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rs7590268 present on the 2p21 locus was identified to be associated with non-syndromic
cleft lip with or without cleft palate (NSCL/P) in several populations, including the Chinese
Han population, indicating that 2p21 was a susceptibility locus for NSCL/P. However,
previous studies have only identified common single-nucleotide polymorphism (SNP)
within the THADA gene, neglecting the rare variants and other genes in 2p21; thus,
this study was designed to investigate additional variants and novel susceptibility genes in
2p21. A total of 159 NSCL/P patients and 542 controls were recruited in the discovery
phase, whereas 1830 NSCL/P patients and 2,436 controls were recruited in the replication
phase. After targeted region sequencing, we performed association and burden analyses
for the common and rare variants, respectively. Furthermore, RNA-seq, proliferation assay
and cell cycle analysis were performed to clarify the possible function of the candidate gene
ZFP36L2. Association analysis showed that four SNPs were specifically associated with
non-syndromic cleft lip only (NSCLO) and two SNPs were associated with both NSCLO
and NSCL/P. Burden analysis indicated that ZFP36L2 was associated with NSCLO (p =
.0489, OR = 2.41, 95% CI: 0.98–5.90). Moreover, SNPs in the ZFP36L2 targeted gene
JUP were also associated with NSCLO. ZFP36L2 also inhibited cell proliferation and
induced G2 phase arrest in the GMSM-K cell line. Therefore, we proposed that ZFP36L2 is
a novel susceptibility gene of NSCLO in the 2p21 locus, which could lead to NSCLO by
modulating cell proliferation and cycle.

Keywords: 2p21, non-syndromic cleft lip only, ZFP36L2, proliferation, cell cycle

INTRODUCTION

Non-syndromic orofacial clefts (NSOFCs), which usually occur without any other physiological
abnormalities, are one of the most common birth defects. NSOFCs are commonly divided into non-
syndromic cleft lip with or without cleft palate (NSCL/P) and non-syndromic cleft palate only
(NSCPO), which have been historically regarded as etiologically distinct phenotypes, because they
differ in epidemiology and family patterns, as well as in the developmental origin of the lip and palate
(Marazita, 2012). NSCL/P, on the other hand, includes two phenotypes: non-syndromic cleft lip only
(NSCLO) and non-syndromic cleft lip with palate (NSCLP), but they are usually grouped together
and considered as the same defect with different severity (Mitchell et al., 2002); however, some
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researchers have suggested that NSCLP and NSCLO may also be
etiologically distinct, and should be analyzed separately when
possible (Harville et al., 2005; Sivertsen et al., 2008; Grosen et al.,
2010).

Individuals with NSCL/P are usually exposed to a series of
problems early in life, such as difficulties in feeding and ear
infections, which impose a heavy burden on both the affected
families and society. Additionally, NSCL/P impact the patients’
quality of life throughout their life span, although surgical repair,
speech therapy, dental care, and psychological support are
available (Wehby and Cassell, 2010). Therefore, it is of great
significance to clarify the pathogenesis of NSCL/P. Currently,
there is a consensus that genes, environmental factors, and their
complicated interactions contribute to the occurrence of NSCL/P
(Machado et al., 2016).

In the past few decades, several environmental factors have
been identified to be associated with NSCL/P, including
smoking, drinking, drug consumption (such as antiepileptic
agents), and lack of dietary folic acid during early pregnancy
(Honein et al., 2007; Stott-Miller et al., 2010). Although a variety
of methods have been used to identify its susceptibility gene,
progress toward its identification has been slow. Genome-wide
association studies (GWASs) have been an effective tool in
identifying genome variants associated with NSCL/P, aiding
identification of over 40 susceptibility loci in the past few years
(Birnbaum et al., 2009; Mangold et al., 2010; Ludwig et al., 2012;
Sun et al., 2015).

Based on the first meta-analyses of NSCL/P, which combined
the data from two large GWAS, including 666 European trios and
795 Asian trios, 2p21 was proposed to be susceptibility region for
NSCL/P for the first time (Ludwig et al., 2012). Subsequent
studies conducted in different populations further proved that
variants in 2p21 locus were associated with NSCL/P; among
them, rs7590268 was identified several times in the European
population (Beaty et al., 2013; Moreno Uribe et al., 2017).
Replication studies showed that rs7590268 also had a strong
signal in the southern Chinese population (Pan et al., 2013).

