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Increasing evidence has accumulated that gut microbiome dysbiosis could be
linked to neurological diseases, including both neurodegenerative and
psychiatric diseases. With the high prevalence of neurological diseases, there
is an urgent need to elucidate the underlying mechanisms between the
microbiome, gut, and brain. However, the standardized aniikmal models for
these studies have critical disadvantages for their translation into clinical
application, such as limited physiological relevance due to interspecies
differences and difficulty interpreting causality from complex systemic
interactions. Therefore, alternative in vitro gut–brain axis models are highly
required to understand their related pathophysiology and set novel
therapeutic strategies. In this review, we outline state-of-the-art
biofabrication technologies for modeling in vitro human intestines. Existing
3D gut models are categorized according to their topographical and
anatomical similarities to the native gut. In addition, we deliberate future
research directions to develop more functional in vitro intestinal models to
study the gut–brain axis in neurological diseases rather than simply
recreating the morphology.
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Introduction

The gut–brain axis (GBA) refers to bidirectional interactions among the brain, gut,

and intestinal microbiome (1, 2) (Figure 1A). Many studies link dysregulation of the

GBA to various pathologies from gastrointestinal (GI) symptoms (6) to neurological

diseases including neurodegenerative diseases (7–9) and psychiatric disorders (10)

(Figure 1B). In particular, the interesting modulation effect of the intestinal

microbiome in GBA has been highlighted in neurological diseases such as Alzheimer’s

disease (11–13), Parkinson’s disease (14–16), epilepsy (9, 17), autism spectrum

disorders (18, 19) and anxiety or depression (20). Thus far, three major

communication pathways have been identified in GBA: (a) the immune system that
01 frontiersin.org

http://crossmark.crossref.org/dialog/?doi=10.3389/fmedt.2022.931411&domain=pdf&date_stamp=2020-03-12
https://doi.org/10.3389/fmedt.2022.931411
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fmedt.2022.931411/full
https://www.frontiersin.org/articles/10.3389/fmedt.2022.931411/full
https://www.frontiersin.org/articles/10.3389/fmedt.2022.931411/full
https://www.frontiersin.org/articles/10.3389/fmedt.2022.931411/full
https://www.frontiersin.org/journals/medical-technology
https://doi.org/10.3389/fmedt.2022.931411
https://www.frontiersin.org/journals/medical-technology
https://www.frontiersin.org/


FIGURE 1

The bidirectional GBA. (A) The reciprocal communication between gut and brain. (B) Neurological disorders associated with gut dysbiosis (3). (C) GI
symptoms involved with neurotransmitter dysfunction (4, 5). (created with Servier Medical Art; smart.servier.com).
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carries cytokines, (b) the vagus nerve that carries neuronal

messages, and (c) the neuroendocrine system that carries

neurotransmitters and GI hormones (21).

Conventional animal models for GBA (e.g., gnotobiotic mice)

have been invaluable in advancing our insights into how the

microbiota and its changes impact the GI and brain (patho-)

physiology, while also demonstrating causal linkages between

certain microbial cohorts and disease phenotypes (22–25).

However, there are critical unsolved issues when translating data

from animal models to the human system. First, the interspecies

differences in GI topography, microbiome profile, immune

system, and brain function limit the relevance of animal models

(26). In addition, it is challenging to decipher the etiology of

multifactorial disorders involving the GBA due to the extremely

convoluted nature of systemic interactions between multiple

organs as well as the immune and nervous systems.

Furthermore, disentangling the impact of specific microbiome-

derived compounds from the context of the whole gut

environment is a demanding task (27).

The questionable validity of animal GBA models led to a

compelling need for a human-based, preclinical in vitro model

that is able to dissect the intricate interplay in GBA. From an

engineering viewpoint, the essence of in vitro GBA models is

versatile modularity. In other words, engineers ultimately aim

to (a) define the vital factors of complicated disease
Frontiers in Medical Technology 02
conditions involving multiple organs, (b) deconvolute them as

independent parameters and capture these in the simplest

possible configuration, and (c) couple them in combination in

a scalable, well-controlled, and reproducible manner (26–28).

In this review, we attempt to suggest research directions to

create in vitro GBA models in the context of neurological disease

as an alternative to conventional animal models. Discussions

regarding the in vitro brain and blood-brain barrier models for

GBA have been extensively described elsewhere (29); therefore,

here we would like to delineate the state-of-the-art in vitro 3D

gut models highlighted in the field of GBA modeling so far.

