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High-density lipoprotein (HDL) and apolipoprotein A-I (apoA-I), the predominant protein
in plasma HDL, have long been the focus of intense studies in the field of atherosclerosis
and cardiovascular disease. ApoA-I, in large part, is responsible for HDL assembly and
its main atheroprotective function, that of shuttling excess cholesterol from peripheral
tissues to the liver for excretion (reverse cholesterol transport). Recently, a protective role
for HDL in cancer was suggested from several large clinical studies where an inverse
relationship between plasma HDL-cholesterol (HDL-C) levels and risk of developing
cancer was noted. This notion has now been tested and found to be supported in
mouse tumor studies, where increasing levels of apoA-I/HDL were discovered to protect
against tumor development and provision of human apoA-I was therapeutic against
established tumors. This mini-review discusses the emerging role of apoA-I in tumor
biology and its potential as cancer therapeutic.
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INTRODUCTION

Apolipoprotein A-I (ApoA-I), the major protein component of high-density lipoprotein (HDL), is
synthesized predominantly in the liver and the small intestine, and exists transiently in lipid-poor
form. ApoA-I initiates assembly of HDL particles through interaction with ATP-binding cassette
transporters at the surface of cells in the periphery extracting cholesterol and phospholipids. The
HDL particle is further matured by lecithin cholesterol acyltransferase (LCAT) binding to apoA-I
on HDL and converting cholesterol to cholesteryl ester (Sorci-Thomas et al., 2009). Cholesterol
is transported within the constantly evolving ‘HDL cargo’ in circulation for excretion in liver
through scavenger receptor class B, type 1 (SR-B1), a process known as reverse cholesterol transport
(RCT; reviewed in Fisher et al. (2012), Rosenson et al. (2012), and Rader and Hovingh (2014)).
Cholesterol accumulation and the ensuing inflammation that develops within the arterial wall are
major instigators of atherosclerosis and cardiovascular disease (CVD; Hansson and Libby, 2006;
Libby et al., 2009), and RCT is considered the primary atheroprotective function of HDL.A number
of non-RCT atheroprotective functions of apoA-I/HDL have been described and include anti-
inflammatory (Cockerill et al., 1995; Bhattacharyya et al., 2008; Rye et al., 2009; de Souza et al.,
2010; Fuhrman et al., 2010; Camont et al., 2011; Gordon et al., 2011), anti-apoptotic (de Souza
et al., 2010; Fuhrman et al., 2010), and anti-oxidant activities (Bhattacharyya et al., 2008). Chronic
inflammation, oxidative stress, lipids, and cholesterol, which promote atherosclerosis and CVD,
have all been associated with tumorigenesis (Lu et al., 2006; Freed-Pastor et al., 2012; Coussens
et al., 2013; Noguti et al., 2013; Kobayashi et al., 2015). Given HDL’s beneficial role against these
atherogenic processes, it was somewhat intuitive to suggest that HDLmay also be protective against
cancer.
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ApoA-I/HDL IS ANTI-TUMORIGENIC

