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The lymphatic system and
COVID-19 vaccines

Masayuki Miyasaka*

Immunology Frontier Research Center, Osaka University, Suita, Japan
Understanding the precise mechanism of vaccine-induced protection and the

immune correlates of protection against coronavirus disease 2019 (COVID-19)

is crucially important for developing next-generation vaccines that confer

durable and protective immunity against COVID-19. Similar factors are also

important for other infectious diseases. Here, I briefly summarize the

mechanism of action of the currently used COVID-19 mRNA vaccines from

the viewpoint of the function of the lymphatic system.
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Coronavirus disease 2019 (COVID-19) emerged suddenly in December 2019 in

Wuhan, China. It is caused by a novel single-stranded RNA virus, severe acute

respiratory syndrome coronavirus 2 (SARS-CoV-2) (1, 2). To date, this virus has

infected almost 600 million people, which has resulted in more than 6 million deaths

globally, as of the end of August 2022 (3).

COVID-19 spreads from person to person mainly via the respiratory route,

specifically through airborne macro- and micro-droplets (or aerosols) emitted by virus

carriers. Two types of cell surface proteins are involved in the SARS-CoV-2 infection of

human cells. One is angiotensin-converting enzyme (ACE2), to which the viral spike (S)

protein of SARS-CoV-2 binds. It is expressed in varying degrees by a wide range of tissue

types (4). The other cell surface protein is transmembrane serine protease 2 (TMPRSS2),

which proteolytically cleaves the viral S protein, allowing the virus to enter and infect

human cells (5). TMPRSS2 is also expressed by a number of cell types. Owing to the wide

expression of both ACE2 and TMPRSS2, SARS-CoV-2 targets not only respiratory

epithelial cells but also a variety of other cell types, including intestinal epithelial cells,

blood vascular endothelial cells, adipocytes, cardiomyocytes, and neuronal cells, which

enables this virus to enter and damage numerous tissues in the body. Such behavior is in

marked contrast with that of other respiratory viruses, such as influenza virus, which

target mainly the cells of the respiratory tract.
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At present, the most effective prevention measure against

COVID-19 is vaccination (6). Two different mRNA vaccines,

namely the Pfizer (BNT162b2) vaccine and the Moderna

(mRNA-1273) vaccine, are being widely used. A two-dose

series of either of these mRNA vaccines has been shown to

markedly reduce the risk of not only symptomatic infection but

also hospitalization and mortality from COVID-19 (7, 8).

Booster immunizations can further enhance the protection

from the primary series vaccination that otherwise wanes over

time (9–11).

These mRNA vaccines aim to induce immunity against the S

protein of SARS-CoV-2. This protein consists of an apical S1

subunit, which contains an N-terminal domain (NTD) and a

receptor-binding domain (RBD), and a membrane-proximal S2

subunit; the S1 subunit binds to the ACE2 on human cells,

whereas the S2 subunit is responsible for the fusion of viral and

cellular membranes (12). These subunits are functionally

indispensable for viral binding to and entry into human cells,

and correspondingly, antibodies and T cells generated against

this protein have been shown to have the capacity to inhibit

SARS-CoV-2 infection of human cells (13).

Several strategies have been adopted to increase the

immunogenicity of the COVID-19 mRNA vaccines (14–16).

First, all uridine residues in the S protein mRNA have been

replaced with N1-methyl pseudouridine residues; this strategy

helps the exogenous RNA to evade recognition by innate

immunity receptors such as Toll-like receptors (TLRs) (17).

Second, a 5′-cap structure, a polyadenosine (poly-A) tail, and

untranslated regions (UTRs) have all been included in the

vaccine mRNA because these components facilitate the

translation of viral proteins and provide protection from the

ubiquitous exonucleases in the body. Third, to reduce mRNA

degradation after vaccine administration and to promote

mRNA delivery into cells, the mRNA has been encapsulated

in biodegradable lipid nanoparticles consisting of cationic

lipids, phospholipids, cholesterol, and polyethylene glycol-

containing lipids. These lipid nanoparticles also act as an

adjuvant component of the mRNA vaccines, inducing

interleukin (IL)-6 cytokine production, which leads to the

strong induction of T follicular helper T cells, germinal

center B cells, and memory B-cell responses in the draining

lymph nodes (LNs) of vaccine recipients (18). Fourth, to make

the S protein more immunogenic, the furin cleavage site

between S1 and S2 has been removed, and two amino acid

residues in S2 have been substituted with proline (K986P/

V987P), which together allow the formation of a relatively

stable S protein trimer when the mRNA is incorporated and

translated into proteins in target cells (16).

