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Abstract: Tuberculosis (TB) is a disease caused by Mycobacterium tuberculosis which has become
prevalent due to the emergence of resistant M. tuberculosis strains. The use of essential oils (EOs)
as potential anti-infective agents to treat microbial infections, including TB, offers promise due to
their long historical use and low adverse effects. The current study aimed to investigate the in vitro
anti-TB activity of 85 commercial EOs, and identify compounds responsible for the activity, using
a biochemometrics approach. A microdilution assay was used to determine the antimycobacterial
activity of the EOs towards some non-pathogenic Mycobacterium strains. In parallel, an Alamar
blue assay was used to investigate antimycobacterial activity towards the pathogenic M. tuberculosis
strain. Chemical profiling of the EOs was performed using gas chromatography-mass spectrometry
(GC-MS) analysis. Biochemometrics filtered out putative biomarkers using orthogonal projections
to latent structures discriminant analysis (OPLS-DA). In silico modeling was performed to identify
potential therapeutic targets of the active biomarkers. Broad-spectrum antimycobacterial activity
was observed for Cinnamomum zeylanicum (bark) (MICs = 1.00, 0.50, 0.25 and 0.008 mg/mL) and
Levisticum officinale (MICs = 0.50, 0.5, 0.5 and 0.004 mg/mL) towards M. smegmatis, M. fortuitum, M.
gordonae and M. tuberculosis, respectively. Biochemometrics predicted cinnamaldehyde, thymol and
eugenol as putative biomarkers. Molecular docking demonstrated that cinnamaldehyde could serve
as a scaffold for developing a novel class of antimicrobial compounds by targeting FtsZ and PknB
from M. tuberculosis.

Keywords: tuberculosis; essential oils; gas chromatography mass spectrometry; biochemometrics;
minimum inhibitory concentration; antimycobacterial; molecular docking

1. Introduction

Tuberculosis (TB) is a highly contagious respiratory disease caused by an aerobic
rod-shaped bacterium, Mycobacterium tuberculosis [1]. Mycobacterium tuberculosis is trans-
mitted through direct inhalation or ingestion of small aerosol droplets that contain the
micro-organisms. The droplets are generated by an infected individual and transmitted
primarily through sneezing and coughing. Symptoms of a TB infection include persistent
cough, constant fatigue, loss of appetite and weight, fever, coughing up blood, night sweats,
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chest pain, shortness of breath and swollen lymph nodes [2]. Tuberculosis is regarded as a
third-world disease and is prevalent in southeast Asia (44%), Africa (24%) and the western
Pacific (18%), while there is lower incidence in the eastern Mediterranean (8%), USA (3%)
and Europe (3%) [3]. According to the WHO, in 2018, approximately 10 million people
suffered from TB (58% men, 32% women and 10% children) [4] and almost 87% of this pop-
ulation were from high–burden countries. First–line treatment in TB chemotherapy consists
of isoniazid, ethambutol, pyrazinamide and rifampicin [5], while second–line treatment
consists of aminoglycosides (e.g., streptomycin), polypeptides (e.g., capreomycin), fluo-
roquinolones (e.g., levofloxacin) and other, less–effective, drugs, such as thioamides (e.g.,
ethionamide) [6]. Despite the well-structured treatment programs and ready availability of
anti-TB drugs, mortality rates remain high, ranking TB among the top 10 causes of death
globally and the leading cause of death from a single infectious agent [3,7]. Poor treatment
outcomes due to drug resistance have been identified as one of the major contributors to
TB deaths.

Drug resistance has become a global challenge, particularly in the treatment of TB [7].
Over the years, multiple forms of resistance have emerged, namely multi–drug resistant
(MDR-), extensively drug resistant (XDR-) and totally drug resistant (TDR-) TB. These
resistant forms have required drastic changes in treatment strategy, leading to an increase
in the number of drugs prescribed and longer treatment periods of up to two years. Tu-
berculosis patients experience serious side-effects with longer treatment periods and an
increase in treatment-related costs, which leads to poor patient compliance. The WHO
documented that MDR–TB represents approximately 3.3% of new TB cases and 20.5% of
previously treated cases in 2015. Extensively drug–resistant tuberculosis (XDR–TB) cases
have been reported in 105 countries and some cases of TDR–TB, which is resistant to first-
and second-line anti–TB drugs [7]. The emergence of resistant Mycobacterium strains has
prompted the search for new anti-TB drugs that are highly potent, with fewer side-effects
and a low risk of engendering resistance. For this reason, natural products have attracted
attention due to purported lower side-effect profiles and a long history of traditional use
for the management of various diseases and infections. The use of essential oils (EOs) for
their antimicrobial properties has the potential to treat drug-resistant TB.

Essential oils are groups of low molecular weight compounds extracted from the
flowers, leaves, stalks, fruits and roots of aromatic plants, by steam or hydro-distillation [8].
Their use dates back to ancient civilization [9], with applications in pain management,
wound care, respiratory tract complaints, aromatherapy and spiritual relaxation [10]. The
use of EOs as antimicrobial agents may lead to a lower chance of developing microbial
resistance, while their natural origin affords them a relatively high degree of safety and
consumer confidence. Furthermore, their volatile nature makes them ideal for use through
inhalation, which is the ideal delivery method for direct action to the lungs, which is the site
of infection. Various EOs have been investigated against MDR-TB strains including Rosmar-
inus officinalis, Origanum vulgare, Ocimum basilicum and Mentha piperita [11]. Cold–pressed
terpeneless (CPT) Valencia orange (Citrus sinensis) oil was demonstrated to be effective
against a variety of Mycobacterium species, including M. bovis, M. avium complex and M. tu-
berculosis [12]. Essential oils of Piper species (P. rivinoides, P. cernuum and P. diospyrifolium) dis-
played moderate activity against M. tuberculosis H37Rv bacillus with MIC = 125 µg/mL [13].
Antimycobacterial activity of the EO of Tetradenia riparia and 6,7-dehydroroyleanone against
M. tuberculosis H37Rv was reported, with MICs = 62.5 µg/mL and 31.2 µg/mL, respec-
tively [14]. Several other studies have documented good antimycobacterial activities of
various EOs; however, very few have gone further to identify the bioactive constituents.