These findings implied that 2p21, where rs7590268 was
located, was a susceptibility locus for NSCL/P. However,
genotyping arrays used in GWAS only capture 5% of the total
SNPs occurring genome wide, potentially missing causal SNPs
that are in linkage disequilibrium with SNPs captured in GWAS;
and, GWAS neglects rare variants, defined here as minor allele
frequency (MAF) < 0.01, which have a larger effect than common
variants and could partially compensate for the missing
heritability (Manolio et al., 2009; Tada et al., 2016; Sazonovs
and Barrett, 2018). Additionally, the reported SNPs were mainly
located in the THADA gene. Although THADA did not involve in
craniofacial development according to the currently published
literature, variations within it have been associated with many
diseases, which may be attributable to its large size (370 kb), the
effect of regulatory elements, or the other adjacent genes
(Drieschner et al., 2007; Ludwig et al., 2012). Notably, a recent
study proposed another gene—ZFP36L2—adjacent to THADA,
as the lead risk NSCL/P gene in 2p21 for the first time (Lin-Shiao
et al., 2019); however, neither common nor rare variants in the
ZFP36L2 gene have been identified.

ZFP36L2 belongs to the zinc finger protein ZFP36 family and
is classified as a Cys–Cys–Cys–His (CCCH)-type zinc finger
tandem protein (Ramos et al., 2004; Stumpo et al., 2009). It is
well-known as an RNA-binding protein, which destabilizes target
mRNA and, thus, influences the targeted gene expression by
binding to AU-rich elements (ARE) in the 3′ untranslated region
(UTR) of labile mRNAs(Lai et al., 2000). The function of specific
ARE-binding proteins could be modulated by post-translational
epigenetic modifications including methylation and
phosphorylation (Galloway et al., 2016). When stimulated by
lipopolysaccharide, Zfp36l2 phosphorylation influences the
production of inflammatory mediators by regulating Mitogen-
activated protein kinase (Mkp)-1 mRNA expression (K. T. Wang
et al., 2015). Additionally, ZFP36L2 also participates in the
epigenetic modification process. In the absence of Zfp36l2,
oocytes failed to accumulate histone methylation at H3K4 and
H3K9, leading to transcriptional silence (Dumdie et al., 2018).
Furthermore, Zfp36l2 could act as a safeguard against
chromosomal instability and post-transcription replication
stress during thymopoiesis (Vogel et al, 2016).

In the present study, we aimed to perform a comprehensive
screening of susceptibility variants (both common and rare) in
the 2p21 locus by targeted sequencing, followed by interpretation
via association analysis, burden analysis, and a series of functional
analyses (the study design is shown in Figure 1).

MATERIAL AND METHODS

Subject Characterization and Ethics
Statement
In this study, we performed a two-phase case-control analysis,
including an initial discovery phase and a subsequent replication
phase. In the discovery phase, 159 unrelated patients with NSCL/
P (80 NSCLP and 79 NSCLO patients) were selected from the
Cleft Surgery Department of the West China College of
Stomatology, Sichuan University. All of them self-identified as
Han Chinese, and they did not have any other congenital
anomalies. The whole-genome sequencing data of 542 Han
Chinese normal controls (sequenced using Illumina Hiseq
platform with an average coverage of 39.89) included in this
phase were obtained from the Novogene internal database (http://
www.novogene.com/).

The genotyping data of 1,626 patients with NSCL/P (including
579 patients with NSCLP, 1,047 patients with NSCLO) and 2,255
normal controls from two GWAS (Sun et al., 2015; Huang et al.,
2019), as well as another 204 patients with NSCLO and 181
normal controls selected from the Cleft Surgery Department of
West China College of Stomatology, Sichuan University, were
recruited in the replication phase for inclusion in the study
(Supplementary Table S1).

Human subject study protocols were approved by the Hospital
Ethics Committee of West China Hospital of Stomatology,
Sichuan University; these protocols conformed to the
Strengthening the Reporting of Observational Studies in
Epidemiology guidelines. Written informed consent was
obtained from recruited individuals of consenting age and
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from parents on behalf of their participating children
(WCHSIRB-D-2016-012R1).

DNA Extraction and Quality Control
Peripheral blood samples were collected from all the participants
and their parents, from which DNA was extracted using the
salting out method and then stored in Tris-EDTA buffer. The
quality of the isolated genomic DNA was verified by
electrophoresis on 1% agarose gel to exclude the possibility of
DNA degradation or RNA/protein contamination. Furthermore,
the DNA purity and concentration were detected using a
NanoPhotometer® spectrophotometer (IMPLEN, CA,
United States), with good quality output of ratio of optical
density at 260 nm to the optical density at 280 nm (OD260/
OD280) values ranging from 1.8 to 2.0.