Clinical Observational Studies Suggest a
Protective Role for ApoA-I in Cancer
Analysis of Finnish male smokers in the Alpha-Tocopherol
Beta-carotene (ATBC) lung cancer prevention study identified a
significant inverse association between HDL-C levels and the risk
for cancer of the lung, prostate, liver, and hematopoietic system
(Ahn et al., 2009). This observation was further strengthened by
a large meta-analysis of randomized controlled trials of lipid-
altering therapies suggesting an inverse relationship between
plasma HDL cholesterol levels and the incidence of cancer
development during the conduct of the trials (Jafri et al.,
2010). Specifically, for every 10 mg/dL increase in plasma HDL
cholesterol level, a significant 36% lower risk of cancer incidence
was noted over 625,000 person-years of follow-up and >8,000
incidents of cancers cumulatively among the trials included in
the meta-analysis (Jafri et al., 2010). Consistent with this finding,
apoA-I has been identified as a biomarker with reduced plasma
levels in patients with early stage ovarian cancer (OC) compared
with normal individuals (Kozak et al., 2003, 2005; Zhang et al.,
2004; Moore et al., 2006; Clarke et al., 2011; Kim et al., 2012).
Furthermore, higher apoA1 mRNA levels in pre-chemotherapy
effusions from patients diagnosed with advanced stage OC was
observed to be an independent prognostic marker of longer
overall survival (Tuft Stavnes et al., 2014). ApoA-I together with
transthyretin and transferrin, both HDL-associated proteins, β2-
microglobulin, and prealbumin along with CA125 are currently
being used in a US Food and drug administration approved
plasma test for OC, and these combined biomarkers test is known
as OVA1 R©. This test is used to identify patients with early stage
OC (Kozak et al., 2005; Su et al., 2007; Nossov et al., 2008; Nosov
et al., 2009). A correlation with apoA-I levels and risk of disease
has also been observed in other cancers. Serum apoA-I levels
were found to be twofold lower in patients undergoing surgery
for pancreatic cancer compared with healthy controls (Ehmann
et al., 2007). Lower serum apoA-I levels were also associated with
higher risk of breast cancer (BC; Chang et al., 2007) as well as BC
recurrence (Lane et al., 1995), although other studies examining
BC showed either no correlation with HDL-C (Furberg et al.,
2004) or an inverse association observed only in pre-menopausal
women, but not in post-menopausal women (Moorman et al.,
1998; Kucharska-Newton et al., 2008). In contrast, a recent
study reported a positive association between serum HDL-C and
apoA-I levels with BC risk; however, this direct association was
only seen in women who had not used hormone replacement
therapy (HRT; Martin et al., 2015). In metastatic nasopharyngeal
carcinoma (NPC), higher levels of serum apoA-I measured prior
to chemotherapy correlated with better overall survival (Jiang
et al., 2014). Additionally, in a large European prospective
study, the European Prospective Investigation into Cancer
and Nutrition (EPIC) study, an inverse association was found
between HDL-C levels and endometrial cancer risk (Cust et al.,
2007), and similarly plasma concentrations of HDL-C and apoA-I
were found to be inversely associated with the risk of colon
cancer (van Duijnhoven et al., 2011). Table 1 lists clinical studies

which established an association between plasma levels of HDL-
C/apoA-I and risk of developing a broad spectrum of cancers.

ApoA-I is Protective in Mouse Tumor
Models
Although the above-described clinical studies suggested, for the
most part, lower apoA-I plasma levels correlate with poorer
patient outcomes in a variety of cancers, they fall short of
inferring causality. The first evidence supporting the notion that
increasing levels of apoA-I may be protective against tumor
development came frommouse tumor studies. Accordingly, there
was an apoA-I gene dosage effect on Lewis lung tumor growth,
with tumor size smallest for mice homozygous for the human
apoA1 transgene (hA-I Tg+/+), intermediate tumor size in mice
heterozygous for the human apoA1 transgene (hA-I Tg+/−,
referred to hereon as simply apoA1 transgenic (A-I Tg)), and
largest tumor size in apoA1 null mice (A-I KO; Zamanian-
Daryoush et al., 2013). Furthermore, overall tumor burden and
metastasis was strongly suppressed in response to challenge
with the aggressive and metastatic syngeneic melanoma cells
(B16F10L) in animals expressing the apoA1 transgene relative to
apoA1 null or wild-type (WT) animals, culminating in improved
overall survival (Zamanian-Daryoush et al., 2013). Similarly, in a
mouse model of OC (ID8), ApoA-I transgene expression reduced
tumor burden and led to a significant increase in survival (Su
et al., 2010).

Infusion of Human ApoA-I Inhibits Tumor
Development and is Therapeutic against
Established Mouse Tumors
Unequivocal support of an anti-neoplastic role for apoA-I came
from animal studies where subcutaneous injections of human
apoA-I prior to tumor inoculation prevented tumor development
in A-I KO mice (Zamanian-Daryoush et al., 2013). More
importantly, in a physiologically relevant setting, provision of
apoA-I after tumor establishment not only prevented further
development of the tumor but also led to tumor shrinkage
(Zamanian-Daryoush et al., 2013). Although these protective
effects were seen with the syngeneic mouse melanoma tumor,
B16F10L, apoA-I therapy was also shown to be effective against
human melanoma (A375) in nude mice (Zamanian-Daryoush
et al., 2013). Based on these observations a potential role for
apoA-I/HDL as an anti-cancer therapeutic has been proposed
(Zamanian-Daryoush et al., 2013).

