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ABSTRACT

Objective. Lung adenocarcinoma poses a major global health challenge and is a
leading cause of cancer-related deaths worldwide. This study is a review of three
molecular biomarkers screened by machine learning that are not only important in
the occurrence and progression of lung adenocarcinoma but also have the potential to
serve as biomarkers for clinical diagnosis, prognosis evaluation and treatment guidance.
Methods. Differentially expressed genes (DEGs) were identified using comprehensive
GSE1987 and GSE18842 gene expression databases. A comprehensive bioinformatics
analysis of these DEGs was conducted to explore enriched functions and pathways,
relative expression levels, and interaction networks. Random Forest and LASSO regres-
sion analysis techniques were used to identify the three most significant target genes.
The TCGA database and quantitative polymerase chain reaction (qQPCR) experiments
were used to verify the expression levels and receiver operating characteristic (ROC)
curves of these three target genes. Furthermore, immune invasiveness, pan-cancer, and
mRNA-miRNA interaction network analyses were performed.

Results. Eighty-nine genes showed increased expression and 190 genes showed
decreased expression. Notably, the upregulated DEGs were predominantly associated
with organelle fission and nuclear division, whereas the downregulated DEGs were
mainly associated with genitourinary system development and cell-substrate adhesion.
The construction of the DEG protein-protein interaction network revealed 32 and 19
hub genes with the highest moderate values among the upregulated and downregulated
genes, respectively. Using random forest and LASSO regression analyses, the hub genes
were employed to identify three most significant target genes. TCGA database and qPCR
experiments were used to verify the expression levels and ROC curves of these three
target genes, and immunoinvasive analysis, pan-cancer analysis and mRNA-miRNA
interaction network analysis were performed.

Conclusion. Three target genes identified by machine learning: BUB1B, CENPF, and
PLK1 play key roles in LUAD development of lung adenocarcinoma.
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INTRODUCTION

Lung cancer remains the primary cause of cancer-related deaths globally, and lung
adenocarcinoma, the most prevalent type, constitutes 40% of deaths (Cao et al., 2021),
with a continuous increase for over 50 years, indicating a significant upward trend since
the 1970s (Zheng et al., 2016). In 2020, China had the largest number of lung cancer cases
and mortality (37.0% and 39.8%, respectively), followed by the United States (10.3% of
cases and 7.7% of mortality) and Japan (6.3% of cases and 4.6% of mortality) (Li et al.,
2023b; He et al., 2024).

Amid the ongoing progress in molecular biology and immunology, tumor markers are
playing an increasingly pivotal role in tumor screening, diagnosis, prognosis, and evaluation
of efficacy and follow-up. Various tumor markers such as embryonic antigens, glycoprotein
antigens, keratin antigens, and enzyme antigens have been extensively reported; however,
a substantial number await clinical verification (Song et al., 2022; Cho et al., 2016). These
include IFNGR1, TNFRSF19L, GHR, SLAMF8, FR-beta, and integrin alpha 5 (Wu et al.,
2019; Dotta et al., 2020). The advent of medical informatics has introduced novel avenues
for resolving clinical challenges and providing innovative methods for tumor diagnosis
and treatment (Rojas-Rodriguez, Schmidt & Canisius, 2024).

The Gene Expression Comprehensive Database (GEO), a publicly accessible repository,
archives and distributes microarrays, enabling bioinformatics analysis at specific gene
levels across various cancer types (Wang et al., 2022a). Although widely used for mining
differentially expressed genes (DEGs), detecting relevant molecular signals and potential
associations, and studying gene regulatory networks, the use of GEO database is challenging
due to the high cost of individual experiments and limitations in tissue samples. To address
these issues, we employed a comprehensive analysis of different datasets and bioinformatics
methods to thoroughly identify DEGs across different cancer types (Barrett et al., 2013).

High-throughput sequencing has emerged as a valuable method for scrutinizing changes
in gene expression associated with illnesses and for identifying potential disease-related
genes, thus facilitating the discovery of new diagnostic and therapeutic approaches (Bacchelli
& Williams, 2016). Machine learning algorithms, whether supervised or unsupervised,
exhibit significant promise for analyzing complex relationships within high-dimensional
data (Uddin et al., 2019; Choi et al., 2020). Moreover, machine learning is beneficial
for assessing high-dimensional transcriptome data and identifying genes of biological
significance (Handelman et al., 2018; Greener et al., 2022).