The current study aimed to screen a range of commercially important essential oils for
possible antimycobacterial activity. Furthermore, identification of potentially active antimy-
cobacterial compounds in EOs was performed using biochemometrics and the activity of
the compounds was validated. This biochemometric approach overcomes the challenges of
active compound identification through conventional bio-assay guided fractionation, which
is biased towards abundant and more dominant compounds. Biochemometrics can sepa-
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rate active and inactive compounds within complex chemical data matrices, including those
occurring at very low levels, by employing statistical modeling tools to correlate secondary
metabolite profiles with biological activity, subsequently revealing putative biomarkers [15].
The process is less time-consuming, unbiased and environmentally friendly and identifies
multiple bioactive compounds from a single analysis.

In the absence of available resources to perform in vitro enzymatic studies, in silico
approaches, such as molecular docking, have emerged as important tools to identify
biological targets with potential therapeutic activity. Docking analysis was considered
for exploring potential targets to support our experimental observations. Our in silico
study identified two targets from M. tuberculosis, namely FtsZ and PknB, for further lead
compound-based essential oil development. The target FtsZ is essential for cell division
in bacteria. Inhibition of the protein prevents proper formation of the divisome, which
leads to filamentation and eventual cell death, making it an attractive target for antibiotic
research [16–21]. Protein kinase B (PknB) from M. tuberculosis, with possible roles in several
signaling pathways involved in cell division and metabolism, has an essential role in
sustaining mycobacterial growth [22–25]. Recent findings showed that PknB is essential for
both in vitro growth and survival of M. tuberculosis in the host [26–30].

2. Results
2.1. Antimycobacterial Activity of Essential Oils

The results obtained from the microdilution assay for the non-pathogenic strains revealed
minimum inhibitory concentrations (MICs) ranging from 0.25 mg/mL to >8.00 mg/mL
(Table S1). The MIC values for the positive controls, rifampicin and ciprofloxacin, ranged
from 0.004 µg/mL to 0.50 mg/mL, with rifampicin presenting the lowest concentration.
Mycobacterium fortuitum was the most sensitive strain, with 42 EOs (48.2% of the test EOs)
inhibiting growth at concentrations ≤ 1 mg/mL. Twenty-three EOs (27.1%) exhibited good
activity towards M. smegmatis, while only 12 (14.1%) displayed good activity towards M.
gordonae, making it the least susceptible of the non-pathogenic Mycobacterium strains tested
in this assay. In total, eighteen EOs (21.2%) displayed antimycobacterial activity towards
two strains, while three EOs (3.5%) were active towards all three Mycobacterium strains.

The results for M. tuberculosis showed that the strain had higher resistance towards
the EOs. Among all the EOs tested, 79 (92.9%) yielded MICs greater than the maximum
concentration tested (>256 µg/mL), indicating poor antimycobacterial activity towards
this strain. Only three EOs (3.5%) displayed good activity; these included Cinnamomum
zeylanicum (8.00 µg/mL), C. cassia (4.00 µg/mL) and Levisticum officinale (4.00 µg/mL). These
three EOs also showed noteworthy activity in the microdilution assay towards the three non-
pathogenic strains. Overall, the three EOs displaying broad-spectrum antimycobacterial
activity towards all four pathogens tested were L. officinale, which was the most active EO
towards all the pathogens, followed by C. zeylanicum and C. cassia.

2.2. Chemical Profiles of the Essential Oils

The major constituents of the 85 EOs were determined using GC-MS/FID and analyzed
using a targeted approach. Monoterpenes were identified as major compounds in several
EOs (Table S1). Compounds identified in high concentrations included limonene, which
was identified in 29 EOs, α-pinene in 20 EOs, 1,8-cineole in 19 EOs, γ-terpinene in 15 EOs,
linalool and β-pinene in 11 EOs, and camphene and sabinene in 10 EOs. Limonene
was identified as the major compound in all the Citrus spp., while α-pinene, camphene,
limonene and β-pinene were identified in Abies spp. Principal component analysis was
performed on the aligned GC-MS data to observe variation in the composition of the EOs.
Figure 1 is a PCA scores plot where the EOs are distributed according to the degree of
chemical variation and color-coded by species name. A high degree of variance in the EO
profile was observed as broad scattering of the samples in the four quadrants. The model
statistics showed that only 11.4% variation was modeled by the first 2PCs where PC1 = 6.3%
(R2X = 0.063) and PC2 = 5.1% (R2X = 0.051). There were no strong outliers, as all the oils
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were within the model boundary (Hotelling’s T2 95%), except for C. camphora (CT linalool)
(CNCL), a moderate outlier, which presented a somewhat distinct chemical profile.
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2.3. Identification of Bioactive Compounds Using Biochemometrics

To correlate the antimycobacterial activity of the EOs to their chemical composition
and subsequently determine the biomarkers responsible for the activity, four separate
OPLS-DA models were constructed for M. smegmatis, M. fortuitum, M. gordonae and M.
tuberculosis. A summary of the model statistics for the four OPLS–DA models is presented
in Table 1. The cumulative chemical variation in the data (R2Xcum), and the predictive
ability (Q2

cum) of the models, were less than 50% for three models, which may result in
poor model performance; however, validation experiments for the single compounds were
determined to confirm that the predictive ability of the models was good.