ApoA-I/HDL MIMETIC PEPTIDES
EXHIBIT ANTI-TUMOR ACTIVITY

There has been considerable interest, in the HDL field,
surrounding the therapeutic potential of a series of 18 amino acid
peptides known as apoA-I/HDLmimetics, against cardiovascular
disease. These short peptides have certain functional properties of
the repeating amphipathic α-helices of apoA-I without actually
sharing any sequence homology (Getz and Reardon, 2014;
Reddy et al., 2014). These peptides were originally screened
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TABLE 1 | Clinical studies investigating role of apoA-I/HDL in cancer.

Cancer type Clinical Study Objective Conclusion Reference

Broad variety Examined the relationship between serum high-density
lipoprotein-cholesterol (HDL-C) and risk of overall and site-specific
cancers among 29,093 Finnish male smokers in the Alpha-Tocopherol
Beta-Carotene (ATBC) study cohort

Inverse association between HDL-C levels and the
risk of cancer of the lung, prostate, liver, and
hematopoietic system

Ahn et al., 2009

Broad variety Analysis of 24 randomized controlled trials of lipid- altering therapy
(145,743 persons) to correlate baseline and on-treatment HDL-C levels
to risk of developing cancer (2.7–5.2 years follow up; 625,477
person-years)

For every 10 mg/dL increase in HDL-C, 36 % lower
risk of developing cancer

Jafri et al.,
2010

Ovarian ProteinChip biomarker System and Mass spectrometry-based
proteomic profiling (SELDI-TOF-MS) to identify disease associated
biomarkers in serum samples from patients with ovarian cancer (OC),
benign tumors, and healthy donors (109 OC, 19 benign tumors, and 56
healthy controls)

Three panels of proteins for: (i) early diagnosis of
neoplasia (benign or malignant) and (ii)
distinguishing benign from malignant

Kozak et al.,
2003

Ovarian/breast/
colon/prostate

ProteinChip biomarker System and Mass spectrometry- based
proteomic profiling (SELDI-TOF-MS) and immunoassays to identify and
validate biomarkers in serum samples from patients with early stage OC
as compared with healthy individuals and other cancers (195 OC, 166
benign tumors, 142 healthy controls for initial screening followed by 41
OC, 20 each breast, colon, and prostate cancers with 41 healthy
controls for validation by immunoassays)

Apolipoprotein A-I (ApoA-I; down-regulated in OC),
truncated transthyretin (TT; down-regulated in OC),
and a cleavage fragment of inter-α-trypsin inhibitor
heavy chain H4 (up-regulated in OC) identified as
biomarkers for OC

Zhang et al.,
2004

Ovarian Use of LC-MS/MS followed by immunoassays to identify 5 serum
protein biomarkers previously reported (Kozak et al., 2003). New
analysis of sera from 43 OC patients and 31 healthy controls

ApoA-I (down-regulated), TT (down-regulated),
transferrin (down-regulated), and hemoglobin
(up-regulated) identified as biomarkers for OC

Kozak et al.,
2005

Ovarian Independent evaluation of ApoA-I as biomarker for OC in 182 patient
(42 OC, 65 benign tumors, and 76 with digestive diseases) sera
collected at Mayo Clinic (1980–1989)

ApoA-I and TT were confirmed as biomarkers for
OC with their expression reduced in disease

Moore et al.,
2006

Ovarian Pre-surgery blood samples (41 early stage (I/II), 51 late stage (III/IV), 40
benign disease, and 99 healthy controls) analyzed by proteomics for
seven previously identified biomarkers

ApoA-I as well as TT, and connective tissue
activating protein III (CTAPIII), were confirmed as a
panel of biomarker together with CA125 with
increased sensitivity for detection of early stage OC

Clarke et al.,
2011

Ovarian Development of multiplexed bead-based immunoassay for detection of
known serum biomarkers of cancer (118 OC, 84 benign ovarian
disease, 61 healthy controls)

Combination of transthyretin, and apoA-I with
CA125 improved sensitivity and specificity of OC
diagnosis

Kim et al., 2012

Ovarian and
breast

Evaluation of apoA-I and GPX3 transcript level by qPCR in effusions,
and solid tumors from patients with OC versus those with breast cancer
(BC) as diagnostic tool to differentiate between these two cancers (101
OC and 20 BC effusions; 85 solid OC (43 primary, 42 metastasis))