Selection of Targeted Region and
Sequencing
According to the linkage disequilibrium (LD) structure shown by
the CHB/JPT HapMap, the targeted region for deep sequencing
was around rs7590268, based on ranges from chr2:43,417,119 to
43,838,705 (GRCh37/hg19), including exons, introns, and the
intergenic region (Supplementary Figure S1). Sequencing was
efficiently carried out using 1.0 μg genomic DNA in an Agilent
liquid capture system (Agilent SureSelectXT Custom Kit)
according to the manufacturer’s protocol. The DNA library
was sequenced on Illumina Hiseq for paired-end 150 bp reads.

Bioinformatics and Statistical Analysis
After quality control processing, including filtering of adapter-
related reads, reads containing N, and low-quality reads, the clean
sequence data were mapped to the GRCh37/hg19 human genome
using Burrows-Wheeler Aligner (BWA) software (Li and Durbin,
2009). Then, SNVs and indels were identified by Sequence
Alignment Map (SAM tools) (Li et al., 2009) and merged by
VCF (Variant Call Format) tools (version 0.1.13) (Danecek et al.,
2011). Later, variants were annotated by ANNOVAR (version
201707) (K. Wang et al., 2010), followed by function prediction

via SIFT (Ng and Henikoff, 2003), v1.3 CADD (Rentzsch et al.,
2018), Polyphen-2 (http://genetics.bwh.harvard.edu/pph2/)
(Adzhubei et al., 2013) and Mutation Taster (http://www.
mutationtaster.org/) (Schwarz et al., 2010).

Variants with call rates >95% were divided into two groups:
common variants (MAF ≥0.01) and rare variants (MAF <0.01).
Furthermore, we performed the Hardy-Weinberg equilibrium
(HWE) test at each SNP. SNPs which deviated from HWE (p <
.000001) were removed from subsequent association analysis,
which was conducted by PLINK (version 1.9) (Purcell et al.,
2007). The p value in the replication phase was adjusted for
multiple corrections. Using the R package SKAT, gene-based
burden analysis was performed on rare variants in accordance
with the following criteria: 1)MAF <0.01 in CHB and CHS (CHB,
Han Chinese in Beijing; CHS, Southern Han Chinese) from the
1,000 Genome database and Novogene internal database (http://
www.novogene.com/); 2) MAF <0.001 in the Genome
Aggregation Database (GnomAD); and 3) at least two
prediction tools indicate the rare variation to be damaging
(PolyPhen-2, SIFT, MutationTaster, CADD), the thresholds for
damaging in each tool were set as follows: SIFT scores <0.05,
Polyphen2_HDIV scores ≥0.957, Mutation Taster indicates
“Disease causing”, CADD scores >10. Fisher’s exact test or
Pearson chi-square test was performed between the cases and
controls.

Cell Culture, Transient Knockdown, and
Overexpression
Considering the important role of oral epithelium in facial
morphogenesis, as well as its known association with NSCL/P,
a human oral epithelial cell line (GMSM-K, kindly gifted by Dr.
Zhang from Peking University) was selected for functional
analysis in our study (H. Liu et al., 2020; H. Liu et al., 2017).
GMSM-K was cultured in Dulbecco’s modified Eagle’s medium
supplemented with 10% fetal bovine serum (Gibco, United States)
and 1% penicillin-streptomycin solution (Gibco, United States).

Small interfering RNA (siRNA) targeting ZFP36L2
(NM_006887.4) (siRNA-ZFP36L2: 5′-GCCUUCUACGAU

FIGURE 1 | Details of the study design.
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GUCGACUTT-3′) and negative control siRNA (siRNA-negative
control: 5′-UUCUCCGAACGUGUCACGUTT-3′) were both
designed and synthesized by GenePharma (Shanghai, China).
Moreover, ZFP36L2 was cloned into the pcDNA3.1
overexpression plasmid (YouBio, China) (Supplementary
Figure S2), and the pcDNA3.1 plasmid without additional
sequence served as a negative control. Both siRNAs and
plasmids were transfected into GMSM-K using the SF Cell
Line 4D X Kit S (Lonza, Germany) according to the
manufacturer’s instructions.

RNA-Seq, Differential Expression Analysis
and Gene Ontology Analysis
GMSM-K cells were transfected with siRNA-negative control or
siRNAs- ZFP36L2 for 48 h. Then, the cells were collected and
RNA-seq was performed using the BGISEQ-500 platform (BGI,
China). Two biological replicates were included within each
group. Differential gene expression analysis was performed
using DEseq2 method (|log2| ≥ 0.8, Q ≤ 0.05), and GO
enrichment analysis was performed on DEGs using DAVID
6.8 (Huang da et al., 2009).