In recent years, machine learning (ML)-based artificial intelligence (AI) has been
developed for the medical-industrial convergence. Al can help model and predict medical
information (Gao et al., 2023). A growing number of studies have combined radiology,
pathology, genomics, and proteomics data to predict the expression levels of programmed
death-ligand 1 (PD-L1), tumor mutation burden (TMB), and tumor microenvironment

Li et al. (2024), PeerJ, DOI 10.7717/peerj.17746 2/26


https://peerj.com
http://dx.doi.org/10.7717/peerj.17746

Peer

(TME) in cancer patients, and to predict the likelihood of immunotherapy benefits and
side effects (Wang et al., 2024; Wei et al., 2023).

We downloaded raw data (GSE1987 and GSE18842) from the GEO database and used the
GEO2R online tool for DEG screening. Subsequent steps included functional enrichment
and protein-protein interaction (PPI) network analyses, leading to the identification of
hub genes. Then we used random forest and lasso regression analyses and selected three
significantly expressed target genes. Survival and Receiver Operating Characteristic (ROC)
curve analyses revealed that these three genes are biomarkers associated with lung cancer
and offer new insights into clinical diagnosis. Simultaneously, we analyzed the relevant
immune expression of the three target genes, demonstrating their interaction with various
immune cells in lung adenocarcinoma.

First, unlike previous studies, this study used two independent datasets (GSE1987 and
GSE18842), which increased the reliability and universality of the results. Second, we not
only performed routine bioinformatics analysis but also introduced machine learning
techniques, such as random forest and LASSO regression analyses, to precisely identify key
target genes (BUBIB, CENPF, and PLK1). Clinical validation of these genes was performed
using the TCGA database and quantitative polymerase chain reaction (qPCR) experiments,
making the results convincing.

Furthermore, we performed extensive immune cell infiltration and pan-cancer analyses
to explore the potential roles of these genes in various cancer types. Thus, the broad
applicability of these genes is not limited to lung adenocarcinoma.

The application of these comprehensive analyses and techniques makes this study
significantly innovative in identifying multiple potential markers and therapeutic targets
and provides new ideas and a basis for future clinical applications.

METHODS

Data sources
The GEO database was queried for data related to “lung cancer” and two datasets,
GSE1987 and GSE18842, were identified (Barrett et al., 2013). The details of each dataset
are as follows:
GSE1987 dataset:
Platform: GPL91 ([HG_U95A] Affymetrix Human Genome U95A Array)
Specimens: 27 lung cancer specimens 9 non-lung cancer specimens
GSE18842 dataset:
Platform: GPL570 ([HG-U133_Plus_2] Affymetrix Human Genome U133 Plus 2.0
Array)
Specimens: 46 lung cancer specimens 45 non-lung cancer specimens
These datasets provide valuable information for the analysis of gene expression in
lung and non-lung cancer specimens, offering a comprehensive resource for further

investigation.
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Data processing of DEGs

DEGs, a web application based on R, which was gained from GEO through GEO2R, was
used to extract GEO data (Greener et al., 2022). In this study, the screening of DEGs was
conducted using R software (version 4.2.1; R Core Team, 2022) with criteria set at P < 0.05
and log2FC > 1. Subsequently, heat maps were generated using the R package “ggplot2”
(version 3.3.6), and Venn plots were created with VENNY (version 2.1) to visually represent
the identified DEGs.

KEGG and GO enrichment analysis of DEGs

To elucidate the functional significance of the overlapping DEGs, we conducted

Gene Ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway analyses. Analyses were performed using the Database for Annotation,
Visualization, and Integrated Discovery (DAVID) tools (version 6.7) (Dennis Jr et al.,
2003). GO functional annotations were used to categorize and identify genes as well as their
protein and RNA products based on their biological characteristics (Wang et al., 2022a).
KEGG was used to explore the potential pathways associated with signal transduction of
these overlapping DEGs (Ashburner et al., 2000). In our study, statistical significance was
determined using a corrected P <0.05.

PPI networks of DEGs

In our study, a PPI network was established using the STRING database and was visualized
using Cytoscape (version 3.7.2). Concurrently, noteworthy core gene modules were
extracted from PPI network complexes using MCODE (degree threshold > 2, node score
threshold > 0.2, K-core > 2, max depth = 100) (Kanehisa et al., 2017; Yu et al., 2012). This
approach enabled the identification of multiple connecting pathways in which tandem
genes act as bridges that link these pathways..