ApoA-I transcript in all anatomic sites was higher in
OC compared with BC. Higher apoA-I mRNA levels
in primary diagnosis pre-chemotherapy effusions
were significantly related to better overall survival

Tuft Stavnes
et al., 2014

Pancreatic ProteinChip biomarker System and Mass spectrometry- based
proteomic profiling (SELDI-TOF-MS) to identify biomarkers in patient
pre-surgery sera (96 cancer patients, 96 healthy controls)

ApoA-I, apoA-II and transthyretin identified as
biomarkers with inverse correlation to pancreatic
cancer

Ehmann et al.,
2007

Breast Lipid profile analysis in fasting patient sera prior to diagnostic biopsies
(50 malignant and 50 benign)

Lower apoA-I levels predict cancer recurrence Lane et al.,
1995

Breast Lipid profile analysis of pre-diagnostic sera from age-matched 200 (100
before age 50 and 100 at age 50 or older) case-control BC patients
nested from an original cohort of 95,000 women to examine
prospective association of plasma HDL-C and BC incidence

Low plasma HDL-C predicts risk of developing BC
only in pre-menopausal women. Each 1 mg/dL
increase in HDL-C is associated with a 4%
reduction in risk of BC

Moorman et al.,
1998

Breast Assessed risk of BC associated with serum HDL-C in 38,823
Norwegian women with a median follow-up of 17.2 years

Low HDL-C, as part of the metabolic syndrome, is
associated with increased postmenopausal BC risk

Furberg et al.,
2004

Breast Lipid profile analysis in fasting patient (Taiwanese) sera (150 cancer and
71 healthy controls) and association with BC risk

ApoA-I levels in serum inversely associated with BC Chang et al.,
2007

Breast Evaluate association of baseline HDL-C levels with cancer incidence
using data from the Atherosclerosis Risk in Communities Study (ARIC)
cohort with follow-up from 1987 through 2000

Modest direct association of low HDL-C with risk of
developing BC only in women who were
premenopausal at baseline

Kucharska-
Newton et al.,
2008

Breast Multiple time point measurements of serum lipids and lipoproteins in a
nested case-control (279 cases and 558 matched control subjects)
study within a randomized long-term dietary intervention trial with 4,690
women for an average of 10 years to assess the association of serum
lipids with the risk of cancer incidence based on menopausal status
and use of hormone replacement therapy (HRT)

HDL-C and apoA-I were positively associated with
BC risk only when HRT was not used

Martin et al.,
2015

(Continued)
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TABLE 1 | Continued

Cancer type Clinical Study Objective Conclusion Reference

Nasopharyngeal Retrospective analysis of 807 patients with metastatic nasopharyngeal
carcinoma (NPC) to assess prognostic value of baseline serum lipids in
predicting overall survival

Higher values of HDL-C and apoA-I were
associated with improved overall survival

Jiang et al.,
2014

Endometrial Examined the association of pre-diagnostic plasma levels of lipids,
lipoproteins and other metabolic factors in developing cancer in a
nested case-control (262 cases and 546 matched control subjects)
study of the European Prospective Investigation into Cancer and
Nutrition (EPIC; 520,000 participants from 10 western European
countries)

HDL-C levels were inversely correlated with the risk
of developing cancer

Cust et al.,
2007

Colorectal Examined the association of pre-diagnostic plasma levels of lipids,
lipoproteins and other metabolic factors in developing cancer in a
nested case-control (1,238 cases, 1,238 matched control subjects)
study of the European Prospective Investigation into Cancer and
Nutrition (EPIC; 520,000 participants from 10 western European
countries)

Higher pre-diagnostic HDL-C and apoA-I were
statistically significantly inversely associated with
risk of colon cancer, but not rectal cancer

van Duijnhoven
et al., 2011

Clinical studies which established an association between plasma levels of apoA-I/HDL-C and risk of developing a broad spectrum of cancers.