Major biofabrication technologies for gut modeling are classified

according to their dimensions and geometrical properties. In

addition, we discuss the challenges ahead toward functional gut

models for in vitro GBA and strategies to surmount them.
In vitro blood-brain barrier models
for GBA

Tardy progress in therapeutics development for

neurological diseases has driven a need for in vitro blood-

brain barrier (BBB) models. Based on their geometrical and

dimensional features, these models can be categorized as:

planar microphysiological systems (MPSs) based on porous
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membrane substrates (30–32), spheroid models (33, 34),

perfusable hydrogel-laden MPS (35, 36), and perfusable

microfluidic model (37) (Figure 2). Although these models

have provided mechanistic knowledge about neurological

diseases, they need to be optimized for future use in GBA

platforms. Simplifying the multi-step, complex fabrication

process of current BBB models (38, 39) will increase

fabrication efficiency of multi-organ platforms, such as GBA.

More realistic recapitulation of BBB anatomies (e.g., tubular

architectures with curves or bifurcations in various diameters)

is indispensable as it enhances the physiological relevance of

neuroinflammatory responses in in vitro BBB models (40, 41)
FIGURE 2

Current in vitro blood–brain barrier models. (A) Planar MPS based on poro
hydrogel-laden MPS (36). (D) Perfusable microfluidic model (37). All open ac
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that will increase the reliability of the GBA models. Finally,

free-standing BBB models would be easy to assembly with

other organ modules and study the molecular transport

between them. For more information about in vitro BBB

models, the readers may refer to the references (42, 43).
Current in vitro gut models with
different anatomical complexity

2D models (e.g. planar cell culture) have been the

mainstream approach to studying human intestinal normal-
us membrane substrate (32). (B) Spheroid model (33). (C) Perfusable
cess (CC-BY).
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or patho-physiology and defining potential therapeutic

strategies (44–46). However, these simplified 2D models

cannot truly capture the complexity of intestinal tissue

morphology and physiology (46–48); cells interact with their

surrounding cells and heterogeneous and complex

environments via elaborate biochemical signals cascade (49),

i.e. cell–cell and cell–matrix interactions. Accordingly, more

sophisticated 3D models that closely capture the in vivo

milieu are believed to bridge the gap between conventional

cell cultures and animal models (50–52). Here, we

distinguished the up-to-date in vitro gut models by their

level of anatomical complexity and briefly introduced

biofabrication techniques and their features employed to

fabricate the models.
Quasi-3D intestinal epithelium

Microphysiological systems
Kim et al. (53) opened a window into the world of human

intestinal MPSs with their revolutionary work on dynamic

mechanical stimulation of the intestinal epithelium. MPSs

are defined as microfluidic platform devices that emulate in

vivo organ physiology and function in vitro in a controlled

and standardized manner (Figure 3A) (54, 55). The gut-on-

a-chip developed by Kim et al. consisted of two parallel

microchannels separated by a porous membrane coated

with ECM and lined with human enterocyte cell line

Caco-2 to reproduce the intestinal barrier. This gut-on-

a-chip emulating peristalsis-like motions and luminal flow

in vivo demonstrated its capability in coculture with the

microbiome (62, 63), modeling gut inflammation (64, 65)

and intestinal morphogenesis (66, 67) and integration

with an ECM membrane (68) and intestinal organoids/

enteroids (56, 67, 69) in separate reports. The organoid-

mounted microfluidics could be a useful tool for studying

dynamic GI hormone secretion related to digestion

and response to nutrients (56). Besides, gut-on-a-chip could

be a great experimental model for the real-time, non-

invasive monitoring of oxygen gradient (63) or mucus

production (70).