Machine learning algorithms

We used Random Forest (Bindea et al., 2009; Tai et al., 2019; Wang, Yang ¢ Luo, 2016)
and LASSO regression analyses (Ishwaran & Kogalur, 2010; Cheung-Lee ¢ Link, 2019;
Ferndndez-Delgado et al., 2019) (Least Absolute Shrinkage and Selection Operator) to
identify key biomarkers. These two algorithms were chosen because random forests have
good performance and robustness in handling high-dimensional data, which can capture
complex nonlinear relationships, whereas LASSO regression is suitable for feature selection
and sparse modeling of high-dimensional data, which helps reduce redundant variables
and improve the interpretive and predictive performances of models.

In addition, we describe the statistical methods used to assess the significance of the
identified biomarkers, including the specific test methods and multiple hypothesis testing
corrections. For example, in the significance analysis, we used Student’s ¢ -test and Wilcoxon
rank-sum test to compare differences in gene expression and used False Discovery Rate
(FDR) correction to control for the false positive rate caused by multiple testing.

Lung adenocarcinoma data validation from the TCGA database
We obtained and organized data from TCGA-LUAD (lung adenocarcinoma) project,
sourced from TCGA database (https:/portal.gdc.cancer.gov). Subsequently, we analyzed
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the expression levels, survival curves, and receiver operating characteristic (ROC) curves
of the target genes in lung adenocarcinoma. This analysis was performed using R language
software (version 4.2.1; R Core Team, 2022). ROC analysis of the data was performed
using the pROC package (1.18.0) and the results were visualized using ggplot2 (3.3.6).
Expression Data Acquisition: Download and collate RNAseq data from the TCGA-LUAD
project Spliced Transcripts Alignment to a Reference (STAR) processes from the TCGA
database and extract data in transcripts per million (TPM) format as well as clinical data.

qPCR

In this study, quantitative polymerase chain reaction (QPCR) was used to validate the
expression levels of BUBIB, CENPF, and PLK1 in lung cancer. We recruited a cohort of
nine lung cancer patients admitted to our hospital from January 1, 2024 to January 31,
2024. Concurrently, nine healthy individuals undergoing routine health examinations
during the same period were included as the control group. The inclusion criteria for
lung cancer patients were as follows: (1) age < 90 years; (2) no history of radiotherapy or
chemotherapy; (3) no fever or infection within 3 months before blood collection; (4) no
history of blood transfusion.

The qPCR assay was configured as recommended by the “MIQE guidelines.” Three genes
were selected for validation of the RNA-seq results. The qPCR primers were designed using
Primer3 online software (https:/bioinfo.ut.ce/primer3-0.4.0/) and synthesized by Sangon
Biotech Co., Ltd (Shanghai, China). For cDNA synthesis, 1jug of total RNA was reverse
transcribed using the PrimeScript RT Kit (Takara Bio™ Inc., San Jose, CA, USA) following
the manufacturer’s protocol. Quantitative RT-PCR was performed on a CFX96 real-time
PCR system (Bio-Rad Laboratories Inc., Hercules, CA, USA) using TB Green Premix Ex
Taq II (Takara Bio Inc.). Consumables used included RNase-free tips and eight strips of
PCR tubes from Axygen® Brand Products (Corning Incorporated, Corning, NY, USA).
Quantification was performed in triplicates using a 25 uL reaction mixture. Each reaction
mixture consisted of 12.5 pL TB Green Premix Ex Taq I, 1 uL of each primer (10 uM),
8.5 uL RNase-free water, and 2 uL of 1:5 dilution of cDNA. PCR amplification conditions
consisted of initial denaturation at 95 °C for 30 s, followed by 40 cycles of denaturation at
95 °C for 5 s, and annealing at 60 °C for 30 s. After cooling to 65 °C for 5 s, the melting
curves at the end of each PCR were obtained by gradually increasing the temperature to
95 °C (with an increment rate of 0.5 °C/s). The same amplification analysis was performed
for all samples, therefore, run-to-run calibration was not required. The data obtained
were analyzed by Bio-Rad CFX Manager software (version 3.0), which generated the raw
quantitative cycle (Cq) values for each reaction using the 2- A ACT method. Further details
of qPCR can be found in the MIQE checklist. The primer pairs were used in the following
order:

BUBIB: forward primer, 5-CTGGAGGGAGATGAATGGGAACTG-3', and reverse
primer, 5-CCGTTTCTGCTGCTGAAGAGTATTG-3'.

CENPF: forward primer, 5'-AGCAAGCCAGACTCTTCCACAAG-3’, and reverse
primer, 5'-GCTGCCATGAGAACACAGATGATG-3'.
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PLK1: forward primer, 5'-TCAGCAAGTGGGTGGACTATTCG-3', and reverse primer,
5 -TTGTAGAGGATGAGGCGTGTTGAG-3'.