Table 1. OPLS–DA model statistics for the four Mycobacterium species.

Mycobacterium Strains Number of Components (A) R2Xcum R2Ycum Q2
cum

M. fortuitum 1 + 2 0.117 0.792 0.372
M. gordonae 1 + 1 0.078 0.585 −0.284
M. smegmatis 1 + 2 0.112 0.752 −0.115
M. tuberculosis 1 + 1 0.0799 0.969 0.577

The model for M. smegmatis was fitted with one predictive and two orthogonal com-
ponents (A = 1 + 2) (Figure 2A). A total variance of 11.2% (R2Xcum = 0.11) in the X-matrix
was used to compute the model and the total variation explained in the Y-matrix was
75.2% (R2Ycum = 0.75). Clear separation of the active (green) and non-active (blue) EOs
was observed along the predictive component (Pp1) with a modeled variation of 2.21%
(Pp1 = 0.022). Identification of the biomarkers filtered from the active group was possi-
ble on the S-plot (modeled covariance (Pp1, x-axis) vs. modeled correlation (p(corr) [1],
y-axis)), where the variables are indicated in green (Figure 2B). Each variable (a point on
the S-plot) is an RTM pair extracted from the GC-MS data. Each statistically significant
RTM pair that was highly correlated to active EOs (Class 1) could be observed in the upper
right quadrant (green). Tentative identification of the RTM pairs was performed using the
NIST®, Mass Finder® and Flavor® libraries. The biomarkers identified as common com-
pounds occurring in the highly active EOs towards M. smegmatis were α-cedrene, thymol,
geranyl acetate/butyrate, carvacrol, geraniol, benzyl acetate, α-calacorene, isophytol and
5-heptylcyclohexa-1,3-diene.
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Figure 3A is the scores scatterplot for M. fortuitum, where separation of the active
(green) from non-active (blue) EOs can be observed along the predictive component (Pp1),
with 2.65% chemical variation related to separation of the two groups. The model fitted
with one predictive and two orthogonal components (A = 1 + 2) was computed using 11.7%
(R2Xcum = 0.11) of the total variance in the X-matrix and the total variation explained in the
Y-matrix was 79.2% (R2Ycum = 0.79). Tentative identification of the RTM pairs filtered in
the S-plot (Figure 3B) revealed the biomarkers associated with the EOs active towards M.
fortuitum to be linalool, geranial, geranyl butyrate, cinnamaldehyde, eugenol and thymol.
Two compounds that were previously identified as biomarkers in Figure 3B, were also
filtered out for M. fortuitum; these were identified as thymol and geranyl butyrate.
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The OPLS-DA model constructed for M. gordonae was fitted with one predictive
and one orthogonal component (A = 1 + 1) and computed using 7.8% (R2Xcum = 0.078)
of the total variance in the X-matrix; the total variation explained in the Y-matrix was
58.5% (R2Ycum = 0.585) (Figure 4A). The S-plot of the variables (Figure 4B) assisted the
identification of biomarkers associated with good antimycobacterial activity as cinnamalde-
hyde, thymol, eugenol and terpinene-4-ol/β-caryophyllene. For a third time, thymol was
identified as a bioactive compound in EOs active against Mycobacterium strains, while
cinnamaldehyde and eugenol were identified for a second time.
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Figure 5A shows a scores scatterplot for M. tuberculosis, where very few EOs classified
as active (green) separate from the non-active EOs along the predictive component. A 3%
chemical variation between these two classes of oils was attributed to the bioactivity of
the EOs, according to the OPLS-DA model, which was fitted with one predictive and one
orthogonal component (A = 1 + 1). The total variance in the X-data matrix used to compute
the model was 7.99% (R2Xcum = 0.0799) and the total variation explained in the Y-matrix was
96.9% (R2Ycum = 0.969). The S-plot-filtered RTM pairs (Figure 5B) led to the identification
of four active biomarkers, namely, cinnamaldehyde, α-calacorene, 5-heptylcyclohexa-1,3-
diene and cinnamyl acetate. Again, an overlap in the bioactive compounds was observed
where cinnamaldehyde, α-calacorene and 5-heptylcyclohexa-1,3-diene were predicted to
be active towards the Mycobacterium strains.
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In total, 13 chemical compounds were predicted to have good antimycobacterial
activity and these, in a mixture or individually, may be responsible for the observed an-
timycobacterial activity towards the four pathogens tested. Considering all the compounds
predicted by the four models collectively, eugenol, thymol and cinnamaldehyde were fre-
quently associated with active samples (oils). To validate the model predictions, a selection
of the identified biomarkers (based on availability) were tested for their antimycobacterial
activity. Good antimycobacterial activity of three compounds (cinnamaldehyde, thymol
and eugenol) was confirmed, as demonstrated by low MIC values (<1.0 mg/mL) towards
M. fortuitum, M. gordonae and M. smegmatis and equal to 256 µg/mL towards M. tuberculosis,
except for cinnamaldehyde (8.00 µg/mL) (Table 2).
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Table 2. Mean MIC values (mg/mL) of predicted active compounds towards selected Mycobac-
terium strains.