Quantitative Real-Time PCR Analysis
RNA was extracted using a Tissue/Cell RNA extraction Kit
(Biobase, China) 48 h after transfection, and was then reverse-
transcribed to cDNA using PrimeScript™ RT reagent Kit (Takara
Biotechnology, Dalian, China). RT-qPCR was performed using
TB Green® Premix Ex Taq™ (Takara Biotechnology, Dalian,
China) on a LightCycler 480 System (Roche, Switzerland). All
experiments were performed in triplicate at least, each with three
technical replicates. The results were calculated using equation
2−ΔΔCt. The primers used are shown in Supplementary Table S2.

Proliferation Assay
Upon transfection, GMSM-K cells were seeded into 96-well plates
at a density of 2 × 104 cells/100 μl. After 24, 48, and 72 h, 10 μl of
Cell Counting Kit-8 (CCK-8) (APExBIO, United States) was added
to each well. Then, 3 h later, OD of each well was measured at a
450 nm wavelength. Measurements at each time point were
replicated three times having five replicates each. Results are
shown as mean ± SEM. Statistical analysis was performed using
the unpaired two-tailed t-test in GraphPad Prism eight software.

Cell Cycle Analysis
Approximately 2 × 105 transfected GMSM-K cells were plated in
6-well plates. After 48 h, cells were collected for further cell cycle
analysis, in which cells were fixed in 70% ethanol at 4°C overnight,
washed twice with cold phosphate buffer saline, and re-suspended
in 0.5 ml PI staining reagent (25 μl propidium iodide (20X), 10 μl
RNase A (50X), and 0.5 ml sodium citrate buffer) (Cell Cycle and
Apoptosis Analysis Kit, Beyotime, China). The cells were then
incubated in the dark at 37°C for 0.5 h. Samples were detected
using an Attune NxT flow cytometer (Thermo Fisher,
United States). FCS files were downloaded and analyzed using
FlowJo software (version 10.4). For each group, results are shown
as the mean ± SEM of three replicates. Statistical analysis was

performed using the unpaired two-tailed t-test in GraphPad
Prism eight software.

RESULTS

In the discovery phase, from the 159 NSCL/P cases, we identified
a total of 2,352 Single-nucleotide variants (SNVs) and 552
insertion/deletions (indels), including variants located in
exons, splice sites, introns, UTRs, and intergenic regions
(Supplementary Figure S3). For common and rare variants
that met the inclusion criteria, we performed case-control
association analysis and burden analysis among the 159
NSCL/P cases and 542 normal controls, respectively.

SNPs Within 2p21 Locus Were Significantly
Associated With NSCLO
A total of 312 common SNPs (MAF ≥0.01) that passed the
threshold of HWE (p > .000001) were recruited for association
analysis. When compared with the p value 1.60E-04, which was
adjusted for multiple corrections (p = .05/312), only rs201795193
(p = 2.12E-08, OR = 0.33, 95% CI: 0.21–0.52) was significantly
associated with NSCL/P.

Seven SNPs (rs201795193, rs12990267, rs199721109,
rs74343467, rs13002812, rs6544660, and rs12478601) with p
value less than .05 were replicated in larger cohorts (1,626
patients with NSCL/P and 2,255 normal controls) to test their
associations with NSCL/P, NSCLP, and NSCLO (Table1,
Supplementary Table S3). Six out of seven SNPs were
significantly associated with NSCLO after multiple corrections
(p = .05/7 = 7.14E-03). Among these, four SNPs, including
rs201795193 (p = 1.62E-03, OR = 0.78, 95% CI: 0.67–0.91),
rs12990267 (p = 5.09E-04, OR = 0.76, 95% CI: 0.65–0.89),
rs199721109 (p = 5.77E-04, OR = 0.76, 95% CI: 0.65–0.89), and
rs74343467 (p = 1.86E-03, OR = 0.79, 95% CI: 0.69–0.92) were
specifically associated with NSCLO; the other two SNPs, rs6544660
and rs12478601, were associated with both NSCLO (rs6544660: p =
5.21E-04, OR = 0.77, 95% CI: 0.67–0.89; rs12478601: p = 7.47E-04,
OR = 0.78, 95% CI: 0.67–0.90) and NSCL/P (rs6544660: p = 2.78E-
03, OR = 0.84, 95% CI: 0.74–0.94; rs12478601: p = 6.89E-03, OR =
0.85, 95% CI: 0.76–0.96), where the significant signal of NSCL/P
might be driven by theNSCLO since both SNPs show lower p values
in NSCLO than that in NSCL/P (Table 1). All the six significantly
associated SNPs are novel, and we proposed 2p21 as a susceptibility
locus for NSCLO in the Han Chinese population for the first time.