Infiltration analysis of immune cells

The CIBERSORT algorithm was applied to the GSE18842 dataset, and significant
associations between the target gene and various immune cells were identified through
correlation analysis. All analyses and visualizations were performed in R software (4.2.1;
R Core Team, 2022). Based on 22 immune cells accessible on the CIBERSORTx website
(https:/cibersortx.stanford.edu/), the gene expression profile of the signature matrix was
examined using the CIBERSORT.R (script) analysis core algorithm (Steen et al., 2020).
Expression Data Acquisition: RNAseq data was downloaded from the TCGA-LUAD
project STAR processes from the TCGA database and extracted in TPM format as well as
clinical data format.

Pan-cancer analysis and miRNA analysis of BUB1B, CENPF, and PLK1
In this study, we used R software (version 4.2.1; R Core Team, 2022) and the R packages
ggplot2 (3.3.6), stats (4.2.1), and car (3.1-0) to analyze the expression of BUB1B, CENPF,
and PLKI mRNA using the TCGA database (Lin et al., 2021). Data processing method:
log2(value+1). Additionally, we analyzed the miRNAs corresponding to these three target
genes. MiRNAs were retrieved from three databases: TargetScan (McGeary et al., 2019),
StarBase (Wang et al., 2022b), and miRwalk (Kawakami et al., 2024). Venn diagrams and
protein-protein interaction (PPI) networks were constructed for further analysis.

Population

The research protocol was approved by the Medical Ethics Committee of the Medical
Research and Clinical Trial Ethics Committee of Huzhou First People’s Hospital (Approval
Number: 2023KYLLO014). All patients participating in the study provided the emotional
consent and informed consent.

RESULTS

Identification of differentially expressed genes

Gene expression data were processed and normalized using the criteria log FC >1 and P
<0.05. Subsequently, DEGs were identified in the two datasets using the GEO2R online tool.
A total of 279 DEGs were identified, comprising 89 upregulated and 190 downregulated
genes in lung cancer specimens compared to the corresponding non-cancer specimens
(Fig. 1). Table 1 provides a list of overlapping upregulated (log2FC >1, adjusted P <0.05)
and downregulated (log2FC <-1, adjusted P <0.05) DEGs.

GSEA enrichment analysis, KEGG and GO enrichment analyses of
DEGs

To gain a deeper understanding of the overlapping DEGs between the two datasets, we
conducted functional analysis. Gene set enrichment analysis (GSEA) revealed that these
DEGs were significantly associated with the cell cycle and mitosis. The GO and KEGG
analyses highlighted the following insights:
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Figure 1 Identification of DEGs in two GEO datasets. (A) The DEGs heatmap describes the different ex-
pressions between lung cancer specimens and normal lung specimens in the dataset GSE1987. (B) DEGs
heatmap illustrating variable expression between lung cancer specimens and normal lung specimens in
dataset GSE18842. (C) Venn diagram highlighting 89 overlapping up-regulated DEGs in the GSE1987 and
GSE18842 datasets. (D) Venn diagram showing 190 overlapping down-regulated DEGs in GSE1987 and
GSE18842 datasets.

Full-size Gl DOI: 10.7717/peerj.17746/fig-1

For upregulated genes:
Biological processes (BPs):
Organelle fission

Nuclear division

Nuclear chromosome separation
Sister chromatid isolation
Cellular components (CCs):
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Spindle poles

Cyclin-dependent protein kinase holase complexes
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Table 1

Identification and confirmation of 279 DEGs from two datasets, comprising 89 upregulated

genes and 190 downregulated genes.

DEGS

Gene name

UPp

DOWN

COL11A1-TFAP2A-MMP12-SPP1-UBE2C-SERPINB5-DSP-TPX2-IGF2BP3-SULF1-S100A2-
GINS1-HISTIH2AE-COL17A1-CCNB2-KIAA0101-HISTIH2BD-SRD5A1-EZH2-ALDH3B2-
CCNE1-MMP11-CDKN3-CDK1-CENPEF-COL10A1-PTTG1-SLC9A3R1-CD24-KIF2C-CA12-
LAD1-CCNB1-ZWINT-ADAMDEC1-FOXM1-APOBEC3B-CYP24A1-MELK-FAP-SCG5-
CDC20-KIF11-PMAIP1-LRRC15-PPAP2C-IVL-THBS2-TTK-PLOD2-BUB1B-NFE2L3-SORD-
PLK1-SPAG5-GCLC-POSTN-DTYMK-CKS1B-ATP2A2-CKS2-AIM2-SLC5A3-1IRF6-TK1-STIL-
KIF14-UMPS-PAICS-ST14-TOP2A-PYCR1-FUT3-FEN1-CDC6-KNTC1-PCNA-ESPL1-USP46-
KIFC1-NCAPH-CPOX-NPM3-TMF1-KIF2A-BDH1-TFAP2C-SLC35A2-GGCT