Biomarker M. smegmatis
ATCC 19420

M. fortuitum
ATCC 6841

M. gordonae
ATCC 14470

M. tuberculosis
H37Ra ATCC 25177

(µg/mL)

Cinnamaldehyde 0.250 0.130 0.030 8.00
Eugenol 1.000 1.000 0.250 256
Thymol 0.500 1.000 0.190 256
Ciprofloxacin (µg/mL) 0.310 0.160 0.310 -
Ethambutol (µg/mL) - - - 2.00

2.4. Molecular Docking Analysis

The superior level of antitubercular potential demonstrated by cinnamaldehyde in this
study prompted us to perform molecular-docking studies to identify the potential targets
for this scaffold and understand the key molecular mechanisms governing the inhibitory
activity against M. tuberculosis. A comprehensive literature review, as well as a target
prediction algorithm implemented on the CHEMBL database with 14,000 targets, resulted
in two potential therapeutic targets, namely FtsZ and PknB proteins from M. tuberculosis.

2.4.1. Cinnamaldehyde-FtsZ and Binding Modes Analysis

To explore the energetically favored binding modes of cinnamaldehyde and its cor-
responding degree of affinities upon complexation, docking analysis based on a refer-
ence model of three co-crystallized ligands accommodated in the active site and two
allosteric sites of FtsZ was performed (Figure 6). Recently, an experimental study by
Alnami et al. [26] revealed two novel allosteric pockets in FtsZ from M. tuberculosis that
have not been identified before. Figures 6 and 7 present 3D-structures of the experimentally
identified active sites and two allosteric sites from crystallized FtsZ, in complex with GDP
and 4-hydroxycumarin ligands, respectively [26].
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The theoretical predictions from the molecular docking study were that cinnamalde-
hyde could successfully dock into the active site and the two known allosteric sites of
M. tuberculosis FtsZ. The docked pose showed variation in the degree of affinity and the
complexation was stabilized by formation of several bonded and non-bonded interac-
tions, as shown in Figure 8 and Figure S1. The docking scores and the minimum energy
for the formation of the complex between the ligand and the receptor (the glide energy)
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was observed to be negative which suggests these molecules could serve as a pertinent
starting point for the rational design of drugs targeting M. tuberculosis FtsZ (see Table 3).
The more negative value of the docking score and the glide energy signify good binding
affinity of the ligand toward the target and vice versa. Table 3 presents the intermolecular
interaction energy values (glide score, glide energy) from the docking calculation. The
best docked conformation of cinnamaldehyde against the active site of FtsZ revealed that
the molecule anchored at the same co-ordinates as observed for the native ligand with
favorable interactions (see Figure 8). Its docking score was found to be −2.96 with an
overall binding energy (glide energy) of −21.79 kcal/mol interacting with Thr-130 and
Ala-183 residues from chain-A lining the active site through direct hydrogen bonding
and π-alkyl interactions, respectively. Lys-55, Ala-39 and Leu-47 binding residues from
chain-B were found to be engaged in the allosteric site of (414) via π-sigma and π-alkyl
interactions with cinnamaldehyde imposing favorable binding affinities upon complexa-
tion. Similarly, Thr-306, Arg-304 and Ile 225, through hydrogen bonding formation and
π-sigma and π-alkyl interactions, stabilized cinnamaldehyde in the second allosteric site
(514). These types of hydrogen-bonding, and the π-sigma and π-alkyl interactions, served
as an “anchor”, guiding the 3D orientation of cinnamaldehyde into the active site and two
potential allosteric sites, facilitating ligand-binding upon complexation.
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Table 3. Summary of the binding affinities of co-crystalized GDP, 4-hydroxycumarin in two different
allosteric sites and cinnamaldehyde in terms of docking scores and glide energies generated by
GLIDE XP docking.

Entry Compound Glide Score.
kcal mol−1

Glide Energy.
kcal mol−1

Interacting Binding
Site Residues

1 Co-crystal GDP −9.04 −69.51 Asn-22, Thr-130, Arg-140,
Asn-163, Phe-180

2 Co-crystal 4HC_414 −3.90 −21.37 Ala-39, Leu-47, Ser-50, Lys-55

3 4wCo-crystal 4HC_415 −4.21 −24.06 Gly-193, Ser-260, Ala-262,
Val-294, Arg-304

4 Cinnamaldehyde active site −2.96 −21.79 Ala-183, Thr-130

5 Cinnamaldehyde_4HC_414 site −3.04 −21.88 Ala-39, Asn-41, Lys-55

6 Cinnamaldehyde_4HC_415 site −3.16 −21.66 Ala-183, Thr-130
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2.4.2. Cinnamaldehyde-PknB Binding Mode Analysis