for their ability to form class A amphipathic helices with
lipid binding capability, a salient functional feature of apoA-I
(Kanellis et al., 1980; Segrest et al., 1983; Anantharamaiah
et al., 1985; Mendez et al., 1994). ApoA-I/HDL mimetics
have been successfully used in a number of mouse models of
atherosclerosis (Garber et al., 2001; Navab et al., 2010; Getz
and Reardon, 2011) and shown to have anti-inflammatory and
anti-oxidant activities as well as the ability to promote RCT
(D’Souza et al., 2010; Ditiatkovski et al., 2013). These peptides
have similar binding affinities for non-oxidized lipids but a
significantly higher affinity for pro-inflammatory oxidized lipids
(Van Lenten et al., 2008) and for lysophosphatidic acid (LPA;
Su et al., 2010), relative to full-length apoA-I. LPA is known
to promote tumor development (Mills and Moolenaar, 2003;
Li et al., 2009) and has been identified as a biomarker for
OC (Xu et al., 1998; Sutphen et al., 2004). Consequently, due
to their anti-inflammatory activity and increased lipid binding
properties apoA-I/HDL mimetics, when tested for anti-tumor
activity, were shown to have protective activity in multiple
mouse tumor models including ovarian (Su et al., 2010; Gao
et al., 2011, 2012; Ganapathy et al., 2012), and colon cancer (Su
et al., 2012). It was shown for OC that the primary functional
activity of the mimetic peptides was due to squelching of
the bioactive, tumor-promoting LPA and oxidized lipids that
serve as potent tumor growth and angiogenic factors. The
mimetic peptides 4F and 5F when injected or administered
orally, inhibited tumor growth and reduced plasma levels of
LPA in the tumor bearing mice (Su et al., 2010). Likewise, in
another study the functional target of the apoA-I/HDL mimetic
peptide L-4F was presumed to be LPA as administration of
this HDL-mimetic peptide was shown to decrease circulating
levels of LPA in mimetic-treated animals and demonstrated
protection against colon cancer (Su et al., 2012). ApoA-I
mimetics were also reported to inhibit tumor angiogenesis in vivo
and abrogate growth factor induced proliferation, migration,
invasion, and tube formation of endothelial cells in vitro
(Gao et al., 2011). The mimetics significantly decreased LPA-
induced vascular endothelial growth factor (VEGF) production
by cancer cells through inhibition of hypoxia-inducible factor-1α

(HIF-1α) as well as interfering with VEGF-induced signaling
in endothelial cells thus mitigating VEGF’s ability to promote
angiogenesis (Gao et al., 2011, 2012). Furthermore, the mimetics
were shown to inhibit cell viability and proliferation of OC
cells by reducing the oxidative stress in cancer cells through
induced expression of the tumor suppressor enzyme, manganese-
containing superoxide dismutase (MnSOD; Ganapathy et al.,
2012). Although these apoA-I/HDL peptide mimetics have
demonstrated very interesting anti-tumor properties, their
apparent mechanism of action (squelching LPA for the most
part) does not appear to coincide with the anti-tumor
mechanisms of actual apoA-I/HDL (Zamanian-Daryoush et al.,
2013).

MECHANISM OF ApoA-I/HDL
ANTI-TUMOR ACTIVITY

ApoA-I/HDL Negatively Impacts
Tumor-permissive Features of the Tumor
Microenvironment
Although the exact molecular mechanism of apoA-I/HDL
anti-tumor activity is not known, studies with the syngeneic
B16F10L tumors comparing those from apoA1 transgenic vs.
A-I KO mice revealed that the overall net impact of host
apoA-I on the tumor microenvironment is profound and
manifold. These include but are not limited to the following as
depicted in Figure 1: decreased recruitment of myeloid-derived
suppressor cells (MDSC) and reduced angiogenesis resulting in
decreased tumor volume; decreased matrix metalloproteinase-
9 (MMP9) protein levels and enzyme activity; decreased
overall metastasis, increased accumulation of tumor-associated
macrophages (TAMs) with an M1-like anti-tumor phenotype;
increased levels of tumor cell killing macrophages; increased
recruitment of CD8T cells and decreased levels of the anti-
apoptotic protein survivin within the tumor bed (Zamanian-
Daryoush et al., 2013). Unexpectedly, levels of the pro-angiogenic
protein, VEGF-A, was higher in tumors from A-I Tg mice relative
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FIGURE 1 | Net functional effects of apoA1/HDL in the tumor microenvironment. This scheme is based on comparative analyses of B16F10L melanoma
tumors resected from mice either deficient in apoA-I or mice expressing human apoA-I (Zamanian-Daryoush et al., 2013). (A) The effect of apoA-I/HDL on
tumor-infiltrating myeloid cell population. ApoA-I/HDL promotes the accumulation of TAMs with an M1-like anti-tumor phenotype and inhibits the accumulation of the
tumor promoting M2-like TAMS as well as MDSCs. (B) The impact of apoA-I/HDL on tumor vasculature, metastasis, and tumor survival, all phenomena that are
subject to regulation by myeloid cells. Apolipoprotein A-I, ApoA-I; high density lipoprotein, HDL; interleukin-10, IL-10; interleukin-12, IL-12; tumor-associated
macrophages, TAM; myeloid-derived suppressor cells, MDSCs; matrix metalloproteinase-9, MMP-9. Solid lines ending in arrow head signify promotion whereas
solid lines ending with a perpendicular dotted line signify inhibition of biological pathways.