FABP4-WIF1-GDF10-CLDN5-AGER-C7-FHL1-ZBTB16-MFAP4-DES-CLIC5-ADIRF-PTX3-
VWE-GPX3-TNNC1-ADH1B-AGTR1-TCF21-CHRDLI-SGCA-FMO2-IGFBP6-ABCAS-
NRGN-LDB2-CDH5-FCN1-TTN-AQP1-TEK-LRRN3-RAMP2-PPBP-PTPRB-STARDS-
EDNRB-CA4-ABLIM3-GPM6A-CA3-AQP4-LPL-TENC1-FCN3-C8B-ACKR1-BMP5-
CBFA2T3-AOC3-GPM6B-DLC1-GPD1-CFD-CAV1-TGFBR3-SYNM-SRPX-TMOD1-AOX1-
FAM107A-GNG11-CSF3-SELP-LMO7-MMRN1-CD93-NR4A3-ANXA3-RECK-ADARBI-
ACADL-GPR116-FXYD1-OLFML1-KIAA1462-EMP2-FBLN5-SELE-ADAMTSL3-FEZ1-SEPT4-
ENG-RASGRF1-ID4-SVEP1-ITGA9-GJA4-LDLR-MYRF-SMAD6-VNN2-BCHE-LILRB2-
WISP2-COX7A1-SLC6A4-SPOCK2-NEDD9-ADRB2-CLC-HOXA5-C140rf132-TGFBR2-ACE-
MYH10-SCEL-GATA2-TIE1-LRRC32-CDO1-FOXF1-SLIT2-CD34-GPC3-STX11-SPARCL1-
PECAM1-DPYSL2-FBLN1-TBX2-BMX-LMO2-ANGPT1-ABCA6-ITM2A-SGCE-LTBP4-
ALOX5AP-DST-KLF9-KAL1-FAM189A2-TAL1-MAOB-GYPC-MS4A2-AGTR2-ABLIM1-F8-
MAL-GRK5-CAV2-§1PR1-THBD-EFEMP1-CH25H-G0S2-KDR-MYH11-FLI1-HLF-P2RY14-
VSIG4-MMP19-MME-SOCS2-TMEM47-KANK3-CALCRL-RAMP3-HBEGF-KIAA0040-
RASSF2-NOTCH4-KLF4-RGS2-PRKCZ-HEG1-WES1-PROS1-GMFG-PPP1R15A-IL3RA-
CA2-PLCE1-FRY-CREM-CDKN1C-CRIP2-FSTL3-TACC1-PODXL-MACF1-PMP22-CBX7-
FERMT2-TYRP1-ICAM2-RPS6KA2

Molecular function (MF):
Microtubule binding

Microtubule motor activity

Cyclin-dependent protein serine/threonine kinase regulatory activity

Cyclin-dependent protein serine/threonine kinase activator activity
KEGG pathways:

Cell cycle

Egg cell meiosis

Human T-cell leukemia virus 1 infection

p53 signaling pathway

Cellular senescence

For downregulated genes:

Biological processes (BPs):

Genitourinary development

Cell-substrate adhesion

Renal phylogenesis

Angiogenesis

Cellular components (CCs):

Membrane microdomains
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Membrane rafts
The outer side of the plasma membrane
The cellular cortex
Molecular function (MF):
Integrin-binding
Transmembrane receptor protein kinase activity
Transforming growth factor receptor binding
Type I transforming growth factor receptor binding
KEGG pathways:
Complement and coagulation cascades
AGE-RAGE signaling pathway in diabetic complications
Malaria
Tyrosine metabolism
Renin-angiotensin system
These findings underscore the diverse functional roles and pathways associated with the
DEGs identified in lung cancer specimens (Fig. 2).

Construction of PPI networks and identification of hub genes

In this step, the STRING database was used to construct a PPI network for the DEGs (Fig. 3).
Subsequently, the MCODE plugin was used to identify hub genes within the network. The
analysis revealed 32 hub genes with the highest moderate values among upregulated genes
and 19 hub genes with the highest moderate values among downregulated genes. These hub
genes represent crucial nodes within the network, signifying their potential significance in
lung cancer (Fig. 4).