PknB from M. tuberculosis was identified among 14,000 available targets from the
CHEMBL database using a target prediction algorithm implemented on its pipeline [27].
The generated potential targets using this pipeline are provided in Table S2. The results
present PknB as the only potential target for cinnamaldehyde with activity threshold:
6.5 [27]. The 3-D structure of mitoxantrone in the active site of PknB is provided in
Figure 9 [22].
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With a similar protocol as in Section 2.4.1, docking analysis, based on a reference model
of co-crystallized mitoxantrone accommodated in the active site of PknB, was performed to
obtain more insight into the binding mode of cinnamaldehyde upon PknB complexation.
The results from the ensuing docking simulation revealed that cinnamaldehyde could
fit snugly into the active site of PknB, occupying a position close to that of the native
mitoxantrone ligand with a very similar topology of binding and varying magnitude of
affinity. As depicted in Figure 10, cinnamaldehyde formed several network interactions
with the active site of PknB through hydrogen bonding with Asp-156, π-sulfur interaction
with Met-145 and three π-sulfur interactions with Leu-17, Ala-38, Met-155 in the binding
site with a docking score of −5.57 and a glide energy of −20.94 kcal mol−1 (Table 4). Overall,
it was evident from these docking simulations that cinnamaldehyde showed considerable
affinity for both FtsZ and PknB targets from M. tuberculosis, which indicated that this
scaffold represents a pertinent starting point for structure-based lead optimization.
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Table 4. Summary of the binding affinities of co-crystalized mitoxantrone and cinnamaldehyde
molecules in terms of docking scores and glide energies generated by GLIDE XP docking.

Entry Compound Glide Score.
kcal mol−1

Glide Energy.
kcal mol−1 Interacting Binding Site Residues

1 Co-crystal mitoxantrone −11.49 −64.21 Asn-22, Thr-130, Arg-140,
Asn-163, Phe-180

2 Cinnamaldehyde −5.57 −20.94 Ala-39, Leu-47, Ser-50, Lys-55

3. Discussion

The chemical composition of an EO is directly related to its biological activity; therefore,
there is a need for studies that consider this aspect when investigating the bioactivity of
natural products. By correlating noteworthy antimycobacterial activity to EO profiles, the
current study was able to identify active compounds in complex EO mixtures that can
be explored further for development into antimycobacterial agents. The antimicrobial
activity of some of these EOs and compounds have been reported previously. Studies of
the bactericidal effect of low concentrations of Eugenia caryophyllus EO reported eugenol
and eugenyl acetate as major constituents [28–30]. In the current study, eugenol was
identified as the dominant compound in E. caryophyllus (Supplementary Figure S2) which
was active towards both M. fortuitum and M. gordonae. In a previous biochemometrics
study, eugenol was also identified as a putative biomarker responsible for noteworthy
antimicrobial activity towards a range of pathogens, namely, Bacillus cereus, Staphylococcus
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aureus, Enterococcus faecalis, Escherichia coli, Pseudomonas aeruginosa, Candida albicans and
Cryptococcus neoformans [31]. A study investigating the antimicrobial activity of eugenol
against carbapenem-resistant Klebsiella pneumoniae revealed eugenol’s ability to decrease
microbial growth and intracellular ATP concentrations, and to induce changes in cell
morphology and inhibit biofilm formation, at an MIC value of 200 µg/mL [32].

The EO of Trachyspermum ammi, with 42.3% thymol, was previously reported to demon-
strate good antimicrobial and acaricidal activity in veterinary parasitology [33,34]. The
current study identified thymol as a major compound in four EOs with good antimycobac-
terial activity, namely, T. zygis (Supplementary Figure S3) and T. ammi (active towards M.
smegmatis and M. fortuitum), T. vulgaris (CT thymol) (active towards M. smegmatis and M.
gordonae) and T. saturejoides (active towards M. gordonae). Thymol was reported in many
studies to have anti-oxidant, anti-inflammatory, local anesthetic, antinociceptive, cicatrizing,
antiseptic, cardiovascular and antifungal properties [35–45]. In a study investigating the
antimycobacterial properties of essential oil constituents, thymol was found to be the most
active terpene, with MIC values of 0.78 and 2.02 µg/mL against strains of M. tuberculosis
and M. bovis, respectively [46]. The antibacterial effect of thymol is suggested to be due
to the disturbance of the lipid fraction of bacterial plasma membranes. This results in
increased permeability of the membrane, inducing leakage of intracellular materials. In
fungi, thymol causes enlargement of cell membranes, enabling passive diffusion of ions
between the expanded phospholipids, thereby leading to disturbances in fungal biological
functions [47].

The EO of C. zeylanicum bark displayed good antimycobacterial activity towards M.
smegmatis and M. tuberculosis. One of the major constituents of cinnamon EO is cinnamalde-
hyde (Supplementary Figure S4), which has been reported to be responsible for the strong
antifungal and bactericidal activities of the EOs in previous studies. Eugenol, linalool,
1,8-cineole, neral and geranial were also reported to be responsible for the antibacterial
activity of Cinnamomum EOs and to interact in a synergistic manner [48,49]. The trans-
isomer of cinnamaldehyde with antimicrobial properties inhibits bacterial growth through
various mechanisms of action [50], including alteration of the bacterial cell membrane [51],
inhibition of ATPase [52], inhibition of cell division and separation [53,54], inhibition of
membrane porins and more [55,56]. Other properties of cinnamaldehyde include anti-
cancer/antitumor, cardiovascular, anti-inflammatory and as thermogenic agents [57].