ZFP36L2 Might be the Susceptibility Gene
for NSCLO Within 2p21 Locus
Three rare variants of THADA and four rare variants of ZFP36L2
were enrolled in the burden analysis, details about these variants
were shown in the Supplementary Table S4. The collective results
indicated that rare variants within ZFP36L2 at 2p21 were
significantly associated with increased risk for NSCL/P (p =
.003, OR = 17.10, 95% CI: 1.99–146.98), NSCLP (p = .046, OR
= 13.5, 95% CI: 1.22–150.38), and NSCLO (p = .0075, OR = 20.73,
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TABLE 1 | Allelic association analysis for the SNPs in 2p21 locus.

SNP Position
(hg19)

Discovery phasea Replication phaseb

Alt/Ref
allele

MAF OR (95%CI) p-value Minor/Major
allele

MAF NSCL/P NSCLP NSCLO

NSCL/P Control NSCL/P NSCLP NSCLO Control OR (95%CI) p-value OR (95%CI) p-value OR (95%CI) p-value

rs201795193 T/C 0.05 0.16 0.26 2.12E-08 T/C 0.18 0.19 0.16 0.24 0.86 1.50E-02 0.93 4.12E-01 0.78 1.62E-03
chr2:43771991 (0.15, 0.45) (0.75, 0.97) (0.78, 1.11) (0.67, 0.91)
rs12990267 G/C 0.01 0.04 0.24 6.18E-03 G/C 0.19 0.20 0.16 0.24 0.84 7.22E-03 0.93 3.76E-01 0.76 5.09E-04
chr2:43770432 (0.07, 0.77) (0.74, 0.95) (0.78, 1.10) (0.65, 0.89)
rs199721109 G/A 0.16 0.22 0.68 1.90E-02 G/A 0.19 0.20 0.16 0.24 0.84 7.52E-03 0.92 3.71E-01 0.76 5.77E-04
chr2:43772391 (0.49, 0.94) (0.75, 0.96) (0.78, 1.10) (0.65, 0.89)
rs74343467 T/C 0.19 0.25 0.69 2.01E-02 T/C 0.25 0.25 0.23 0.28 0.86 1.52E-02 0.93 3.81E-01 0.79 1.86E-03
chr2:43772121 (0.50, 0.94) (0.77, 0.97) (0.79, 1.10) (0.69, 0.92)
rs13002812 A/G 0.24 0.29 1.38 2.86E-02 G/A 0.22 0.21 0.24 0.32 0.89 4.34E-02 0.89 1.39E-01 0.89 1.10E-01
chr2:43446616 (1.03, 1.85) (0.79, 1.00) (0.75, 1.04) (0.77, 1.02)
rs6544660 T/C 0.23 0.29 0.72 3.25E-02 T/C 0.25 0.26 0.23 0.29 0.84 2.78E-03 0.89 1.68E-01 0.77 5.21E-04
chr2:43688496 (0.54, 0.97) (0.74, 0.94) (0.76, 1.05) (0.67, 0.89)
rs12478601 T/C 0.23 0.29 0.74 4.51E-02 T/C 0.25 0.25 0.23 0.29 0.85 6.89E-03 0.91 2.72E-01 0.78 7.47E-04
chr2:43721508 (0.55, 0.99) (0.76, 0.96) (0.77, 1.08) (0.67, 0.90)

SNP, single nucleotide polymorphism; Alt, alternate allele; Ref, reference allele; MAF, minor allele frequency; NSCL/P, non-syndromic cleft lip with or without cleft palate; NSCLP, non-syndromic cleft lip with cleft palate; NSCLO, non-
syndromic cleft lip only; OR, odds ratio; 95%CI, 95% confidence level.
aIn the discovery phase, association analysis was performed according to Alt allele.
bIn the replication phase, association analysis was performed according to minor allele.
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95% CI: 2.14–200.53) (Table 2). Interestingly, compared with
NSCL/P and NSCLP, ZFP36L2 conveyed the highest risk to
NSCLO with a lower p value and larger OR value in our study.
However, rare variants within the THADA gene did not show a
statistically significant association with NSCL/P or NSCLP.

Replication of the burden analysis was conducted by
sequencing ZFP36L2 exons among 204 patients with NSCLO
and 181 normal controls. The rare variants were filtered using the
same criterion enrolled into the burden analysis, and the result
indicated that ZFP36L2 was also associated with NSCLO (p =

TABLE 2 | Burden analysis of rare variants in 2p21 locus.