However, this design only includes part of the four layers

of the intestinal walls, resulting in the absence of other

elements that can be involved in certain disorders. (46). A

fundamental limitation in the molding-and-replication-

based fabrication technique is that it not only involves

multiple labor-intensive steps but also impedes dimensional

expansion into 3D architectures, confining them to mainly

2D or 2.5D geometries (54). Lastly, polydimethylsiloxane

(PDMS) is the most favorable material for manufacturing

MPSs but the PDMS surface in microfluidic channels also

has potential problems in adsorbing small and hydrophobic

molecules.
Frontiers in Medical Technology 04
3D Intestinal topographies

Patterning
Capturing the 3D topography of the intestine in an in vitro

culture environment can stimulate the exhibition of more

realistic functions since numerous signaling gradients are

present along the crypt–villus axis (71, 72). Sung et al. used

PDMS replica to microfabricate a 3D hydrogel intestinal villi

structure (73). Natural and synthetic hydrogels, collagen, and

polyethylene glycol diacrylate respectively, were used to make

the villi substrate where Caco-2 cells were seeded. The

substrate was fully covered with epithelial cells three weeks

after seeding and generated similar finger-like epithelial

morphologies to those of the human jejunum. This kind of

biomimetic scaffolds with a crypt–villus topography can

impose geometric boundary conditions that resemble those in

vivo to organoids or enteroids and guide their self-

organization, thus improving their architecture and size (74,

75). Recently, a microfabricated array of collagen crypts and

villi cultured with human enteroids effectively generated a

self-renewing monolayer, crypt–villus architecture, and

opposing gradients of morphogens seen in the native niche of

the intestinal epithelium (76).

Another surface feature of the intestine, the circular folds in

the mucosal layer, also has certain important roles. The

morphological patterns seen in the mucosa considerably

increase the surface area, which is beneficial for absorbing

nutrients and water (77). In addition, the folded mucosa ease

the passage of luminal contents because the luminal diameter

of the organ can expand significantly by releasing the folds

without causing high stress that may harm the mucosal layer

(78–80). In nature, these wrinkle-like structures are generated

due to heterogeneous growth rates during development, which

generates stress mismatches between tissue layers and

accordingly induces mechanical instability (81). Zhao et al.

(57) reported a method to recapitulate the folding of artificial

mucosa in a controllable manner using layered hydrogel

systems (Figure 3B). First, a tough and stretchable hydrogel

substrate was made simply by pressing the pregel solution

between two layers of glass. PDMS holders stretched and

fixed the substrate in a uniaxial or biaxial direction and then

an epithelial cell-laden soft gelatin methacrylate (GelMA)

hydrogel was attached to the prestretched substrate. As a

result, the relaxation of prestretched tough hydrogel induced

programmed self-folding. This system demonstrated the

mesenchymal condensation process in vitro, which facilitates

the understanding of mucosal folding.
Bioprinting
3D bioprinting is a groundbreaking technology that

encompasses a wide range of disciplines and is one of the

most attractive tools in tissue engineering (TE) (82, 83).
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FIGURE 3

Biofrbrication technologies for in vitro gut models. (A) Quasi-3D microphysiological systems. Reproduced from Kasendra et al. (56). Open access
(CC-BY). (B) 3D topography patterning. Reproduced from Chan et al. (57). with permission from the author. (C) 3D direct bioprinting.
Reproduced from Kim et al. (58). Open access (CC-BY 4.0). (D) 3D embedded bioprinting. Adapted from Lian et al. (59) with permission from the
publisher. (E) 3D hollow scaffold. Reproduced from Langerak et al. (60). Open access (CC-BY 4.0). (F,G) 3D coaxial bioprinting assisted with
photocrosslinking. Reproduced from Han et al. (61) with permission from the publisher.
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Traditionally, this additive manufacturing process can be

classified based on its distinct approach to create a solidified

layer: vat polymerization (84), material extrusion (85), and

material jetting (86). 3D bioprinting using hydrogel bioink
Frontiers in Medical Technology 05
with cells in TE applications is categorized into four types

according to their ink-dispensing method: laser-assisted

printing, stereolithography, inkjet printing, and

microextrusion printing (87). Harnessing bioprinting has
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established a new pillar of engineering intestinal tissues in vitro

(58, 59, 61, 88, 89). Lian et al. (59) described an embedded

bioprinting strategy using a dual-layered support base to

produce a vertical array of intestinal villi with dimensions

close to the native tissue (100–200 µm in diameter and

≈2 mm in length) (Figure 3D) (90). Embedded bioprinting

enables the extrusion of inks into a (sacrificial) support bath/

matrix and is advantageous when using mechanically weak

bioinks, which often pose a trade-off between printing fidelity

and biocompatibility (91–93). The authors printed a bioink

composed of gelatin and Caco-2 cells into a vertical filament

shape into GelMA support, which has an upper and lower

layer of different concentrations. Gelatin dissolved away at

physiological temperature conditions during culture and left

microchannel-like villus while still supporting the attachment

and growth of encapsulated cells. Intriguingly, the

heterogeneous microenvironment of GelMA created gradients

in both nutrients and oxygen along the length of the hollow

villus structure, simply by reconstructing the hypoxic crypt

and normoxic villus bases.