Several experimental and modeling approaches have confirmed the inhibitory activity
of cinnamaldehyde against FtsZ [58–63]. Li et al. [64] showed the in vitro antibacterial
activity of cinnamaldehyde derivatives targeting FtsZ from different organisms, such as
Bacillus subtilis, E. coli, P. aeruginosa, S. aureus, Staphylococcus epidermidis and Streptococcus
pyogenes. Domadia et al. [54] demonstrated, through isothermal calorimetric titration and
molecular docking, that FtsZ is one of the target proteins for cinnamaldehyde. Another
study by Valero [27] showed the inhibitory effect of cinnamaldehyde on cell division via
FtsZ, by significantly decreasing the exponential growth rate of B. cereus through interacting
with the V208 and G295 binding site residues, corresponding to the V206 and G292 residues
of FtsZ from M. tuberculosis. Experimental work undertaken by Kumar et al. [16] identified
that zantrins inhibit FtsZ from both M. tuberculosis and E. coli with IC50 of 50–70 µM and
4–25 µM, respectively.

In an extensive in silico study, target identification prediction algorithms, implemented
on the CHEMBL database with 14,000 available targets, were used to search for potential
proteins for the cinnamaldehyde template. We were motivated to consider cinnamalde-
hyde as a template for FtsZ and PknB targets from M. tuberculosis for further study using
molecular docking analysis. The case study in in silico molecular docking suggests FtsZ
and PknB as potential targets from M. tuberculosis for cinnamaldehyde with considerable
binding affinity energies. The predicted outcome presented here suggests a strong platform
for the rational design of novel selective and potent M. tuberculosis inhibitors, based on a
cinnamaldehyde scaffold.
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4. Materials and Methods
4.1. Essential Oils, Chemical Reagents and Solutions

The EOs used were selected based on commercial significance, availability and chemi-
cal diversity. All 85 EOs were purchased from Pranarôm International (Belgium) and stored
at 4 ◦C prior to analysis (Table S1). The Middlebrook 7H9-S broth medium base used in
the microdilution assay was purchased from Remel (USA), while the Middlebrook oleic
albumin dextrose catalase (OADC), glycerol, the supplement albumin-dextrose-catalase
(ADC), the p-iodonitrotetrazolium violet (INT) and Middlebrook 7H9 broth were purchased
from Sigma-Aldrich (Germany). The Middlebrook 7H9-S broth medium base used in the
microplate Alamar blue assay was purchased from Becton, Dickinson and Company (USA)
and the Lowenstein–Jensen slopes were purchased from Thermo Fisher Scientific (USA).
The microtiter plates used were purchased from Sigma-Aldrich (Germany). The positive
control antibiotics, rifampicin, ciprofloxacin, ethambutol, streptomycin and isoniazid were
supplied by Sigma-Aldrich, along with acetone, which was used as the negative control.

4.2. Mycobacterial Strains, Media and Culture Conditions

Three non-pathogenic laboratory reference strains of Mycobacterium, namely M. smeg-
matis ATCC 19420, M. fortuitum ATCC 6841 and M. gordonae ATCC 14470, were supplied by
the Department of Pharmacy and Pharmacology, University of the Witwatersrand, South
Africa. These strains belong to the Mycobacteriaceae family, known for a rapid growth
rate with the ability to adapt to different environmental niches [65]. The strains were
selected due to their unique cell-wall composition, which is remarkably thick and lipid-rich
compared to other common pathogenic strains of M. tuberculosis [65]. The fourth, semi-
pathogenic, M. tuberculosis H37Ra ATCC 25177 strain, was provided by the Department of
Microbiology, Medical University of Lublin, Poland. The M. smegmatis, M. fortuitum and M.
gordonae strains were maintained in 20% glycerol at −20 ◦C prior to use. Mycobacterium
smegmatis and M. fortuitum were cultivated for approximately 3 to 4 days, while M. gordonae
was cultivated for approximately 10 to 15 days at 37 ◦C. Following incubation, the bacterial
cultures were standardized by dilution to 1:100 using Middlebrook broth with OADC
growth supplement, to achieve approximately 1 × 106 colony-forming units (CFU)/mL
(0.50 McFarland turbidity standard) [66]. Mycobacterium tuberculosis H37Ra ATCC 25177
cultures were prepared on Lowenstein–Jensen slopes and incubated horizontally at 37 ◦C
for two weeks. The bacterial suspension was then prepared by transferring the bacterial
mass into 5 mL of Middlebrook 7H9-S broth media supplemented with 0.2% glycerol and
10% ADC. The suspension was vortexed for 2 min with 1 mm glass beads and incubated at
room temperature for 1 hr to allow large clumps of microbial sedimentation. The super-
natant (3 mL) was transferred and left to stand for another 30 min. This was then adjusted
to the 0.5 McFarland turbidity standard with ADC supplemented Middlebrook 7H9 broth.
The density of the bacterial suspension used was approximately 1 × 106 CFU/mL [67].

4.3. Antimycobacterial Activity Determination
4.3.1. The Microdilution Assay

The modified microdilution assay of Eloff [68] was used for MIC determination in
a 96-well plate. Each EO was diluted with acetone to a 32 mg/mL stock. Acetone was
included in the assay as a negative control to ensure it had no inhibitory activity towards
the test mycobacterial strains; thus, the MIC values obtained would reflect the antimy-
cobacterial activity of the EOs. The media was included as a growth control to demonstrate
support for mycobacterial growth. Rifampicin and ciprofloxacin were used as positive
controls in this assay. Initially, 100 µL of Middlebrook broth was added to all the microtiter
plate wells. This was followed by adding 100 µL of each EO stock solution in duplicate in
the first row of the plate. The growth control and acetone control were added in duplicate
to the last four wells of the first row. The oils were then serially diluted. The control
plates for each Mycobacterium strain were prepared in the same manner, using rifampicin
(1.0 mg/mL) and ciprofloxacin (0.01 mg/mL). When all the test solutions and controls had
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been serially diluted across the microtiter plates, 100 µL of 0.5 McFarland standardized
Mycobacterium cultures were added to the wells. The final EO concentrations in the wells of
each column were 8, 4, 2, 1, 0.5, 0.25, 0.125 and 0.063 mg/mL [69]. The microtiter plates
were sealed with sterile adhesive film to prevent EO loss due to their inherent volatility [70]
and incubated at 37 ◦C for 4 days (M. smegmatis and M. fortuitum) and 10 days for M.
gordonae. Following incubation, 40 µL of 0.4 mg/mL INT violet solution was added to
each well and the plates were further incubated for 24 hrs, after which the MIC values
were determined. All the wells with the purple–red coloration indicated mycobacterial
growth, while the clear wells represented inhibition of mycobacterial growth. The lowest
concentration of EO that prevented mycobacterial growth was taken to be the MIC value.
All assays were undertaken at least in triplicate.