Gene Cleft type Case Control p-value OR (95%CI)

Alt Ref Alt Ref

Discovery phase ZFP36L2 NSCL/P 5 313 1 1,071 .0030 17.10 (1.99–146.98)
NSCLP 2 158 1 1,071 .0460 13.50 (1.22–150.38)
NSCLO 3 155 1 1,071 .0075 20.73 (2.14–200.53)

THADA NSCL/P 3 315 19 1,065 .4400 0.53 (0.16–1.82)
NSCLP 3 157 19 1,065 .7600 1.07 (0.31–3.66)

Replication phase ZFP36L2 NSCLO 18 186 7 174 .0489 2.41 (0.98–5.90)

NSCL/P, non-syndromic cleft lip with or without cleft palate (NSCLO and NSCLP); NSCLP, non-syndromic cleft lip with cleft palate; NSCLO, non-syndromic cleft lip only; Alt, alternate
allele; Ref, reference allele; OR, odds ratio; 95%CI: 95% confidence interval.

FIGURE 2 | (A) Volcano plot for differential gene expression. (B) GO biological process terms enriched in DEGs. A total of 67 GO terms were significantly enriched
(p < .05), the figure shows the top 30 GO terms with the most genes. (C) Fold change (Log2 FC) of genes among “Apoptotic signaling pathway,” “regulation of cell
proliferation” and “positive regulation of cell migration” biological processes. (D) Venn diagram showing number of genes associated with the terms “apoptotic signaling
pathway,” “regulation of cell proliferation” and “positive regulation of cell migration.” The red font is indicative of genes where the SNPs associated with NSCLO or
NSCPO were located.
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.0489, OR = 2.41, 95% CI: 0.98–5.90). Based on these findings, we
further verified that the 2p21 locus was a risk factor for NSCLO
and that the ZFP36L2 gene in 2p21 is a susceptibility gene for
NSCLO in the Han Chinese population.

ZFP36L2 Influences Biological Processes in
the Etiology of NSCLO
To investigate the potential roles of ZFP36L2 in the etiology of
NSCLO, we performed RNA sequencing on human oral epithelial
cell line (GMSM-K) with or without ZFP36L2 knockdown. Two
biological replicates were included for each group.

Differential gene expression analysis identified 327 differentially
expressed genes (DEGs) in total, among which 270 genes were
upregulated and 57 genes were downregulated when ZFP36L2 was
knocked down (Figure 2A). GO analysis showed that a series of
biological processes were enriched, including terms of “Apoptotic
signaling pathway,” “Regulation of cell proliferation” and “Positive
regulation of cell migration,” which were associated with lip
development (Jiang et al., 2006) (Figure 2B); genes within the
two former terms relating to apoptotic and proliferation were
totally upregulated, whereas genes within term of “Positive
regulation of cell migration” were only partially upregulated
(Figure 2C). In addition, we observed that genes involved with
the term “regulation of cell proliferation” overlapped with genes
involved with the terms “apoptotic signaling pathway” or “positive
regulation of cell migration” (Figure 2D).

On the other hand, it is known that the development of the
upper lip in mice begins at E10.5, where the medial and lateral
nasal processes fuse; later, the maxillary and medial nasal
processes grow rapidly and fuse together, marking the
completion of lip development (Jiang et al., 2006). To further
explore the role of ZFP36L2 in NSCLO etiology, we searched the
literature and found that the Zfp36l2 gene is expressed in both the
maxillary and lateral nasal processes in E10.5 mouse embryos
(Supplementary Table S5) (Brunskill et al., 2014). When
referring to our previous RNA-seq data of six Chinese Han
patients with NSCLO, we noticed that, in the lip tissue,
ZFP36L2 was expressed even higher than IRF6, a well-known
susceptibility gene for NSCL/P (ZFP36L2-Average FPKM: 227.9;
IRF6-Average FPKM:147.5) (Supplementary Figure S4).

ZFP36L2 Target Gene is Associated With
NSCLO
Next, from two GWAS databases (Sun et al., 2015; Huang et al.,
2019), we retrieved the genotyping data of SNPs at 19 genes
within the terms “regulation of cell proliferation” (NGFR, TES,
JUP, PLAU, FAS, PTK2B, TNFRSF14, SAT1), “apoptotic signaling
pathway” (MLLT11, NGFR, IFI27, FAS, TNFRSF14, TLR3) and
“positive regulation of cell migration” (SEMA5A, FGF1, CD274,
CORO1A, GPNMB, SEMA3C, CCL5, PLAU, TIAM1, F2RL1,
PTK2B, TNFAIP6) that were influenced by ZFP36L2. A total
of 4,682 SNPs were recruited; we obtained the most SNPs in the
SEMA5A gene, followed by TIAM1, SEMA3C, PTK2B, and FGF1
genes (Figure 3A). Then, we performed association analysis on
these SNPs. When compared to the stringent significance

threshold of 1.07E-05 derived from multiple corrections (p =
.05/4,682), two SNPs within the JUP gene were significantly
associated with NSCLO: rs4479305 (p = 7.42E-07, OR = 0.72,
95% CI: 0.63–0.82) and rs9913846 (p = 2.59E-06, OR = 0.73, 95%
CI: 0.64–0.83) (Supplementary Table S6). Meanwhile, rs56026457
within the TIAM1 gene was significantly associated with NSCPO
(p = 9.68E-07, OR = 0.70, 95% CI: 0.60–0.80), and none were
identified to be associated with NSCL/P or NSCLP (Figure 3B).

