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ABSTRACT
Background: The network approach has recently been introduced
to clinical psychology and provides a powerful framework for
analyzing variables in a system. Since then, its applications have
rapidly spread to various fields of social sciences. Unlike in the
case of clinical psychology, the peculiarities of the phenomena
under study in social sciences have not received sufficient
attention. In this paper, along with practical illustrations, we
discuss what a system of psychological variables represents and
what the interrelationships between the variables mean in the
context of health behavior research. Additionally, we explore the
structural analysis of the system which has not been the focus of
the recent applications of network analysis in health psychology.
Discussion: In this paper, we illustrate two approaches of
incorporating observable behavioral variables in a system and
strategies for investigating structural components of the system.
We illustrate these two approaches with an analysis of cross-
sectional data on adolescents’ beliefs and behavior with respect
to registering their choice regarding organ donation in the
Netherlands. Furthermore, with this paper, we wish to facilitate a
larger discussion on conceptualizing networks of psychological
variables, which will guide the analysis and the interpretation of
node level interactions as well as network level structures.
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Introduction

Theories in health behavior1 research, akin to other disciplines of social sciences, attempt
to explain phenomena of interest (e.g. health behavior) by describing components (e.g.
psychosocial variables) related to such phenomena, as well as the relationship between
these components. Psychological variables that are intervention targets, are oftentimes
represented as latent constructs or composite variables (e.g. self-efficacy, attitude),
measured by observable indicators (e.g. self-reported items in questionnaires, reaction
times), that explain the variation in the outcome of interest (e.g. health behavior). The
latent constructs and composite variables are higher level abstractions (Peters &
Crutzen, 2018), which are created by either formative or reflective models (Schmittmann
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et al., 2013) because they are impossible to observe (i.e. always require measurement by
means of, for example, questionnaires, reaction times). The reflective models view item-
scores as reflecting one’s position on the underlying latent construct (i.e. the latent con-
struct causes the item-scores). As opposed to the reflective models, the formative
models assume that the item-scores create the construct without hypothesizing that the
latent construct exists independently of the observable indicators (Gruijters & Fleuren,
2018).

The appropriateness of reflective and formative approaches has recently been debated
from a psychometric perspective (Borsboom, Cramer, & Kalis, 2018; Dalege et al., 2016;
Gruijters & Fleuren, 2018; Hevey, 2018; Peters & Crutzen, 2018; Schmittmann et al.,
2013) as well as from a pragmatic stance (Peters & Crutzen, 2017). From a psychometric
perspective, Schmittmann et al. (2013) argue that particular assumptions of causal
relationships between the construct and the respective indicator variables are problematic
for psychological testing. For example, while causal relations between indicator variables
are inconsequential in a formative model, the reflective model does not allow causal inter-
relationships between the indicator variables (i.e. assumes local independence) (Schmitt-
mann et al., 2013). However, such assumptions may be incorrect. For instance, in an
experimental study (Sniehotta, 2009), intervening on normative beliefs had a positive
effect on perceived behavioral control. Such direct causal interrelationships between the
lower level determinants are in direct contradiction with the assumption of local indepen-
dence in reflective models. Moreover, these interrelationships are not inconsequential –
instead, they carry important information on the existence of possible self-reinforcing pro-
cesses. Similar arguments are made about constructs in psychopathology (e.g. depression)
(Borsboom et al., 2018).

From a pragmatic stance, one could argue that latent constructs or composite variables
may obscure important interrelationships between observable indicators that are of prac-
tical importance (as shown in the example above). Moreover, it is reasonable to assume
that not all indicator variables are equally important in relation to the outcome of interest
– there are presumably more central and less central variables. However, latent or compo-
site variables do not convey such information and, as a consequence, the targets for behav-
ior change interventions become less specific. In this regard, Peters and Crutzen (2017)
view such constructs as useful metaphors rather than actual entities that exist in our
mind. They further argue that representing psychological variables as emergent phenom-
ena with a practical level of specificity is of great importance because these ‘specific’ vari-
ables are the ones that behavior change interventions target (Peters & Crutzen, 2017).
Additionally, focus on the lower level determinants may help interventionists capture
changes that would otherwise be masked (Peters & Crutzen, 2017).