to A1KO mice (Zamanian-Daryoush et al., 2013). It may be that
the VEGF-A protein quantified in these studies was VEGF-
Ax, an anti-angiogenic VEGF-A variant recently reported to
be a product of translational read-through (Eswarappa et al.,
2014) though this remains to be proven. Both the antibody
and the oligonucleotide probe sets used to detect VEGF-A in
Zamanian-Daryoush et al. (2013) cannot distinguish between
the two forms. Unlike the observations with apoA-I/HDL

peptide mimetics, which appear to inhibit tumor growth by
squelching/decreasing circulating levels of the bioactive tumor
promoting lipid LPA; the plasma level of LPA, was found to be
similar in B16F10L melanoma tumor-bearing A-I KO vs. A-I
Tg animals (Zamanian-Daryoush et al., 2013), thus eliminating
titration of this bioactive lipid as a functional mechanism, in
this setting, for apoA-I protein (Zamanian-Daryoush et al.,
2013).
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ApoA-I/HDL Anti-tumor Activity Requires
an Intact Innate and Adaptive Immune
System for Full Anti-tumor Activity
ApoA-I infusion studies with mice deficient in various aspects
of immune system revealed that complete apoA-I anti-tumor
activity requires both innate and adaptive arms of immunity.
In particular, TAMs isolated from tumors resected from
A-I Tg animals were skewed toward an M1-like phenotype
and macrophages isolated from tumor-bearing A-I Tg animals
exhibited enhanced cytotoxicity toward B16F10L tumor cells
in vitro (Zamanian-Daryoush et al., 2013). Macrophages are
innate immune cells with pivotal roles in tumor biology. Their
ability to destroy tumors or promote their development is a
function of their phenotypic plasticity, which is governed, in
major part, by growth factors, cytokines, and bioactive lipids
present in the tumor microenvironment (Mantovani et al.,
2005; Martinez et al., 2009; Solinas et al., 2009; Liu and
Yang, 2013). TAMs are in general, alternatively activated (M2-
like phenotype) and promote angiogenesis, tumor survival,
and metastasis, whereas classically activated macrophages (M1-
like phenotype) inhibit these processes leading to tumor
inhibition. Conversion of macrophage phenotype from M2
to M1 has been demonstrated to result in tumor inhibition
in several murine tumor models (Colombo and Mantovani,
2005; Guiducci et al., 2005). The finding that in the tumor
microenvironment, apoA-I/HDL promotes the accumulation
of macrophages with pro-inflammatory, classically activated
anti-tumor M1-like phenotype is in direct contrast with the
traditional anti-inflammatory and immunosuppressive functions
described for HDL in a typical inflammatory setting (Murphy
et al., 2012). How apoA-I/HDL triggers this uncharacteristic
effect is not known but is currently under investigation. The
transcription factor activator of transcription factor 3 (ATF3)
was recently identified as mediating anti-inflammatory and
immune modulatory functions of HDL in macrophages (De
Nardo et al., 2014). HDL induced the transcriptional expression
of ATF3, which in turn inhibited the expression of some
130 toll-like receptor (TLR)-mediated pro-inflammatory genes
with immune response-related functions (De Nardo et al.,
2014). TLRs recognize pathogen-associated molecular pattern
(PAMPs) molecules from viruses and microorganisms along
with endogenously derived ligands such as damage-associated
molecular pattern molecules (DAMPs) and can play important
roles in both pro-and anti-tumor responses (Pradere et al., 2014).
HDL inhibits lipopolysaccharide (LPS)-mediated TLR4 signaling
by squelching the ligand itself and although HDL pretreatment
was found to decrease cellular cholesterol concentration, it did
not inhibit CpG-induced TLR9 signaling per se but reduced
downstream gene expression by CpG through induction of ATF3
(De Nardo et al., 2014). These results indicate that apoA1/HDL
can influence TLR signaling in normal inflammatory settings via
at least two different routes.