4.3.2. The Alamar Blue Assay

Essential oil stock concentrations of 25.6 mg/mL were prepared by dissolving 5 µL of
each EO in 190 µL of 2% dimethyl sulphoxide (DMSO). Each stock solution was diluted 1:50
using Middlebrook 7H9-S broth medium, resulting in a stock concentration of 512 µg/mL.
An aliquot of 50 µL broth was added to each of the 96-wells in a microtiter plate and
50 µL DMSO was added to the control wells to give a final concentration of 1% DMSO
for the negative control; 100 µL of stock EO was added to the test wells and finally 50 µL
0.50 McFarland standardized M. tuberculosis inoculum was added to each well. The final
EO concentrations tested were 256, 128, 64, 32 and 16 µg/mL. A positive control plate was
prepared in the same manner with the four antibiotics: ethambutol (128 µg/mL serially
diluted to 0.25 µg/mL), streptomycin (64 µg/mL to 0.125 µg/mL), isoniazid (16 µg/mL to
0.03 µg/mL) and rifampicin (0.25 µg/mL to 0.0005 µg/mL). All the test and control plates
were then sealed with sterile adhesive film and incubated at 37 ◦C for 7 days. Following
incubation, 15 µL of Alamar blue was added to each well. The plates were resealed and
further incubated for 48 hrs, before recording the MIC results. The change in color of
the Alamar blue from blue to pink was assessed, and the fluorescence recorded on a
spectrophotometer (570 nm/600 nm). The MIC value was confirmed by the lack of color
change and defined as the lowest drug concentration that prevented blue to pink color
change. Essential oils without color change beyond 16 µg/mL were repeated and the serial
dilution was extended to 0.50 µg/mL [67]. All assays were undertaken at least in triplicate.

4.4. GC-MS Analysis of the Essential Oils

The 85 EOs were analyzed on an Agilent 6890 N GC system coupled directly to a
5973 MS (GC-MS/FID). Each EO was diluted with high grade hexane to a concentration of
20% v/v. A volume of 1 µL of each diluted EO was injected into the chamber and analyzed
using a split ratio (200:1) with an autosampler at 24.79 psi and an inlet temperature of 250 ◦C.
The GC system used was equipped with an HP-Innowax polyethylene glycol column of
60 m × 250 µm i.d. × 0.25 µm film thickness (Agilent Technologies, Hannover, Germany).
The oven temperature was programmed as follows: 60 ◦C for the first 10 min, then rising
to 220 ◦C at a rate of 4 ◦C/min and held for 10 min, and then rising to 240 ◦C at a rate of
1 ◦C/min. Helium was used as the carrier gas at a constant flow of 1.20 mL/min. Spectra
were obtained on electron impact at 70 eV, scanning from m/z 35 to 550. The identification
of the compounds was carried out using the NIST®, Mass Finder® and Flavor® databases,
by comparing mass spectra, retention indices and authentic standards [71]. Quantification
was performed using peak area normalization, where the peak areas obtained by FID for
each compound was expressed as a percentage of the total of the peak areas of all the
detected peaks.

4.5. Biochemometrics Analysis

To correlate the GC-MS profiles of the EOs to antimycobacterial activity, the two
datasets were merged and chemometrics algorithms were employed to filter out biomarker
molecules. Prior to the merger, chromatographic data pre-processing was performed in
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MarkerLynx® v4.1 (Waters Corporation, Milford, MA, USA), which involved baseline
correction, scaling, noise reduction and spectral alignment. The MS molecular fragments
with the corresponding retention times were aligned across all the EOs. The aligned
data of peak intensities were obtained in MS Excel® and the MIC results were integrated
with the GC-MS data. The EOs were assigned to classes based on the antimycobacterial
activity, where class 1 EOs had MIC values ≤ 1.0 mg/mL (good activity) and class 2 EOs
had MIC values > 1.0 mg/mL (poor activity) for the three non-pathogenic strains. The
class allocation for the pathogenic M. tuberculosis was defined as MIC value ≤ 32 µg/mL
(active EOs; Class 1) and MIC value > 32 µg/mL (non-active EOs; Class 2). The data was
exported to SIMCA-P+ 14.0 (Umetrics, Sweden) for chemometric data analysis. Principal
component analysis (PCA) was performed to provide an overview of the chemical variation
in the dataset. Orthogonal projections to latent structures discriminant analysis (OPLS-
DA) was applied to correlate the X-data matrix comprising of chromatographic data
to the Y-variables created based on classification of antimycobacterial activity for each
pathogen. Cross validation was applied to avoid statistically unreliable conclusions for
group separation [72]. The models were constructed to separate chemical data related to
antimycobacterial activity from other systematic variation. The results were visualized
in a scores scatterplot where EOs with good activity were separated from those with
poor activity. The S-plots were used to filter out putative biomarkers (EO compounds)
responsible for the observed activity [31]. Retention time mass (RTM) pairs were filtered
out in the S-plot and then compound identification was subsequently performed using
NIST®, Mass Finder® and Flavor® libraries.