Recently, there were multiple attempts to represent psychosocial constructs as emer-
gent phenomena in a network of causally interacting variables (Brandt, Sibley, &
Osborne, 2018; Dalege et al., 2016; Hevey, 2018; Rucci et al., 2018; Schmittmann et al.,
2013; van Zyl, 2018). Seeing psychological variables as emergent phenomena means
that the higher-level construct (e.g. self-efficacy) emerges from a constellation of lower
level determinants (e.g. specific self-efficacy beliefs). The emergence of these higher-
level constructs implies that the lower level determinants self-organize into hierarchical
structures and form a system that has a ‘behavior’ that is more than the ‘behaviors’ of
its constituent parts (i.e. lower-level determinants).
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In contrast2 to the latent variable approach, the network approach represents observa-
ble indicators as nodes in a network and looks at the interrelationships between them
without postulating the existence of latent constructs. Consequently, researchers can
explore the determinants of behavior and evaluate the relative importance of each
specific variable in a system. Moreover, researchers can explore how the networks struc-
turally differ given the presence or absence of the outcome of interest. In available publi-
cations and tutorials, there is lack of discussion on what the system or network3 of
psychological variables and causal interrelationships between them mean or represent.
The authors mostly looked at the representation of nodes and explored node level
measures such as betweenness, closeness and degree centrality (Brandt et al., 2018;
Dalege et al., 2016; Epskamp, Borsboom, & Fried, 2018; Hevey, 2018; van Zyl, 2018).
Although such analyses give important insights into the most important variables in a
given network, they do not express much about the meaning of the overall network. In
addition, we noticed that the overall structure of the network has not been a focus of inter-
est in previous research on networks of psychological variables. However, as we argue in
this paper, it may be of equal importance to investigate network topology of a behavior of
interest. Descriptive and statistical comparisons of networks between groups with the
presence or absence of the outcome of interest may provide insights into the structural
predictors of the outcome of interest and thus inform future interventions.

In the present paper, we aim to contribute to the recent efforts to introduce the network
approach to health behavior research (Hevey, 2018; Rucci et al., 2018; van Zyl, 2018) by
discussing a strategy for incorporating the outcome of interest in network analysis and
for investigating network topologies between groups that do or do not exhibit an
outcome of interest. We begin by describing what the network approach is and what ques-
tions we can explore. Subsequently, we discuss two approaches of incorporating the behav-
ior of interest in the network analysis.

Network approach: what questions can we explore?

The network approach overcomes the unrealistic assumptions of reflective and formative
models and addresses the pragmatic issues discussed above. The network perspective
views the phenomenon of interest (e.g. depression, attitudes) as emergent in a system of
interacting variables. Emergence of the phenomenon in a system means that a particular
constellation of variables ‘defines’ that phenomenon. This particular constellation of vari-
ables that define the phenomena refers to the structure of the system and the dynamics of
interactions between the system components. For example, Borsboom and Cramer (2013)
represent different psychopathologies as emerging from a network of interrelated symp-
toms. This way, the outcome variables (e.g. anxiety, depression), that are often latent con-
structs, are represented as emerging from a network of their constituent observable
indictors (e.g. symptoms). By taking such a mereological stance, researchers investigate
the distinct features of these constellations (i.e. network structure) and the relative impor-
tance of their constituent components.

The transfer of network analysis from clinical psychology to health behavior research
requires a discussion on the peculiarities of the phenomena under study. For example,
health behavior research is often concerned with explaining behaviors (e.g. smoking, phys-
ical activity) that are observable rather than latent. Consequently, the question arises
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whether we shall consider the phenomenon of interest as resulting from a system or we
shall conceive it as a constituent of a system. Another important question pertains to
the causal interrelationships between the items – while symptoms can cause one
another (e.g. fatigue causes irritation and vice versa) it is yet to be discussed how causal
interactions apply to psychological determinants of health behaviors (e.g. subjective
norms and attitudes). In either case, one ought to conceptualize what the system is in
order to decide what the constituents of the system are or should be. We explore these
and other questions sequentially in this paper with examples of an analysis4 of cross-sec-
tional data on adolescents’ beliefs and behavior with respect to registering the choice
regarding organ donation in the Netherlands (more information on the data can be
found in Steenaart, Crutzen, and de Vries (2018)).