HDL is an integral component of host immunity because
its cargo, a series of bioactive proteins and lipids, has
immunomodulatory activities. These activities include but are
not limited to (i) ability to scavenge bacterial outer membrane

components, LPS(Gram-negative bacteria) or lipoteichoic acid
(LTA; Gram-positive bacteria) limiting their pro-inflammatory
toxicity and protecting against sepsis (Levine et al., 1993;
Birjmohun et al., 2007; Wendel et al., 2007; Guo et al., 2013),
(ii) protection against intracellular bacteria such as mycobacteria
(Cruz et al., 2008) and parasites (Vanhollebeke and Pays, 2010),
(iii) in concert with ATP-binding cassette transporters ABCA1
and ABCG1, HDL has a role in control of hematopoietic
stem and multipotential progenitor cell proliferation (Yvan-
Charvet et al., 2010), and (iv) influencing immune cell response
by modulating cholesterol content in membrane lipid rafts.
Cholesterol accumulation in immune cells increases signaling
by stabilizing lipid rafts in the plasma membrane as well as in
other cellular membranes. Lipid rafts are cholesterol enriched
micro-domains with sphingolipids and serve as docking sites
for several receptors with important immunological functions,
including TLRs (Fessler and Parks, 2011) and T- and B-cell
receptors (TCRs; Gupta and DeFranco, 2007; Kabouridis and
Jury, 2008). Cholesterol efflux by apoA-I/HDL via ABCA1
and ABCG1 disrupts lipid rafts and their associated signaling
pathways (Triantafilou et al., 2002; Zhu et al., 2010). Thus
cholesterol efflux-mediated modification of immune response
was noted in: (i) monocytes/macrophages, inhibiting their
activation and recruitment (Murphy et al., 2008) as well as
skewing macrophages toward an M2-like anti-inflammatory
immunosuppressive phenotype (Smythies et al., 2010; Feig et al.,
2011; Murphy et al., 2012); (ii) neutrophils, inhibiting their
migration and adhesion (Murphy et al., 2011); (iii) dendritic cells
(DCs), inhibiting their maturation and their ability to induce
T cell activation (Perrin-Cocon et al., 2012; Wang et al., 2012),
while the immunoactive lipid sphingosine 1-phosphate (S1P)
carried in HDL promotes an anti-inflammatory phenotype in
DCs thus inhibiting a Th1 response (Idzko et al., 2002); (iv) T
cells, inhibiting their activation and proliferation in peripheral
lymph nodes in mice fed a high fat diet (Wilhelm et al., 2009).
These observations are clearly supportive of apo A-I/HDL’s role as
a physiological modulator of membrane cholesterol and immune
function in different pathophysiological conditions.

