical Pharmacology and
Therapeutics. This is an open access article under the
terms of the Creative Commons Attribution NonCommer-
cial License, which permits use, distribution and reproduc-
tion in any medium, provided the original work is
properly cited and is not used for commercial purposes.

Supplementary information accompanies this paper on the CPT: Pharmacometrics & Systems Pharmacology website
(http://www.wileyonlinelibrary.com/psp4)

Pharmacokinetics of Anti-VEGF Agent Aflibercept
Finley et al.

649

www.wileyonlinelibrary/psp4


	l