Before we begin with the statistical analyses, we ought to conceptualize the network that
we aim to formulate. More specifically, we need to answer the following questions: What
phenomena do we conceive as emergent and where do they emerge from? When the
phenomenon of interest (e.g. self-efficacy) is unobservable, we can follow the network
approach as it is currently applied in clinical psychology and regard that phenomenon
as emerging from a system of its constituent observable indictors (e.g. items). However,
how do we conceptualize an outcome of interest in a network framework when the
outcome of interest is observable (e.g. behavior)? In this regard, there are two possible
scenarios. In the first scenario, one may regard the observable behavior as a component
of a system and subsequently investigate how different lower level determinants relate
to it and to one another. In the second scenario, one may regard the behavior as emerging
from ‘causal’ interactions between these determinants. Such distinction may not be
immediately clear or mutually exclusive but we hope to illustrate that each of these scen-
arios allows investigation of different research questions and implies different analytical
strategies. For example, the former may be used for exploring learning processes and
behavioral feedback loops, while the latter allows exploration of structural components
unique to a particular behavior.

Behavior as a constituent in a system

Recent applications of the network approach to psychological variables treated observable
behavioral variables as nodes in a system and explored the ways in which other psycho-
logical variables relate to the outcome variable and to each other (Brandt et al., 2018;
Rucci et al., 2018). In such cases, while the latent constructs that represent different
psychological domains can be viewed as emerging from them, the behavior itself is not
emergent in a system but rather a component in the system. In a network framework,
the components in the system are hypothesized to be engaged in ‘causal’ relationships
with each other.

In order to facilitate a meaningful understanding and interpretation of the system, it is
imperative to conceptualize what causal relationships mean between a set of psychological
and behavioral variables. One way of doing so is to invoke theories of spreading activation
from the literature on social cognition (Gawronski & Payne, 2010). We can look at
psychological variables such as attitudes and intentions as mental representations that
emerge in a network of respective beliefs. The corresponding beliefs then do not cause
each other in a literal sense but rather cause each other’s emergence in the focal
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memory on which cognitive processes operate (discussed more in the subsequent sec-
tions). In other words, the relationships between beliefs are probabilistic rather than deter-
ministic. The mutual reinforcement of concepts in the focal memory may stimulate one to
engage in a certain behavior. The action then is implemented once a certain amount of
stimulation is accumulated in the behavior (i.e. a certain threshold is achieved in the
behavioral variable) (Gawronski & Payne, 2010).

The inclusion of the observed behavioral variable in the network as a node in a system
may be interesting for exploring direct as well as indirect relationships between the pre-
dictor variables and the outcome of interest. To illustrate this point, consider the decision
to register as an organ donor in a network of items that represent beliefs about organ
donation (see Figure 1).

In Figure 1, we may examine the interrelationships between items (lines between the
nodes), the direction (negative relationships represented by red lines and positive relation-
ships in blue) and the strength of these relationships (the width of the line). For example,
being an organ donor (DYN) is positively associated with one’s belief of knowing enough
(KnE) and feeling comfortable in talking to family members about organ donation
(FmT1). The association between ‘knowing enough’ and ‘being registered as an organ
donor’ is adjusted for the rest of the associations in the network.

In addition to direct associations, we can examine the indirect associations (predictive
mediations) between the variables. For example, the concern of mutilation (Mtl) indirectly
relates to registration status through not wanting to think about death (ThD). The indirect
relationships represent predictive mediations between variables (Epskamp & Fried, 2018).
In addition to exploring the direct and indirect relationships between the predictors and
the outcome of interest, researchers attempt to investigate the relative importance of each
variable by calculating centrality scores (e.g. strength, betweenness) for each variable and
the shortest paths to a focal variable (e.g. by applying Dijkstra’s algorithm) (Brandt et al.,
2018; Hevey, 2018; Rucci et al., 2018). To illustrate this, we calculated three centrality
measures for each node, namely, strength, closeness and betweenness centrality (see
Figure 2).