Deletion of ApoA-I/HDL Receptors Lead
to Altered Macrophage Phenotypes
Recently, myeloid-specific or global deletion ofAbcg1 in mice was
reported to be anti-tumorigenic with macrophages displaying a
clear shift from an M2-like to an M1-like phenotype (Sag et al.,
2015). The anti-tumor effect was demonstrated to be driven by
myeloid cells, and in large part due to the increased accumulation
of cholesterol in macrophages. Studies on bone marrow-derived
macrophages (BMDMs) from Abcg1−/− mice compared to
WT mice after treatment with either M1 or M2 polarizing
cytokines and comparative analysis of M1 or M2 cell markers
showed that the Abcg1−/− BMDMs were intrinsically biased to
an M1 pro-inflammatory phenotype (Sag et al., 2015). These
findings underscore the significance of cholesterol homeostasis
in tumor immunity. Loss of Abca1 in myeloid cells results
in increased accumulation of free cholesterol and enhanced
pro-inflammatory responses in macrophages, highlighting the
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normal anti-inflammatory function of these transporters (Yvan-
Charvet et al., 2008; Zhu et al., 2008; Tang et al., 2009).
Correspondingly, macrophages from mice globally deleted for
scavenger receptor class B, type1 (Sr-b1), have also been shown to
exhibit hyperinflammatory responses (Cai et al., 2012). However,
unlike the situation with Abca1 or Abcg1 deletion, the heightened
inflammatory responses are not due to alterations in cell
membrane or total cell cholesterol levels (Cai et al., 2012). It is not
known what effect loss of ABCA1 or SR-B1 protein expression
either globally or myeloid-specifically has on tumorigenesis but
by extrapolation from tumor studies in mice with ABCG1 loss,
one might predict a protective effect due to the heightened
pro-inflammatory phenotype these transporter-/receptor-deleted
macrophages are known to exhibit. The emerging paradigm
from the studies by Zamanian-Daryoush and that of Sag et al.,
is that TAMs can be converted from an M2-like to an M1-
like phenotype by either a hard-wiring to an M1 anti-tumor
phenotype through loss of cholesterol/phospholipid transporter
ABCG1 (Sag et al., 2015) and perhaps ABCA1 and SR-B1 or
in response to increased apoA1/HDL levels; which by unknown
mechanisms alters immune responses to factors within the tumor
microenvironment and promotes the accumulation of TAMs
with an M1-like phenotype at the expense of TAMs with an
immune suppressive M2-like phenotype.

CONCLUSION

In cancer, lipid and cholesterol homeostasis is often dysregulated
to facilitate the cancer cells’ increased demand for these building
blocks which are required for proliferation and evasion of
apoptosis (Schaffner, 1981; Yoshioka et al., 2000; Kolanjiappan
et al., 2003; Platz et al., 2009; Smith and Land, 2012). To this end,
tumor cells can manipulate their intracellular cholesterol level
by reducing expression of ABCA1 which effluxes cholesterol and
increasing the expression of SR-B1 which influxes cholesterol.
This phenomenon has been reported in several prostate, colon
and BCs (Cao et al., 2004; Mooberry et al., 2010; Su et al., 2010;
Smith and Land, 2012; Lee et al., 2013).

The ability to modulate lipid and cholesterol movement
is at the core of apoA-I/HDL’s actions resulting in profound
physiological and cell phenotypic effects. Changes in cholesterol
metabolism or levels of components of cholesterol homeostasis
namely apoA-I/HDL, ABCA1, ABCG1, and SR-B1 are known

to affect immune responses which in turn impact anti-tumor
effects. In fact, apoA-I/HDL’s anti-tumor effects were observed
maximally only in fully immune-competent animals (Zamanian-
Daryoush et al., 2013). Anti-tumor effects of apoA-I/HDL could
be related to (i) the ability of apoA-I/HDL tomodulate cholesterol
content in immune or tumor cell membrane lipid rafts thus
influencing signaling pathways, (ii) the lipid rafts’ role as a
platform for biologically active lipids and proteins that may
impact the immune response, (iii) the cross-talk between the
tumor and surrounding stromal cells. These possibilities are
not mutually exclusive. ApoA-I/HDL peptide mimetics appear
to primarily function through titrating out bioactive lipids and
molecules which function as potent tumor cell angiogenic and
growth factors. Although apoA-I/HDL may also perform similar
titrating actions, the extent to which this activity is consequential
in cancers other than in ovarian and perhaps colon cancer, is
not as apparent. ApoA-I/HDL appears to function as an anti-
tumor agent in large part by modulating the anti-tumor immune
response. In the context of infection or atherogenesis, apoA-
I/HDL modulates macrophages toward an anti-inflammatory
M2-like phenotype by effluxing cholesterol but in the tumor
microenvironment, apoA-I/HDL promotes the accumulation of
M1-like macrophages. At the present time, we do not know the
mechanism involved in this process but this apparent dichotomy
of apoA-I/HDL functional response in different inflammatory
settings underscores the complexity of apoA-I/HDL biology and
poses intellectual and experimental challenges toward a better
understanding of this multifaceted plasma component.
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