Among various 3D bioprinting techniques, coaxial

extrusion printing has provoked tremendous interest because

of its ability to directly fabricate perfusable tubular structures

by co-extruding multiple materials through a concentrically

assembled core–shell nozzle (94, 95). Kim et al. (58)

demonstrated a free-standing 3D villi structure composed of a

small intestinal epithelium core and microvascular shell using

coaxial printing (Figure 3C). To make the projective finger-

like villus using collagen/decellularized small intestinal

submucosa-based bioink with limited mechanical stiffness,

tannic acid was adopted as a crosslinking agent. Analysis of

the bioengineered villus showed enhanced cellular activities

inclusive of cell viability, proliferation, and the expression of

mucin and junctional protein.
3D Geometry with a hollow lumen

Although tubular structures of epithelial organs have been

of great interest to TE researchers (72, 96–105), there have

only been a few studies on the subject of culturing intestinal

epithelial cells (IECs) on the inner surface of the hollow

structure until recently. Unique advantages that such hollow

tubular shapes can offer in intestinal models include (a)

accessibility to both the apical and basolateral side of the

intestinal epithelium, which is necessary to study trans-

epithelial transport (106); (b) extending the lifespan of the

intestinal tissue model via perfusion through the lumen (107);

(c) intraluminal oxygen gradient, which is critical in the

mutual interaction between intestinal microbiomes and altered

epithelium condition (108); (d) accelerated differentiation of

IECs (61, 71). In this regard, subsequent sections explore
Frontiers in Medical Technology 06
representative fabrication methods for 3D hollow tubular

intestinal models.

Conventional scaffold approach
As one of the earliest works on the effect of 3D lumen

configuration in intestinal models, a culture system using

porous hollow fibers of polyethersulfone was applied to grow

Caco-2 cells (71). Differentiation of seeded Caco-2 cells was

accelerated over six days. In addition, it was investigated that

the tight paracellular barriers formation and brush border

enzymes expression was increased compared to the

conventional Transwell culture. The shortened time required

to differentiate the Caco-2 cells in the hollow tubular system

is highly relevant to the rapid differentiation of enterocytes in

in vivo human intestines (3–5 days) (109, 110).

Microenvironmental cues such as ECM and external forces

are important factors to mimic the architecture and

physiological parameters of the native intestine (Figure 3E)

(60, 106). In this bioengineered intestinal tubule, Caco-2 cells

were grown on a human collagen IV- and levodopa-coated

hollow fiber membrane with different curvatures (106). In

addition, the intestinal tubules were exposed to unidirectional

shear stress for the last few days of culture. Under the

dynamic condition, Caco-2 cells rapidly formed a monolayer,

increasing the speed of the polarization process, inducing

apical and basolateral sides, and promoting differentiation

into multiple phenotypes including enterocytes, goblet,

Paneth, enteroendocrine (EEC), and stem cells compared to

the static condition.

Different cell types can be involved by adding layers

hierarchically. Roh et al. (111) fabricated silk scaffolds with a

hollow lumen space in different sizes using cylindrical molds.

Human colonic organoids (colonoids) were seeded on the

inner surface of the smaller scaffold and then assembled with

the outer scaffold where human primary macrophages were

cultured. In response to inflammation caused by Escherichia

coli lipopolysaccharide, the migration of macrophages toward

the epithelium was observed. Other inflammatory responses,

such as increased macrophage infiltration and the production

of pro-inflammatory cytokines were also verified.

Bioprinting with a high cell population
One current trend in TE is the scaffold-free approach

because scaffolding material often interferes with cell-to-cell

or cell-to-matrix interactions (112–114). In this context,

researchers seek to reinforce cells’ ability to produce a matrix

by applying proper exogenous stimuli such as stiffness,

mechanical stretch, and contact with ECM. These exogenous

cues can initiate cellular self-assembly and self-organization

when involving external forces such as centrifugation or 3D

bioprinting (115). Recently, bioprinting-assisted tissue

emergence (BATE) was suggested based on depositioning

high-density organoid-forming stem cells directly into a
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highly permissive ECMs suspension of Matrigel and collagen