Figure 2 shows that believing that organ donation is an act of helping others has the
highest strength centrality score; whereas feelings of discomfort (uneasiness) about
one’s organs being in someone else’s body has the highest closeness and betweenness cen-
trality scores in the network. The strength centrality reflects the number of direct connec-
tions a particular node has, accounted for the strength of these connections. In our
example, the belief that registering as an organ donor is an act of helping others is strongly
and directly connected to many other nodes in the system relative to all other nodes. The
closeness centrality indicates how close a particular node is to all other nodes in the
network by incorporating indirect connections from that node. In our example, feeling
uneasy regarding organ donation is well connected to many other nodes in the network
– both directly and indirectly. Lastly, betweenness centrality indicates how often a node
lies on the shortest path between other nodes. Nodes with high betweenness centrality
are of particular importance because they connect variables that would otherwise be dis-
connected (a detailed account of network measures can be found in Hevey (2018)). After
calculating the centrality measures, it is important to assess the stability of the estimated
measures and the accuracy of edge weights (see Figure 3). We used bootstrapping methods
to assess these properties (Hevey, 2018).
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In Figure 3, we see that most of the centrality indices are relatively stable. This is
reflected in the strength of the correlations between the estimates of the subsamples
and the original sample. As one can note, with subsets of 30% of the original sample
(x-axis), all the estimates correlate more than 0.7 (y-axis). In Figure 4, we can see that
the edge weights for most of the nodes in the network are close to the estimated bootstrap
mean, indicating an acceptable level of accuracy.

In addition to the centrality scores, we calculated the shortest paths from all variables to
the outcome variable by using Dijkstra’s algorithm5 (see Table 1) (Dijkstra, 1959; West,
2005). In Table 1, we can see that one’s belief that s/he has enough time to register as

Figure 1. A network of items on beliefs about organ donation and donor registration status (DYN).
Note: The list of items and the corresponding abbreviations are presented in the supplementary
materials.
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an organ donor has the shortest path to the outcome of interest. This indicates that this
variable has the strongest association with one’s propensity of being registered as an
organ donor compared to the other variables, which differs from traditional correlational

Figure 2. Centrality scores for all nodes in the network.
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analyses (Steenaart et al., 2018). However, such conclusion contains no information on the
direction of such association, therefore it would be more meaningful to implement Dijk-
stra’s algorithm on negative and positive partial correlation matrices separately (see in the
subsequent section).

Figure 3. Stability of centrality indices.
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Figure 4. Accuracy of the edge-weight estimates and the associated 95% confidence intervals. Note:
The red line indicates the sample values and the gray area the bootstrapped CIs. Each horizontal line
represents one edge of the network, ordered from the edge with the highest edge-weight to the edge
with the lowest edge-weight. The y-axis labels have been removed to avoid cluttering and the x-axis
represents the scale of the edge weights.
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Exploring network structures

After examining the relationships between the nodes, we can examine the overall organ-
ization of the network. For example, we can investigate whether the variables tend to
group together by conducting a cluster analysis. To achieve this we used a greedy agglom-
erative hierarchical clustering algorithm (Kolaczyk & Csárdi, 2014) (see Figure 5). The
greedy algorithm calculates clusters by partitioning the network in such way that the
resulting groups will contain structures that are stronger than expected to occur under
the random assignment of edges (Kolaczyk & Csárdi, 2014; Newman, 2004). This type
of analysis may help us examine whether items that belong to the same theoretical
domain tend to group together. For example, one could check whether beliefs that are con-
ducive to a particular behavior are clustered together. Subsequently, one may identify
beliefs that have the strongest connections with all other beliefs in the cluster by calculat-
ing strength centrality within a given cluster.

In addition to examining clusters in the network, we may examine reinforcing and inhi-
biting structures in the network. It is important to note that the way in which networks are
estimated may not actually reflect the ways in which beliefs are actually structured in
people’s minds. Hence, before conducting such analysis and interpreting the results
certain theoretical and methodological assumptions should be made explicit. The
examples below are, therefore, just illustrations of the steps one can take were certain
assumptions regarding the theory and methods correct.

Reinforcing structures include cyclic arrangements of variables that enable the circula-
tion of a stimulus in such way that it incites a variable of interest. For example, to identify a
reinforcing structure one can multiply the edge weights and if the product of the edge
weights is positive then the component is reinforcing and its inhibiting if otherwise. It

Table 1. The shortest paths from each node to the outcome variable.
Nodes Shortest path to registration status

Help 11.98
FamTalk1 5.71
FriendTalk2 20.95
TimeEnough 3.69
FriendTalk1 7.46
PosClosure 15.01
Reciprocity 30.30
FamDecision 13.39
Waste 7.55
DeformedPerson 18.31
ReciprocitySelf 28.33
Risk 21.62
DoctorsLife 20.46
ThinkDeath 17.08
Ownership 16.13
DeclareDead 23.57
FamTalk2 22.53
Uneasiness 8.97
KnowMore 12.48
ValueOrgans 21.21
Intact 13.86
KnowEnough 4.56
Mutilated 15.37
Allocation 16.22
DoctorsChoice 18.31
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is extremely important to note, that reinforcing or inhibiting structures in a network imply
a directed graph. More specifically, a cyclic structure means that a path from node A to
node C can return to the node A. Because networks estimated in a cross-sectional data
are undirected one should be cautious in interpreting such structures.