Because of these modifications, the COVID-19 mRNA

vaccines are highly immunogenic, inducing strong serum

neutralizing antibody responses in most individuals, whereas

infection with SARS-CoV-2 produces more variable

neutralizing antibody responses (19, 20); in both cases,
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epitopes that overlap the ACE2-binding site in the RBD are

targeted strongly by the generated antibodies. While

neutralizing antibodies are a principal host defense

mechanism against viral invasion, the mRNA COVID-19

vaccines also activate T cells, which play an important role in

limiting disease severity and duration, as described below.
COVID-19 mRNA vaccines are
delivered to the draining LNs
via the lymphatics to induce
immune priming

Another remarkable feature of the COVID-19 mRNA

vaccines is that they can be readily incorporated into the

lymphatic system. This is mainly because these vaccines are

encapsulated in lipid nanoparticles approximately 100 nm in

diameter. Lipids are known to be preferentially transported to

the lymphatic system (21), and particles with a size range of 10 to

100 nm readily enter into the lymphatics (22).

The COVID-19 mRNA vaccines are administered

intramuscularly (into the deltoid muscle in most cases), and

muscles are rich in both blood vessels and lymphatics. Because

these vaccines are preferentially transported into the

lymphatics as described above, following their intramuscular

injection, they are swiftly delivered to the lymph nodes that

drain the muscle. Studies with experimental animals revealed

that vaccine transport after intramuscular injection is

restricted mainly to the local LNs that drain the injection

site and that the vaccine is not readily disseminated

systemically (23–25), unless non-physiologically large doses

are injected. Indeed, a PET CT (positron emission

tomography and computed tomography) study using [18F]

FDG in human volunteers confirmed that prominent vaccine-

associated LN swelling occurs selectively in the axillary and

supraclavicular LNs of the ipsilateral side in relation to the

vaccine injection site (26). Another study found that the LN

swelling often persisted for more than 12 weeks (27). These

LNs are the sites where the cells of the innate and adaptive

immune systems interact.

In the draining LNs, although most phagocytic cells can

internalize the mRNA vaccine, macrophages within the

subcapsular sinus and dendritic cells (DCs) within the

interfollicular area are the main groups that abundantly take

up specific antigens. However, it is mainly DCs that exhibit high

levels of translation of the vaccine mRNA and the upregulation

of key co-stimulatory molecules (CD80 and CD86) essential for

efficient antigen presentation to naïve T cells (24). These DCs

subsequently display an upregulation of type I interferon (IFN)-

inducible genes, leading to the production of a number of

cytokines/chemokines required for antigen-specific stimulation

of naïve T and B lymphocytes.
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Within DCs, the majority of the S protein in situ generated

from the vaccine mRNA is degraded in endosome-derived

proteasomes, and some of the generated peptides are

transported to the endoplasmic reticulum, where they are

loaded onto class I major histocompatibility complexes

(MHCs). Additionally, part of the S protein is produced and

secreted as an exogenous protein by the cells that took up the

mRNA. It is then taken up by professional antigen-presenting

cells, such as DCs, in which the protein is processed and

presented in class II MHCs. Peptide presentation by class II

MHCs also occurs on the surface of DCs after their uptake of cell

debris containing the vaccine-encoded protein. These peptide-

loaded MHC class I and class II molecules on the surface of DCs

subsequently present their antigens to antigen-specific CD4+

and CD8+ T cells, respectively (28, 29).

Detectable protein production can be found for up to ten

days at the site of injection after the intramuscular injection of a

COVID-19 mRNA vaccine (30). While some muscle cells

endocytose the vaccine components, they are unable to

effectively present the encoded antigen to the lymphoid system

because they lack expression of the key co-stimulatory molecules

(CD80 and CD86) essential for efficient antigen presentation to

antigen-inexperienced naïve lymphocytes (31). Therefore,

mRNA translation in muscle cells does not seem to play a

major role in the induction of protective immune responses

against SARS-CoV-2.