Furthermore, we noticed that Jup was expressed in the medial
nasal processes in E10.5 mouse embryos (Supplementary Table
S5), whereas Tiam1 was not. In lip tissues from individuals with
NSCLO, JUP showed a significantly higher expression level than
TIAM1 (Supplementary Figure S4). These results indicated that
ZFP36L2might also influence genes participate in lip development.

ZFP36L2Gene Inhibits Cell Proliferation and
Induces G2 Phase Arrest
Since the JUP gene is specifically related to the term “regulation of
cell proliferation” (Figure 2D), we investigated proliferation after
knockdown or overexpression of ZFP36L2 in the GMSM-K cell line.
RT-qPCR results indicated that the transfection of pcDNA3.1-
ZFP36L2 plasmid and siRNA-ZFP36L2 could effectively
overexpress or inhibit the expression level of ZFP36L2 gene
(Figure 4A). Proliferation assay showed that knockdown of
ZFP36L2 obviously facilitated cell proliferation; however, cell
proliferation was significantly inhibited following ZFP36L2
overexpression (Figure 4B). To clarify this further, cell cycle was
also investigated. When ZFP36L2 was knocked down, cells in G2
phase decreased, accompanied by a significantly increased number
of cells in S phase. Conversely, we observed a significant G2 phase
arrest accompanied by a reduced number of cells in the G1 phase in
ZFP36L2 overexpressing cells (Figure 4C). These findings indicated
that the ZFP36L2 gene could lead to abnormal lip development by
affecting both cell proliferation and the cell cycle.

DISCUSSION

It is known that NSCL/P has a far more complex genetic
architecture than we originally thought, with a variety of genetic
risk factors and environmental exposures contributing (Dixon
et al., 2011; Boyle et al., 2017). With the advent of the GWAS
era, more and more susceptibility genes/loci for NSCL/P have been
identified (Birnbaum et al., 2009; Beaty et al., 2010; Mangold et al.,
2010; Ludwig et al., 2012; Sun et al., 2015), however, GWASs have
only explained a small portion of phenotypic variance since
GWAS’ rationale is based on the hypothesis “common disease,
common variants,” (Manolio et al., 2009) which results in their lack
of ability to detect rare variants. Targeted sequencing, which can
detect both common and rare variants, greatly solves the above
problems of GWAS. At the same time, findings from GWAS
provide a reasonable hypothesis for the targeted region. Therefore,
in the present study, we selected the target region of the haplotype
around rs7590268 for sequencing in the hope of gaining novel
insights into the 2p21 locus. Notably, our results indicated that
ZFP36L2 in 2p21 locus is a susceptibility gene for NSCLO, whereas

Frontiers in Genetics | www.frontiersin.org February 2022 | Volume 13 | Article 8022297

Li et al. NSCLO Novel Susceptibility Gene ZFP36L2

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


the previous study only identified ZFP36L2 and SIX2 in 2p21 locus
to be associated with NSCL/P and NSCPO, respectively (Lin-Shiao
et al., 2019; Sweat et al., 2020).

Our evidence can be summarized into two parts, the first being
bioinformatics-related. Association analysis based on a large cohort
and stringent significance threshold showed that most SNPs in 2p21
locus were associated with NSCLO, from which we inferred that 2p21
was a susceptibility locus for NSCLO.We annotated the six statistically
significant SNPs using HaploReg v4.1 (https://pubs.broadinstitute.org/
mammals/haploreg/haploreg.php) (Supplementary Table S7), finding

that different alleles of these six SNPs resulted in altered motifs, except
for rs12990267. Among these, the T allele of rs201795193 altered most
motifs, including Pax7, which is critical for myogenic satellite cell
specification (Seale et al., 2000). The T allele of rs74343467 altered the
motif of E2F, a family of transcription factors important for life and
death due to their involvement in various biological processes such as
DNA replication, cell differentiation and proliferation (Helin, 1998;
Polager and Ginsberg, 2008). Furthermore, rs6544660 and rs12478601
were shown to be present in regulatory elements among epidermal
keratinocyte primary cells and influencedZFP36L2 expression levels in

FIGURE 3 | (A) Number of SNP within genes associated with the terms “apoptotic signaling pathway,” “regulation of cell proliferation,” and “positive regulation of
cell migration; ” (B) Recruited SNPs with p value pass .05. Log p value with base 10 are shown in the figure. The 5.42E-05 significance threshold in the replication phase
was adjusted by multiple correction.
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whole blood and naive monocytes, although all six SNPs were in the
intronic region of the THADA gene. These results suggested that these
SNPsmight be functional. Burden analysis specified our inference, that
is, the ZFP36L2 gene in 2p21 locus was more significantly associated
with NSCLO. ZFP36L2 conferred the highest OR of 20.73, and this
association was also statistically significant in subsequent validation
(p = .0489, OR = 2.41, 95% CI: .98–5.90).