In general, we can differentiate two types of reinforcing and inhibiting structures – one
related to the behavior of interest and one related to the constructs in the system. More
specifically, the reinforcing and inhibiting structures in relation to the constructs reflect
the processes that stimulate or inhibit the emergence of the constructs in the focal
memory and its maintenance there. The reinforcing and inhibiting structures in relation
to the behavior of interest reflect the structures that continuously enable or disable the
accumulation of stimulation in the behavior of interest.

We examine such cyclic arrangements of variables by searching for triangles, four-
cycles and cliques of k size in a given network. In our network, we have 104 triangles
(cliques of size three), 38 four-cycles and 4 cliques of size five (see an example of four
cycles in Figure 6).

In Figure 6, we can examine possible reinforcing structures. For example, in clique
one, we notice that one’s feeling of easiness in talking to one’s family members is posi-
tively associated with the feeling of easiness in talking to friends which is positively
associated with seeing the registration as organ donor as an act of helping others
which in its turn is positively associated with talking to family members. Furthermore,

Figure 5. Hierarchical clustering of the network (on the left) and the respective dendrogram (on the
right).
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all of the mentioned items are positively associated with one’s likelihood of registering
as an organ donor. Postulating a dynamic causal process, we could say that by increas-
ing one’s feeling of easiness in talking to family members about this topic will likely
increase their feeling of easiness in talking to their friends, which will lead to perceiving

Figure 6. Four cliques of size five.
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the registration as an act of helping others. This in its turn increases the easiness of
talking more to their families (e.g. because they see that their friends also share their
perspective) and create a reinforcing loop where the importance of registering as an
organ donor is being cultivated. In addition, we can see a reinforcing structure com-
posed of three variables that include two negative associations (between uneasiness
and registration status and uneasiness and help) and one positive (help and registration
status). The latter cyclic triad enables continuous reinforcement of the registration
status. It is worth noting that the supposition of causal processes without theoretical
or empirical grounds is unwarranted.

Exploring positive and negative correlations separately

The centrality measures as well as Dijkstra’s algorithm take the absolute values of the edge
weights in the calculations. This may be problematic because the negative and positive
partial correlations convey different information and treating them similarly may result
in different interpretations and conclusions. More specifically, the network with positive
partial correlations reflects ‘stimulating’ effects (i.e. increase in one or more variables is
associated with an increase in the other variables in the network). In contrast, the
network with negative correlations reflects a type of ‘wave effects’ (under certain assump-
tions) – an increase in one variable is associated with a decrease in another variable, which
in its turn is associated with an increase in the third variable. In addition, looking at rein-
forcing and inhibiting structures in networks with only positive and negative correlations
may increase the visibility of such structures, particularly in dense networks with many
variables. Therefore, separating networks of positive and negative correlations may be
more appropriate for calculating and interpreting the centrality measures as well as for
the examination of reinforcing and inhibiting structures. We illustrate this approach in
Figure 7.

Now we can explore the relative importance of the nodes in networks representing
positive and negative partial correlations. We calculated the same centrality measures as
in the case of the entire network (see Figure 8).

In the network with only positive partial correlations, we can see that ‘concerns about
mutilation’ has the highest strength centrality score and ‘reciprocity’ has the highest close-
ness and betweenness centrality score. In other words, one’s fear for being mutilated in
case of being an organ donor is strongly and directly connected to many other variables
in the network. This means that decreasing one’s concerns about mutilation will likely
decrease the scores of many other variables in the network. The ‘reciprocity’ scores indi-
cate that one’s belief that registering as an organ donor makes oneself more deserving to
receive an organ, in case they need one, more often mediates the relationship between the
other variables in the network with negative partial correlations. This means that increas-
ing one’s belief of reciprocity may greatly affect variables that are not directly linked to
each other.

It is imperative to note that splitting networks based on negative and positive cor-
relations can be problematic because (among other reasons) it may distort the multi-
variate structure of the network and results in inaccurate conclusions. However, on
the other hand calculating centrality scores on the network with both positive and
negative partial correlations may also be inaccurate. Therefore, we suggest to use this
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approach with caution and perhaps apply it in an exploratory way. In addition, it is
important to note that the utility of centrality metrics in psychological networks is a
subject of an ongoing debate in the field (Bastiaansen et al., 2019; Bringmann et al.,
2019). It is important that in each use case one provides a rationale for a particular
choice of the used centrality metrics and the assumptions that underly these metrics
(Bringmann et al., 2019).