(88). BATE permitted spatiotemporal control of the cells and

the bioactive ECM liquid precursor facilitated cellular self-

assembly into macrostructures following the geometrical

constraints imposed by the printing process. The printed

intestinal organoids robustly fused and evolved into native-

like tubular tissue with budding structure, demonstrating their

potential in guiding tissue morphogenesis. BATE eminently

exemplified the advantage of the automated 3D bioprinting

system in handling organoids/enteroids; it can handle these

delicate cells in a scalable and reproducible manner (116).
Bioprinting with tube-like geometry
The first attempt to fabricate a hollow tubular in vitro

human intestinal model with the coaxial printing technique

was achieved by Kang et al. (89) using a colon-derived

decellularized extracellular matrix (dECM)-based bioink. The

tissue-specific bioink was supplemented with visible light

photoinitiator ruthenium/sodium persulfate (Ru/SPS) to

increase the capacity of the crosslinking speed (dERS) (117).

Introducing a photoinitiator into the hydrogel bioink is

ingenious because of the indispensable requirement for

successful coaxial printing that bioinks should be gelated

immediately after being extruded from the nozzles (94, 95,

118). Combining tissue-specific microenvironmental niche

material and adequate manufacturing methods promoted

tissue functionality and printing fidelity simultaneously. The

tubular intestinal model printed with Caco-2-laden dERS

showed luminal lining of mucin similar to in vivo, where a

mucus layer covers the intestinal epithelium to house

microbiomes and restrain their translocation into underlying

tissues (119). Given that in vitro models with Caco-2 often

fail to develop a luminal mucus layer, the recapitulation of the

luminal mucus lining in the colon dERS tubular models is

compelling evidence for the significance of combining suitable

materials and fabrication techniques.

This approach was further developed by Han et al. (61) to

enhance the intestine-specific functions of the model based on

the dERS bioink (Figure 3F). The hollow tubular intestinal

model was fabricated again with Caco-2 and colon dERS but

some important printing parameters (e.g., initial cell density,

bioink, and photoinitiator concentration) were fine-tuned. As

a result, the single cells that were evenly distributed along the

printed tube simultaneously aggregated to form multicellular

spheroids and self-organized into lumenized cysts

(Figure 3G). This transition—called lumenogenesis—is a

hallmark of distinct epithelial morphogenesis that occurs

under biomimetic conditions (120). In addition, the

differentiation of Caco-2 cells into functional intestinal

phenotypes was identified by the expression of EEC markers

such as chromogranin A and lysozyme. This indicates that 3D

bioprinting and tissue-specific biochemical cues hold promise
Frontiers in Medical Technology 07
for geometrical guidance and the accelerated differentiation of

accommodated cells.
The necessity of neuroendocrine
models

The gut contributes to the GBA as the body’s largest

endocrine organ. In particular, EEC cells in the intestinal

epithelium produce numerous hormones and neuroactive

peptides. These signaling mediators secreted from EEC cells

bind to the receptors of the vagus nerve, accomplishing direct

bidirectional communication (7). In other words, EEC cells

have a paramount role in the neuroendocrine pathway in

GBA. However, as discussed in the previous section, the most

recent technologies developed to fabricate 3D in vitro gut

models were focused on recreating the morphological features

of the intestine rather than its endocrine function. Likewise,

current in vitro multi-organ GBA models lack the intrinsic

secretory property of the intestine. For example, to elicit

mutual responses between the gut and brain, modulation by

exogenous immune cells (27) or microbial byproducts (121)

were exploited but regulation via GI hormones or

neurotransmitters has not yet been successfully recapitulated.

An in vitro neuroendocrine gut model would be beneficial

for studying neurological diseases, considering the crucial

functions of EEC hormones and neurotransmitters in GBA.

For instance, serotonin is a critical signaling regulator in GBA

and about 95% of it is produced by enterochromaffin cells

(one phenotype of EEC cells) in the epithelium (122).

Serotonin dysfunction is heavily associated with important

brain functions such as mood, sleep, and behavior (123).