Machine learning algorithms pick the target gene

Hub genes were identified using a two-step process employing random forest and LASSO
regression analyses. In the random forest analysis, the top seven characteristic variables
with the highest importance among all hub genes were BUB1B, TEK, CDC6, TOP2A,
KIF14, CENPF, PLK]I. Notably, among all characteristic variables, BUB1B emerged as the
most important contributing gene.

LASSO regression analysis identified the best characteristic genes among all hub genes,
including: BUB1B, FOXM1, CENPF, KNTC1, PLKI, ZWINT, CD93, and SELE. The
intersection of these analyses revealed that the target genes were BUBIB, CENPF, and
PLK1. These genes are pivotal candidates with significant roles in the context of the studied
biological systems, particularly in lung cancer (Fig. 5).

As a cell cycle checkpoint kinase, BUB1B plays a key role in maintaining chromosomal
stability, and its abnormal expression may cause chromosomal instability, which in turn
drives tumorigenesis and progression (Yu et al., 2024). The protein encoded by CENPF
plays an important role in chromosome division, and its overexpression is associated with
increased aggressiveness and poor prognosis in various cancers (Pinto et al., 2023; Shukuya
et al., 2016). PLK1 is an important cell cycle regulator and its overexpression in tumor cells
is often closely associated with rapid proliferation and tumor malignancy (Shukuya et al.,
2016).
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Figure 2 GSEA, GO/KEGG analysis of DEGs. (A) GASE enrichment analysis; (B) GO analysis of upregu-
lated genes; (C) GO analysis of downregulated genes; (D) KEGG analysis of upregulated genes; (E) KEGG
analysis of downregulated genes.
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TCGA and gqPCR experiments were used to verify the three target

genes

In this study, we retrieved and organized RNA-seq data from TCGA-LUAD (lung

adenocarcinoma) project using spliced transcript alignment to a reference (STAR) pipeline
available in the TCGA database (https:/portal.gdc.cancer.gov). Data were extracted in
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Figure 3 DEG PPI network. (A) Up-regulated gene PPI network diagram. The darker the red, the higher
the degree of upregulation. (B) Down-regulated gene PPI network diagram. The darker the blue, the

higher the degree of downregulation.
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Figure 4 DEG hub gene network. (A) Up-regulate gene hub gene network diagram. The darker the red,
the higher the degree of upregulation. (B) Down-regulated gene hub gene network diagram. The darker
the blue, the higher the degree of downregulation.
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Transcripts Per Million (TPM) format. Subsequently, we used R language software (version
4.2.1; R Core Team, 2022) to analyze the expression levels, survival curves, and ROC curves
of the three target genes:BUBI1B, CENPF and PLK]I in lung adenocarcinoma. Additionally,
whole blood samples were collected from patients with lung cancer and from individuals
undergoing normal physical examinations at our hospital for qPCR experimental
verification. This comprehensive analysis offers insights into the expression patterns

Li et al. (2024), PeerdJ, DOI 10.7717/peerj.17746

13/26


https://peerj.com
https://doi.org/10.7717/peerj.17746/fig-5
http://dx.doi.org/10.7717/peerj.17746

Peer

lung cancer
normal

Normal
Tumor

A 1_

BUB1B CENPF PLK1 0

Log, (TPM+1)
IS

The expression levels
The Expression Levels

BUB1B CENPF PLK1

Figure 6 Expression of three target genes BUB1B, CENPF and PLK1 in lung adenocarcinoma. (A) The
TCGA database were used to verify the three target genes; (B) qPCR experiments were used to verify the
three target genes.
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and potential diagnostic and prognostic values of these genes in lung adenocarcinomas
(Figs. 6 and 7).

Infiltration analysis of immune cells

The CIBERSORT algorithm was applied to the GSE18842 dataset, and correlation analysis
identified significant associations between BUBI1B, CENPF, PLK1 and various immune
cells. This suggests a potential connection between these target genes and immune cell
composition within the lung adenocarcinoma microenvironment. The correlation analysis
provides valuable insights into the interplay between these genes and the immune system
in the context of lung adenocarcinoma (Fig. 8).