Subsequently, we can recalculate the shortest paths for each network separately (see
Table 2). In Table 2, we can see that the calculated shortest paths are different in positive

Figure 7. Network with the positive correlations on the left and network with the negative correlations
on the right.
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Figure 8. Centrality scores of each node for networks with positive correlations (on the left) and nega-
tive correlations (on the right).

Table 2. The shortest paths from all nodes to the outcome variable in
networks with positive and negative partial correlations.

Nodes

Shortest path to registration status

Positive partial correlations Negative partial correlations

Help 19.51 11.98
FamTalk1 5.71 50.92
FriendTalk1 7.46 59.03
PosClosure 16.48 20.07
Reciprocity 30.30 –
Waste 7.55 41.26
FamDecision 13.39 –
Risk 49.30 –
DoctorsLife 44.49 –
Ownership 16.13 –
KnowEnough 4.56 36.38
DeformedPerson 52.52 66.78
FriendTalk2 56.17 67.46
ReciprocitySelf 29.80 228.84
Allocation 23.75 24.71
ThinkDeath 54.72 48.90
DeclareDead 47.61 –
ValueOrgans 65.38 –
Intact 60.87 28.59
DoctorsChoice 18.31 –
KnowMore 24.27 12.48
Mutilated 49.58 31.64
TimeEnough 43.99 3.69
FamTalk2 57.75 108.46
Uneasiness 55.98 8.97
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and negative partial correlation matrices. In the positive correlation matrix, one’s belief
that s/he has enough knowledge to make a decision about organ donation has the stron-
gest association with one’s propensity to register as an organ donor. Whereas, similar to
the full network ‘one’s belief that s/he has enough time to register’ has the shortest path to
the outcome of interest in the network with negative partial correlations. Additionally, it
could be interesting to look for structural components in a network that may have inhibit-
ing6 effects.

It is important to note that the structural characteristics in the network discussed so far
do not express much about structural features that are unique to a given behavior. This is
because by including the behavioral variable as a component of a system we remove its
variance when estimating the partial correlations between other components of a
system. In the above-mentioned example of a cyclic structure between one’s feeling of easi-
ness in talking to one’s family members, feeling of easiness in talking to friends, seeing
registration as organ donor as an act of helping others and talking to family members
are adjusted for one’s status of being registered as an organ donor. Therefore, this
cyclic structure is presumably present regardless of one’s registration status. If one is inter-
ested in structural components that are unique to a given behavior, one ought to deploy a
different analytical strategy as we discuss later in this paper.

Behavior as an emergent phenomenon

Another way of conceptualizing the behavior of interest is to view it as emerging from the
system of its determinants. In this framework, specific patterns of related determinants
(e.g. beliefs) give rise to the behavior of interest through spreading activation (Peters &
Crutzen, 2017). These patterns of related determinants can be construed as mental rep-
resentations, which are cognitive structures that reflect accumulated knowledge and
experience on which cognitive processes operate (Gawronski & Payne, 2010). Mental rep-
resentations are often associated with such constructs as concepts, schemas, impressions,
attitudes and stereotypes. Spreading activation models describe how memory is organized
and how learning and retrieval processes take place. Once activated, mental represen-
tations emerge in the focal memory and trigger the activation of other related concepts
through associative pathways. After sufficient activation level is achieved in these
related concepts, they also reach focal memory and emerge in consciousness. This acti-
vation mechanism follows a type of a chain reaction that starts from one node and
spreads to others (Gawronski & Payne, 2010). The activation pattern can also occur in par-
allel (i.e. simultaneous activation). Considering the interrelationships between constructs
in the boundaries of the conceptualizations of spreading activation, we can view constructs
as not causing each other in a literal sense but rather causing/facilitating each other’s
emergence in focal memory. The longer the co-activated concepts remain in the focal
memory the stronger the associations between them become which leads to changes in
the network of long-term memory. These changes in long-term memory are linked to
associative learning and can explain the increased accessibility of the frequently activated
constructs (also referred to as chronically activated concepts).