Unfortunately, the fabrication of an in vitro EEC model is still

in its infancy. In this regard, EEC cell sources are briefly

presented as an important component for an in vitro

neuroendocrine model.
Candidate cell sources for EEC models

There have been enormous efforts to reconstruct the in vitro

EEC function at a cellular level. For decades, two immortalized

EEC cell lines of human origin, NCI-H716 and HuTo-80, have

provided a starting framework to study the secretion of gut

hormones in vitro. NCI-H716, a poorly differentiated

adenocarcinoma of the human cecum (124), is a

representative type of distal L-cells among various subtypes of

EEC cells. This cell line displays endocrine features including

secretory granules and chromogranin A (125) and can secrete

GI hormones in response to nutrients (126). Moreover, NCI-

H716 exhibits receptors for several neurotransmitters such as

gastrin, serotonin, and somatostatin (127). HuTu-80 is derived

from duodenal carcinoma and is the only widely available
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human-derived small intestinal small cell line (128). This cell

line also resembles L-cells and has been utilized as a model to

study the secretion of tastant-induced gut hormones (129,

130). However, it is difficult to extrapolate the physiological

function of the EEC system from single-cell cultures because

they lack other types of IECs that influence the production

and secretion of gut hormones.

Reimann et al. (131) established a protocol to culture

primary enteroendocrine cells in vitro and enabled the study

of the secretory mechanisms of gut hormones at the

molecular level. Primary cells refer to non-transformed ex

vivo cells that are isolated from tissue specimens obtained

during biopsies or surgeries (132). Studies with purified

primary human EEC cells enable a better understanding of

hormone secretion and the metabolic pathway of the gut

(133–135). However, some critical issues remain regarding

primary cells; the finite lifespan and proliferation of primary

cells should be taken into consideration (136). Relatively small

proportions of EEC cells (1% of the intestinal epithelium) are

also a challenge when deciphering the dynamics of hormone

secretion (137).

Contrary to primary IECs, intestinal enteroids/organoids

maintain their viability for over a year in vitro; this indefinite

proliferation feature is valuable to studying long-term

intestinal illnesses. Identification of adult intestinal stem cells

(ISCs) and their niche and generation of an organotypic

culture system have engendered advancements in the field of

intestinal epithelial study (138) (Figure 4). Interestingly, EEC

cells in enteroids and organoids can be enriched by the

expression of some translational factors and small molecules

(140–143), which is promising for the customization of EEC

cells in enteroids/organoids. Intestinal enteroids/organoids
FIGURE 4

Difference between enteroids and organoids. (A) Enteroids are human mini-g
crypts in intestinal biopsy samples. (B) Alternatively, intestinal organoids c
terminology, enteroids and organoids, was suggested to differentiate epithe
respectively. Adapted from Singh et al. (139). Open access (CC-BY 4.0).
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have been used in various applications including modeling

intestinal development, physiology and pathophysiology,

nutrition transport, and metabolism (144). The practical

problems associated with enteroids/organoids models is that

they are not cost-effective and are difficult to scale up to meet

the size requirements of drug screening or TE approaches,

where centimeter-scale material is often desired (145, 146).

Besides, the microanatomy of organoids/enteroids is typically

confined to spheroidal shapes, which fail to recapitulate in

vivo-like crypt–villus architecture.
The usefulness of
microenvironmental cues in gut
models

Imposing microenvironmental cues via surrounding

material can maneuver the differentiation of EEC cells in

vitro. For example, Bruïne et al. (127) reported that ECM has

a determinant role in the endocrine differentiation of NCI-

H716 cells. Culturing NCI-H716 on various extracted ECM

components (e.g., colon ECM or collagen IV/heparan sulfate

proteoglycan mix) enhances the adhesion of cells and induced

EEC differentiation. Of note, individual ECM components,

unlike complex combinations, do not induce endocrine

differentiation, and the adhesion of cells onto a substrate is a

prerequisite for inducing endocrine phenotype (125).

Therefore, appropriate ECM environments are paramount for

the differentiation of IECs.

As shown in BATE, bioprinting assisted by a proper ECM

environment can achieve organoids/enteroids-derived tissue

structures at centimeter scale, which is physiologically relevant
uts resembling the native intestine derived from adult ISCs of isolated
an be directly generated from induced pluripotent stem cells. The
lial only in vitro cultures from both epithelial and mesenchymal ones,
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for use in implantable regenerative medicine. Conventionally,