Pan-cancer analysis of BUB1B, CENPF, and PLK1

In this study, we conducted a pan-cancer analysis of BUBIB, CENPF, and PLKI across
various cancer types using TCGA database. The analysis was performed using R software
(version 4.2.1; R Core Team, 2022) and ggplot2 package. Our findings revealed significant
underexpression of BUBIB, CENPF, and PLK1 in 16 cancer types: BLCA, BRCA, CESC,
CHOL, COAD, ESCA, GBM, HNSC, KIRC, KIRP, LIHC, LUAD, LUSC, PRAD, READ,
and UCEC. These observations suggested that BUBIB, CENPF, and PLKI may serve as
potential tumor-promoting genes in cancers with high expression levels (Fig. 9).

miRNA analysis of BUB1B, CENPF, and PLK1

In this study, we comprehensively investigated the microRNA (miRNA) regulatory
networks associated with BUBIB, CENPF, and PLK]1. Using three extensive miRNA
databases—TargetScan (McGeary et al., 2019), starBase (Wang et al., 2022b), and miRwalk
(Kawakami et al., 2024)—we identified potential miRNAs that regulate BUB1B, CENPF,
and PLKI. The intersection of these databases is depicted in a Venn diagram, revealing
common miRNAs targeting BUB1B, CENPF, and PLK]. Furthermore, to elucidate the
intricate relationships among BUBIB, CENPF, and PLK1, their regulatory miRNAs, and
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their associated protein interactions, we constructed a protein-protein interaction (PPI)
network using Cytoscape. This network visualization facilitates the understanding of the
complex regulatory mechanisms influencing the expression of BUBIB, CENPF, and PLK1
and their potential impact on cellular processes. This analysis not only underscores the
intricate interplay between miRNAs and BUB1B, CENPF, and PLK]1 but also sets the stage
for further investigation into the role of these miRNAs in modulating gene expression
across various physiological and pathological contexts (Fig. 10).

DISCUSSION

Lung adenocarcinoma is a global health challenge with high morbidity and mortality
and is one of the leading causes of cancer-related deaths worldwide, although significant
progress has been made over the years in the ability to diagnose and treat lung cancer,
the underlying problem of poor prognosis remains unresolved (Kunimasa et al., 2020).
Targeting the protein pathways involved and subsequently improving patient survival
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has become a key focus of ongoing research efforts to address the complexities of lung
adenocarcinoma (Shu, Jiang & Zhao, 2023).

In this study, we employed the R package “ggplot2” (version 3.5.0) to generate heatmaps
for the GSE1987 and GSE18842 datasets from the GEO database. Subsequently, a Venn plot
was used to identify overlapping genes between the two datasets, leading to the identification
and confirmation of 279 DEGs, involving 89 upregulated and 190 downregulated genes.

To gain a deeper understanding of the shared DEGs, we conducted taxonomic,
functional, and pathway enrichment analyses using the DAVID software. Enrichment
analysis of the upregulated genes revealed heightened involvement in processes such as
organelle fission, nuclear division, nuclear chromosome separation, and sister chromatid
isolation. In terms of cellular components (CCs), these genes were prominently associated
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Figure 9 Pan-cancer analysis for the BUB1B, CENPF, and PLK1. (A) Pan-cancer analysis for the
BUBI1B; (B) pan-cancer analysis for the CENPF; (C) pan-cancer analysis for the PLK1.
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with spindles, chromosomal regions, spindle poles, and cyclin-dependent protein kinase
holoenzyme complexes. The molecular functions (MF) of the common DEGs were
primarily linked to microtubule binding, microtubule motor activity, cyclin-dependent
protein serine/threonine kinase regulatory activity, and cyclin-dependent protein
serine/threonine kinase activator activity. KEGG analysis indicated a significant role
for these upregulated DEGs in pathways such as cell cycle, oocyte meiosis, human T-cell
leukemia virus 1 infection, p53 signaling, and cellular senescence. For the downregulated
genes, enrichment analysis highlighted their involvement in biological processes such
as genitourinary development, cell-substrate adhesion, renal morphogenesis, and
angiogenesis. The CCs associated with these genes include membrane microdomains,
membrane rafts, the outer side of the plasma membrane, and the cellular cortex. In the
MF, common DEGs exhibited functions related to integrin binding, transmembrane
receptor protein kinase activity, transforming growth factor receptor binding, and type
I transforming growth factor receptor binding. KEGG analysis revealed their vital roles
in pathways such as supplementation and coagulation cascade, AGE-RAGE signaling in
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diabetic complications, malaria, tyrosine metabolism, and the renin-angiotensin system.
These comprehensive analyses provided valuable insights into the biological processes and
pathways associated with the identified DEGs, shedding light on the potential mechanisms
involved in lung adenocarcinoma development and progression.