The mentioned co-activation of concepts may occur not only due to intra-individual
processes (in someone’s brain) but also because of various external factors (e.g. reinforce-
ment by others, environmental cues). To illustrate this, consider the process of
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reinforcement learning that posits that people change their behavior in order to maximize
the associated rewards and minimize the punishments. Such external reinforcements and
punishments are likely to determine the underlying structure of the observed network of
the mental models. For example, these external reinforcing or punitive processes may
determine the cyclic structures we discussed in the previous section.

The conceptualization of behavior as an emergent phenomenon entails an estimation of
two separate networks – one where the behavior of interest is present and one where it is
absent. This way we have the opportunity to look for distinct network features (network
topologies) that define or characterize the behavior of interest. To illustrate this approach,
we split our data based on the registration status (i.e. registered and not registered). After
splitting the data, we simultaneously estimated the corresponding networks by using
recently introduced Fused Graphical Lasso (FGL) method (Costantini et al., 2019) (see
Figure 9).

The estimated networks differ in their overall structure. The network of participants
who are registered as organ donors seem to have larger densely connected components
compared to the group who are not registered as organ donors. The content of the com-
ponents is also different between groups (see Figure 10). By contrasting these two net-
works one can find distinct structural features that may explain the behavior of interest.

In addition to visual inspection, one could conduct a Network Comparison Test (NCT)
to statistically test whether the various structural components are statistically different
between the networks (van Borkulo et al., 2016). The NCT compares two networks
based on network structure, global strength, and edge measures.

The network comparison test indicates that there are no statistically significant differ-
ences in network structure (M7 = 0.53, p = 0.05) and global strength (S8 = 5.82, p = 0.133)
between the networks of people who are registered as organ donors and those who are not.
One should note that the statistical significance of the test statistic of the NCT like other
statistical tests is a function of the sample size and the size of the difference (van Borkulo
et al., 2016). In our case, the sample size was quite small and imbalanced (Nregistered = 93,
Nnot-registered = 273). A priori sample size calculations as well as power analysis is of great
importance before substantive conclusions can be drawn and also receives increased atten-
tion within network analyses (Epskamp & Fried, 2018).

Similar to the steps described in the prior section, one can examine the relative importance
of each node, the overall organization of the network as well as explore reinforcing and inhi-
biting structural components in the networks and draw comparisons between the results.

Ethics statement

The paper uses secondary data of the study by Steenaart, Crutzen, & de Vries, 2018. The
study was approved by the ethics committee of the Faculty of Health, Medicine and Life
Sciences on February 14, 2017 (reference number: FHMLREC/2017/01).

Discussion

The network approach provides a powerful tool and a framework for analyzing psycho-
logical variables in a system. Previous applications of a network approach to psychological
variables lacked a discussion on what the system of psychological variables represents and
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what the interrelationships between the variables mean (Brandt et al., 2018; Dalege et al.,
2016; Hevey, 2018; Rucci et al., 2018; Schmittmann et al., 2013; van Zyl, 2018). In addition,
previous work has largely focused on node level measures thus somewhat neglecting the
examination of the structural components of the overall system. In this paper, we dis-
cussed the system of psychological variables in the realms of theories on spreading acti-
vation in social cognition and illustrated two approaches of incorporating an observable
behavioral variable in a system (see a schematic representation in Figure 11).

Figure 9. Estimated network of registered organ donors (on the left) and non-registered participants
(on the right).
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The first approach, commonly used in prior applications, treats the observable behav-
ioral variable as a constituent in the system. In this approach, we suggest that one can con-
ceptualize the system of psychological variables as mental representations. Furthermore

Figure 10. Centrality plot between the groups.
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we view the interrelationships between psychological variables as causing or inhibiting
each other’s emergence in the focal memory on which cognitive processes operate
(Gawronski & Payne, 2010). Following such conceptualization of the system, one can con-
strue the behavioral variable as a component in a system these mental representations
directly or indirectly stimulate. The first approach permits investigation of learning pro-
cesses and behavioral feedback loops, however, it does not allow exploration of structural
features of a system unique to a behavior of interest (topology). In the second approach,
we view the behavior of interest as emergent phenomenon that appears from a system of
psychological variables. As in the first approach, the interrelations between the variables
are considered in the scope of theories of spreading activation. More specifically, the con-
cepts are viewed as causing each other’s emergence in focal memory through activation
pathways (Gawronski & Payne, 2010). With the second approach, one can search for dis-
tinct patterns of these interlinked concepts that presumably give rise to the behavior of
interest. In this regard, we illustrate the use of cluster analysis (e.g. hierarchical clustering)
and examination of cyclic structures (e.g. triangles, and cliques of k size) for exploring
network topologies. It is important to note that there are different clustering techniques
and the researchers ought to select an algorithm that best fits the specifics of their
inquiry (Kolaczyk & Csárdi, 2014).