4.6. Antimycobacterial Validation Studies for Identified Active Compounds

The application of biochemometrics produced tentatively active compounds, predicted
from the OPLS-DA model. In order to validate these findings, the active compounds were
tested for antimycobacterial activity. The MIC value of each compound was determined
using a microdilution assay towards M. smegmatis, M. fortuitum and M. gordonae and the
Alamar blue assay towards M. tuberculosis.

4.7. Molecular Docking

The molecular docking study was performed using the standard protocol imple-
mented in the grid-based ligand docking with energetics (GLIDE) module incorporated in
the Schrodinger molecular modeling package to predict the binding modes of cinnamalde-
hyde in the active site of the FtsZ and PknB targets [73,74]. For this purpose, the X-ray
crystal structures of the FtsZ complex (6Y1U.pdb) and the PknB complex (2FUM.pdb)
were retrieved from the RCSB protein data bank (http://www.rcsb.org/pdb; accessed on
1 January 2000) and used as the primary model for the docking study [21,25]. The protein
structure was refined for docking simulation using the protein preparation wizard incorpo-
rated in the GLIDE program [75]. This involved eliminating all crystallized water; as no
water molecules were found to be conserved in the interaction with the protein, missing
hydrogens/side chain atoms were added and the appropriate charge and protonation state
was assigned to the protein structure corresponding to pH 7.0, considering the appropriate
ionization states for the acidic, as well as basic, amino acid residues. The structure was
then subjected to energy minimization using an OPLS-2005 force field with a root mean
square deviation (RMSD) cut-off value of 0.30 Å to relieve steric clashes among the residues
due to the addition of hydrogen atoms [76,77]. The three-dimensional structures of cin-
namaldehyde were sketched with the build panel in Maestro and optimized using the
ligprep module, which performs addition of hydrogens, adjusting realistic bond lengths
and angles, correcting chiralities, ionization states, tautomers, stereo chemistries and ring
conformations [78]. Partial charges were ascribed to the structures using the OPLS-2005
force-field. The resulting structures were then subjected to energy minimization until their
average RMSD reached 0.001 Å. The active sites of the selected targets were defined for
docking using the receptor grid generation panel which generates two cubical boxes having

http://www.rcsb.org/pdb


Antibiotics 2022, 11, 948 17 of 21

a common centroid to organize the calculations: a larger enclosing and a smaller binding
box. The binding region was defined by a grid box with dimensions of 10 × 10 × 10 Å3

that was centered on the centroid of the native ligand in the crystal complex, which was
sufficiently large to explore a larger region of the enzyme structure. Using this setup,
automated docking was carried out to evaluate the binding affinities of the compounds
within the macromolecule using the extra precision (XP) GLIDE scoring function to rank
the docking poses and to measure their binding affinities. GLIDE searches for favorable
interactions between the ligand and the active site of the enzyme using a filtering approach
wherein each of the ligand poses pass through a series of hierarchical filters that evaluate
the ligand’s interaction with the receptor. The docking poses of the ligands were visualized
and analyzed using the Maestro’s Pose Viewer utility. The protocol adopted for docking
simulation was validated by extracting the native ligand from the crystal structure and
docking it into the active site of the selected targets using the above defined settings and
monitoring its ability to reproduce the experimentally observed binding mode. The RMSD
between the experimental conformation of the native ligand in the crystal structure and
that obtained from its docking was found to be less than 1 Å, which confirmed the reliabil-
ity of the docking procedure in reproducing the experimentally observed binding mode
investigated here.

5. Conclusions

Using a biochemometrics approach, GC-MS and antimycobacterial activity data were
successfully integrated and putative biomarkers responsible for the antimycobacterial activ-
ity were predicted by an OPLS-DA algorithm. The activity of three individual compounds,
cinnamaldehyde, thymol and eugenol, was confirmed through further validation experi-
ments. This study confirms the potential of the three compounds for further development
into natural antimycobacterial agents, as previous studies have also documented the an-
timicrobial properties of these compounds. Furthermore, the study provides an overview
of potential EOs that hold promise in inhibiting antimycobacterial growth. Molecular
docking results obtained clearly indicate that cinnamaldehyde could be used as a platform
for developing a new class of antimicrobial compounds to combat M. tuberculosis resistance
by targeting FtsZ and PknB.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/antibiotics11070948/s1, Figure S1: This is a figure of the binding modes
for the best poses of the docked FtsZ complexes with GDP nucleotide moiety and cinnamaldehyde in
the active site; Figure S2: This is the gas chromatogram of E. caryophyllus essential oil showing eugenol
as the dominant compound; Figure S3: This is the gas chromatogram of Thymus zygis showing thymol
as a major compound; Figure S4: These are the gas chromatograms of essential oils of C. zeylanicum
(bark) showing cinnamaldehyde as the major compound; Table S1: This is a table of the 85 essential
oils studied, the major chemical compounds identified by GC-MS/FID and the mean MIC values;
Table S2: The identified potential targets from using target identification algorithm implemented
in CHEMBL.
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