The innate immune activation by mRNA vaccines

sometimes occurs in excess, resulting in adverse reactions,

which can include pain, swelling, and redness at the local

injection site (32, 33). Systemic side effects, such as allergy,

chills, fever, and headache, are also often observed in recipients

of COVID-19 mRNA vaccines. The occurrence of side effects

from vaccination with a COVID-19 mRNA vaccine is likely a

consequence of the intrinsic adjuvant activity of the current lipid

nanoparticle formulation, which induces the robust production

of inflammatory cytokines, such as IL-6, by the innate immune

system (18); such a response tends to be more prominent in

young people. Nevertheless, it should be noted that lipid

nanoparticle-mediated IL-6 production is critical for the

induction of follicular helper T cells in response to mRNA

vaccination and that the protective vaccine effect is low in the

absence of follicular helper T-cell proliferation (18).
COVID-19 mRNA vaccines
activate adaptive immunity in
the draining LNs

The transport of vaccine antigen to the draining LNs is

crucial for the initiation of systemic immune responses against

the relevant pathogen by T and B cells (23). Previous studies
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have indicated that protective immunity against COVID-19 is

mediated by both key arms of the adaptive immune system, i.e.,

humoral immunity and cellular immunity (34–37), and that

antibody and T-cell responses tend to work in a compensatory

manner to provide protection (38). Humoral immunity

generates antibodies and memory B cells, while cellular

immunity leads to the activation of antigen-specific helper

CD4+ T cells and cytotoxic CD8+ T cells (13), which both

occur in the draining LNs (39, 40).

Antibodies are particularly important in early protection

against viral infection because they block infection by binding

the virus and preventing viral entry into host cells.

Additionally, memory B cells can produce high-affinity

neutralizing antibodies upon re-encounter with the same

virus. T cells, in contrast, are unable to block the initial

infection process. Instead, they become activated upon

antigen presentation by DCs, after which they proliferate to

limit viral replication and spread. The CD4+-dependent

cytotoxic CD8+ T-cell response is particularly important, and

when the population of these cells expands within 7 days of

symptoms and peaks at 14 days, viruses are cleared effectively

(41), leading to mild rather than severe disease (42).

Consistently, most individuals with resolved infections show

robust and broad enhanced T-cell responses against multiple

regions of SARS-CoV-2 (43, 44). Vaccine-induced T-cell

responses have good cross-reactivity to the many variants of

SARS-CoV-2 that have emerged recently (45, 46).

Turner et al. (40) examined antigen-specific B-cell

responses in the peripheral blood and draining LNs of Pfizer

mRNA vaccine recipients. They found that the populations of

circulating immunoglobulin (Ig)G- and IgA-secreting

plasmablasts that target the SARS-CoV-2 S protein peaked 1

week after the second immunization, declining thereafter, and

that plasma neutralizing IgG antibody titers also showed

similar kinetics. These researchers also conducted a needle

biopsy of the draining LNs and examined cellular responses in

situ. They found that S-binding germinal centers increased in

frequency after the second immunization and that these

germinal centers persisted at high frequency for 15 weeks. S-

binding plasmablasts were also abundant in the draining LNs

and persisted there even after they became undetectable in the

peripheral blood. The majority of monoclonal antibodies

generated from the germinal center-derived B cells strongly

reacted with the S protein RBD as expected, while some reacted

with the S proteins of the human betacoronaviruses OC43 and

HKU1. These results indicate that the S-binding germinal

centers recruited not only naïve B cells targeting unique

epitopes within the SARS-CoV-2 S protein but also pre-

existing memory B cells directed against epitopes conserved

among human betacoronaviruses.

Nevertheless, patients with X-linked agammaglobulinemia

have been reported to recover from COVID-19 (47), indicating
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that antibody-independent mechanism(s) also plays an

important role in virus clearance.
COVID-19 mRNA vaccines induce
memory responses

Upon immunization with multiple doses of COVID-19

mRNA vaccine, SARS-CoV-2-reactive memory B cells appear

systemically and persist for more than 6 months (48),

subsequent to the appearance of the S protein-binding

germinal centers in the draining LNs (40). Booster

vaccinations increase the frequency of these memory B cells,

inducing them to produce antibodies with significantly higher

potency and breadth compared with the antibodies obtained

after the second COVID-19 vaccine dose (49). Additionally,

these antibodies are capable of neutralizing SARS-CoV-2

variants of multiple lineages (50), reducing the escape by

mutant virus strains relative to ancestral virus (50, 51).
What should be improved with
mRNA vaccines?