In addition to providing a conceptual framework for a system of psychological variables
and the treatment of observable outcome variables, we provided a rationale for separating
networks of positive and negative partial correlations during the calculations of centrality
measures as well as shortest paths to focal variable. We also illustrated that examining the
positive and negative partial correlation networks separately may ease the exploration of
reinforcing and inhibiting structures in a given network particularly in a network with
many variables. However, in order to have a holistic understanding of the potential
impact of intervention one ought to eventually go back to the entire network and see

Figure 11. Two approaches of incorporating observable behavioral variable in a system: (a) behavior as
a constituent in a system and (b) behavior as an emergent phenomenon.
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how a hypothetical intervention would affect the entire system given positive and negative
relationships in the network. One could also examine the potential impact of interventions
by using network simulations (Borsboom & Cramer, 2013). Network simulations may
illustrate how network will change under hypothetical intervention scenarios.

It is worth mentioning that the treatment of the outcome of interest as an emergent
phenomenon comes with a price. The estimation of two separate networks requires
larger sample size in each group (i.e. with and without the behavior of interest). The
sample size is also imperative for statistical comparison tests such as NCT. The importance
of sample size calculations and ways to tackle the problem of accuracy under sampling
variation have recently been introduced for network analyses (Epskamp & Fried, 2018).
Additionally, the analysis of a subgroup of sample may result in Berkson’s bias and one
shall consider additional analytical steps (see De Ron, Fried, & Epskamp, 2019).

Lastly, it is important to acknowledge the limitations related to cross-sectional data and
highlight the importance of using longitudinal network models to incorporate dynamic
processes of behavior change. Cross-sectional network analysis does not allow extensive
topological examination of the system (e.g. feedback loops). Longitudinal network analy-
sis, on the other hand, reveal important structural characteristics of the system and show
dynamic processes involved in the system. The analysis of these dynamic processes in a
longitudinal network may shed light on how relationships between variables and
network structure evolve over time. Such longitudinal models include Temporal Exponen-
tial Random Graph (TERGM) models and Graphical Vector Autoregressive Models
(Graphical VAR) (Epskamp et al., 2018).

In general, empirical network analysis may provide important insights into the systems
of psychological variables and shows promising results in terms of replicability of findings
(Borsboom et al., 2017). Analytical methods in this field are being developed and refined
continuously.

We hope that this paper will provide researchers with guidance on network analysis of
psychological variables. In addition, we anticipate that it will facilitate a discussion on the
conceptualizations of networks of psychological variables, which will guide the analysis
and the interpretation of node level interactions as well as network level structures.

Notes

1. We use a broad definition of health behavior as ‘any activity undertaken for the purpose of
preventing or detecting disease or for improving health and well-being’ (Conner and
Norman, 2005)

2. It is worth noting that the contrast between latent variable approach and network approach is
ingrained in the current academic debate. We do not reflect on this debate because it goes
beyond the scope of this paper, however we refer an interested reader to Bringmann and
Eronen (2018).

3. In this paper, we use the terms system and networks interchangeably.
4. Because of the illustrative nature of this paper, we only used the items pertaining to beliefs,

and registration status regarding organ donation. The non-identifiable data, syntax, and
output of the analyses are available at https://osf.io/4m67q/. These efforts are taken to
acknowledge a recent call for full disclosure to maximize scrutiny, foster accurate replication,
and facilitate future data syntheses (e.g., meta-analyses) (Crutzen, Peters, & Abraham, 2012;
Peters, Abraham, & Crutzen, 2012). We estimated the network following the steps described
in Hevey (2018) and the R code for the present analysis can be found in the supplementary
materials.
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5. Note that before using Dijkstra’s algorithm one ought to invert the partial correlation coeffi-
cients so the strongest connections will be represented with smaller numbers (shorter dis-
tance) and the smallest correlations with larger (longer distance).

6. We did not detect any inhibiting cyclic structures in the network.
7. M is the value of the maximum difference in edge weights of the observed networks.
8. S is the difference in global strength between the networks of the observed data sets.
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