Functional analysis of the ZFP36L2 was carried out to further
determine its association with NSCLO. We found that Zfp36l2 gene
was expressed in the facial processes related to mouse lip development
(Supplementary Table S5). In human lip tissue, we also observed that
ZFP36L2 gene expression level was even higher than IRF6, for which
the etiology ofNSCLOwas quite clear since a relatively high expression
level of IRF6 would lead to the occurrence of NSCLO (Huang et al.,
2019). Additionally, through RNA-seq, we observed that ZFP36L2
affected three biological processes related to proliferation, migration,
and apoptosis, which are critical in lip development (Jiang et al., 2006).
In this section, we noticed that DEGs appeared to be most enriched in
immune-related biological processes, this may be due to the
involvement of ZFP36L2 in thymic development and T
lymphoblastic leukemia (Hodson et al., 2010). Lastly, we conducted

an association analysis of the SNPswithin genes involved in these three
biological processes and NSOFC, finding that two of the three
statistically significant SNPs were specifically associated with
NSCLO. Considering all the findings, we rationally proposed that
ZFP36L2 in the 2p21 locus is a susceptibility gene for NSCLO.

We attempted to address how the ZFP36L2 gene leads to
NSCLO. We noticed that four genes (Ngfr, Tes, Jup, and Sat1)
associated with the term “regulation of cell proliferation” were
expressed in the medial nasal, lateral nasal or maxillary processes.
However, only two genes (Mllt11 and Ngfr genes) associated with
the term “apoptotic signaling pathway” and three genes (Sema5a,
Coro1a and Tnfaip6 gene) associated with the term “positive
regulation of cell migration” were expressed in the three upper
lip-related processes (Supplementary Table S5) (Brunskill et al.,
2014). Furthermore, the two SNPs associated with NSCLO were
both occurring within the proliferation-related gene JUP, which
was influenced by ZFP36L2 (Figure 2D and Figure 3B).
Therefore, we speculated that ZFP36L2 might lead to NSCLO
by influencing cell proliferation, and our study proved that
ZFP36L2 negatively regulates cell proliferation and induces cell
arrest in the G2 phase of GMSM-K. Our results were consistent

FIGURE 4 | (A) RT-qPCR analysis of the expression level of ZFP36L2 after knockdown or overexpression in the GMSM-K cell line. (B) Cell proliferation after
knockdown or overexpression of ZFP36L2 in the GMSM-K cell line. (C) Percentage of cells in each cell cycle after knockdown or overexpression of ZFP36L2 in the
GMSM-K cell line. Data is shown as the mean ± SEM. *p < .05; **p < .01; ***p < .001.
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with those of previous studies, that is, ZFP36L2 inhibited cell
proliferation through a cyclin D-dependent and p53-independent
pathway (J. Liu et al., 2018; Suk et al., 2018). As for the effect of
ZFP36L2 on the cell cycle, the results are slightly varied. Fat-
Moon Suk et al. observed that ZFP36L2 led to G1 phase arrest and
thus resulted in a decreased S phase (Suk et al., 2018), whereas
several other studies have shown that ZFP36L2 might be a key
protein in S phase progression control in the case of genome
instability (Galloway et al., 2016; Vogel et al., 2016; Noguchi et al.,
2018). In our study, we noticed that as long as the cells in G2 phase
were influenced, the subsequent G1 or S phases would be affected
more or less. Thus, it is certain that ZFP36L2 affects the cell cycle,
but its effects may be slightly modified in different cell types.

In summary, our study comprehensively illustrated the important
role of the ZFP36L2 gene in the etiology of NSCLO and proposed that
ZFP36L2 is a novel susceptibility gene for NSCLO among the Han
Chinese population. Further research is required to address limitations
of this study. All samples recruited in our study were from the Han
Chinese population; due to the genetic heterogeneity among different
populations, further verification should be conducted in other
populations. Additionally, to clarify the role of ZFP36L2 in NSCLO
intuitively, follow-up experiments in animal models are necessary.
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