For non-COVID-19 respiratory virus infections, pre-existing

immunity induced by natural infection or vaccination has been

reported to induce antibody-dependent enhancement (ADE) of

disease in some instances (52). Indeed, infectivity-enhancing

antibodies have been found in a proportion of COVID-19

patients, and these antibodies tend to bind to a specific site of

the SARS-CoV-2 S protein (53, 54). Nevertheless, the production

of such antibodies was associated with the production of

neutralizing antibodies, and enhancing antibodies did not

induce ADE when neutralizing antibodies were present at high

levels in vitro (53). Because of these observations, ADE continues

to be a substantial concern in the development of COVID-19

vaccines. To the best of my knowledge, however, there is

currently no evidence of vaccine-associated enhanced

respiratory disease occurring following immunization with the

COVID-19 mRNA vaccines currently in use, although this issue

warrants further investigation because a new generation of

mRNA vaccines is now becoming available.

In addition to the potential ADE issue, one major problem

with the current COVID-19 mRNA vaccines, although they are

highly effective at reducing the incidence and severity of SARS-

CoV-2 infection, is the waning of their efficacy with increasing

time since the second dose (11, 55). However, this issue seems to

be more related to the pathogen than it is to the specific vaccines.

A longitudinal study on SARS-CoV-2 reinfection indicates that,

with natural infection, the mean time by which there is a 5%

cumulative risk of reinfection was only approximately 140 days
Frontiers in Immunology 04
post-symptom onset, which is less than half of the mean time to

a cumulative 5% risk of breakthrough infection following

vaccination with Pfizer or Moderna mRNA vaccine (both

required approximately 350 days post-vaccination to reach this

point) (20). These results indicate that the immunity induced by

SARS-CoV-2 natural infection begins to wane after several

months post-infection and that the immunity from natural

infection lasts for a much shorter length of time compared

with the duration of vaccine-mediated immunity.

While inducing durable immunity against SARS-CoV-2

does not appear to be an easy task, there may be at least a

couple of ways of making the COVID-19 vaccine response

more durable. One is to enhance the innate immune

mechanism through which mRNA vaccines stimulate

protective antibody responses. The other is to enhance the

adaptive immune mechanism, particularly to enhance T-cell

memory cell responses. Regarding the former, using other

types of lipid particles or adding an appropriate adjuvant to

the mRNA vaccines is a possibility, but this approach carries

the possibility of increasing the incidence of adverse reactions

as well. Regarding the latter, attempting to stimulate T cells

with not only the S protein but also the matrix (M) protein and

nucleocapsid (N) protein is also a possibility (56). The

inclusion of other viral structural protein epitopes may

strengthen T-cell responses, thereby amplifying and

diversifying the induced antibody response against SARS-

CoV-2.

While the current COVID-19 mRNA vaccines are highly

protective against the development of severe disease, they elicit

limited immune responses in the respiratory tract (57). Vaccines

targeting the respiratory mucosa are now under development

with the hope of inducing robust and durable immunity

specifically in the respiratory tract. In particular, a mucosal

booster vaccine may be an effective strategy to achieve more

robust and long-lasting immunity against SARS-CoV-2.
Conclusion

COVID-19 vaccine development is moving forward at

unprecedented speed, but several challenges remain. For

example, the current COVID-19 mRNA vaccines are less

effective at blocking infection by the newly arising SARS-CoV-

2 variants, although protection against severe disease remains

well preserved. Additionally, only relatively weak immune

responses are induced in the mucosa of many vaccine

recipients, and even when such responses are successfully

induced, they tend to wane rapidly. Furthermore, the virus

continues evolving ways to evade our immune response. Thus,

there is an urgent need to develop pan-coronavirus vaccines that

can target not only the current SARS-CoV-2 variants but also

future variants. The development of mucosal vaccines that are
frontiersin.or
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delivered across mucosal barriers may also present a promising

strategy to promote durable protection against SARS-CoV-2 at

the mucosal level.
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