the size of single organoids/enteroids is typically limited to

millimeter-scale at best because the inner core becomes

deficient in nutrient supply as the organoids/enteroids grow

larger, resulting in necrosis (145). Furthermore, bioprinting

employing multiple biomaterials is expected to assist in the

integration of various organoids/enteroids and enhance their

functionality in a single tissue system (147). Additionally, an

enteroids polarity reversal strategy was developed based on

understanding how basement membrane extract (BME) affects

the epithelial polarity. Basolateral-out enteroids grown within

BME showed an inversion of polarity when transferred to a

BME-free suspension culture environment, enabling easy

access to the apical side of the enteroids without technically

demanding microinjection. Thus far, many aspects of soluble

niche components important for culturing enteroids/organoids

have been unraveled, whereas the role of insoluble ECM as a

vital niche element remains a mystery (148). Since the IECs

interact constantly with the local niche, which is comprised of

both soluble factors and ECM gradients, the delicate balance

between proliferating and differentiating ISCs is elicited by the

dynamic microenvironment along the crypt–villus axis (149).

Compared to single ECMs (e.g. collagen or fibronectin),

utilizing dECMs derived from normal or diseased tissue could

contribute to mimicking a reliable microenvironment because

they could reflect the structural and compositional

disorganization of ECM during disease progression (150, 151).

Interestingly, Alfano et al. (152) showed different intestinal

models using three types of dECM substrates derived from

healthy, perilesional, and colorectal carcinoma (CRC) human

tissue. The specific characteristics of various cancer cells such

as invasive phenotype, turnover, differentiation, and

polarization were sustained, recapitulating the native tissue

homeostasis and tumorigenesis more faithfully in vitro.

Further investigations were taken to unveil the biochemical

and mechanical features of the three dECMs and their

underlying mechanisms regarding increased stiffness in the

perilesional and CRC tissue (153). A recent study presented a

CRC model that mimics the alteration of ECM in each tumor

stage by using a dECM substrate originating from human

CRC tissue of different stages (154). As the tumor stage

increased, the imbalance of ECM composition was observed

similar to in vivo, which induced changes in the proliferation

and migration of the seeded cancer cells.
FIGURE 5

The TE trinity toward advanced in vitro gut model for GBA: cell,
material, and fabrication.
Evaluation techniques for GBA

Although In vitro BBB and gut models have seen

tremendous progress in recent years, unresolved issues

concerning connecting each component into a single GBA

model remain. First, most of the state-of-the-art BBB and gut

models are fabricated through a multi-step, complicated
Frontiers in Medical Technology 09
process that demands a lot of time and effort. In addition, as

each model is advanced, they become to include various

cellular compositions, making it difficult to find an optimized

condition to coculture them. Last but not least, there is no

defined method to track the dynamics which occur in in vitro

GBA models. Many studies rely on visual assessment of cell

morphology or end-point analysis since it is challenging to

monitor the changes continuously without terminating the

sample. However, as the BBB and gut epithelium works as

physiological barriers in our body, it is necessary to

quantitatively evaluate their wall tightness and integrity in

vitro in a real-time and non-destructive way.

Trans-epithelial electrical resistance (TEER) is the most

representative technique to measure barrier integrity (155).

Recently, TEER-interfaced BBB (31, 156, 157) and gut (158)

models enabled continuous and non-invasive detection of

their barrier properties in situ and demonstrated the strength

of sensor-implemented tissue platforms. Nevertheless, the

above-mentioned models are still confined to a planar

dimension and need to be expanded to 3D tissues. So far,

only few studies have incorporated electronics into 3D BBB or

gut tissue models (159). Moreover, electrochemical

biosensors-assisted platforms for monitoring cell secretomes

and behavior (160–164) would help chronological and rapid

readout of multi-organ axies such as GBA.
Conclusion

This paper comprehensively reviews the necessity of EEC

models in the future in terms of an in vitro tool to unravel
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the underlying influence of GBA in neurological diseases. The

traditional GBA animal models have widened our

understanding of the reciprocal interaction between the

microbiome, gut, and brain. However, their intrinsic

differences in tissue morphology and physiology to humans

and the complex interplay in multiple organs necessitates a

dismantled in vitro human GBA model. Therefore, we focused

on introducing the most advanced 3D gut models and

biofabrication methods so far and characterized them by their

topographical and geometrical properties. Unfortunately,

existing gut models are largely restricted to capturing the

typical crypt–villus topography and thus miss capturing the

secretory function of the intestine in response to various

substances (e.g. microbial metabolites and hormones) related

to GBA dysregulation. A gut model with neuroendocrine

function is urgently needed and to accelerate advancements of

in vitro EEC models where proper cell source, material, and

fabrication technology should work in harmony (Figure 5).
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