In our continued exploration, we utilized the STRING database to construct a PPI
network for the DEGs, which revealed 32 hub genes among upregulated genes and 19
hub genes among downregulated genes. Importantly, all these genes played a role in the
top five KEGG pathways with the smallest P values. This network analysis provides a
deeper understanding of the interactions and relationships between these hub genes, and
offers insights into the potential regulatory mechanisms and pathways implicated in lung
adenocarcinoma.

Several previous studies have successfully identified a variety of new cancer biomarkers,
such as lung adenocarcinoma, pancreatic cancer, and thyroid cancer, through machine
learning algorithms, demonstrating their powerful capabilities (Chi et al., 2023; Li ef al.,
2023a; Li, Wang ¢ Ding, 2023). Therefore, in this study, we systematically identified three
key genes of lung adenocarcinoma, BUBIB, CENPF and PLKI, for the first time, through
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a combination of random forest and LASSO regression analyses, and explored their
potential roles in lung adenocarcinoma and their association with clinical features in detail.
Random forest helps screen the genes that contribute the most to disease classification by
constructing multiple decision trees. LASSO regression identifies key genes by selecting
the most predictive features and adding a penalty term to the model. Using these two
approaches, we found that BUB1B, CENPF, and PLKI are important genes in lung
adenocarcinoma. BUBI1B, as a cell cycle checkpoint kinase, plays a key role in maintaining
chromosomal stability, its abnormal expression may lead to chromosomal instability, and
then promote cell proliferation and tumor progression (Yu et al., 2024); CENPF has an
important contribution to microtubule formation during chromosome division, and its
overexpression leads to abnormal division and increased tumor cell aggressiveness (Pinto
et al., 2023; Shukuya et al., 2016). PLK1, a cell cycle regulator, plays an important role in
mitosis, and its overexpression is often related to rapid tumor proliferation and poor
prognosis, and is supported by specific mechanisms (Shukuya et al., 2016).

Previous studies have shown that BUB1B expression is increased in multiple cancers
and is associated with poor prognosis. Our study not only confirms this, but also further
demonstrates the role of BUB1B as a key gene in lung adenocarcinoma by random forest
and LASSO regression analysis (Nguyen et al., 2022; Chen, Cai ¢ Wang, 2022). CENPF is
overexpressed in lung adenocarcinoma and other cancer types. We not only verified the
high expression status of CENPF in lung adenocarcinoma but also explored its relationship
with cell division and tumor invasiveness, expanding the understanding of its specific
mechanism of action (Huang et al., 2022; Mao et al., 2024). Moreover, with previous
studies indicating the important role of PLKI in cell cycle regulation and rapid tumor
proliferation, we confirmed the critical position of PLKI in lung adenocarcinoma using a
systematic bioinformatics approach and found that its high expression was associated with
poor prognosis, further supporting its value as a potential therapeutic target (Shukuya et
al., 2016; Huang et al., 2022).

Subsequently, we used lung adenocarcinoma data from the (TCGA) database to verify
the expression levels, survival curves, and ROC curves of these three target genes. At the
same time, we also performed qPCR experiments on whole blood of lung cancer patients
to detect the expression of three target genes, and the results conclusively proved their high
diagnostic value in lung adenocarcinoma. We used ¢-test and Wilcoxon rank-sum test to
compare gene expression differences and a false discovery rate (FDR) correction to control
the false positive rate for multiple tests. The results showed that BUB1B, CENPF, and PLK1
showed significantly higher expression in lung adenocarcinoma samples, with P-values
of 1.2e—6, 2.3e—5, and 4.1e—4, respectively, and these results were validated in multiple
datasets. Furthermore, we evaluated the association between high expression of these genes
and patient survival and showed that high expression of all three genes was significantly
associated with worse overall survival. The results of these statistical tests indicated that the
key genes identified play an important role in lung adenocarcinoma development.

One study showed that ZBTB16 is associated with various systemic tumors and that
its overexpression significantly reduces malignant progression and EMT activity in PC
cells, which can be eliminated by the exogenous expression of miR-6792-3p (Mao
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et al., 2024). In this study, we conducted immune infiltration analysis of these three
target genes and uncovered significant correlations with various immune cells. This
finding suggests a potential link between these genes and the immune response in the
context of lung adenocarcinoma, providing valuable insights into their roles in the tumor
microenvironment and their potential implications for immunotherapy. as well as pan-
cancer analysis and analysis of the mRNA-miRNA interaction network of the three target
genes. This comprehensive analysis provides clear insights into the expression levels of
BUBIB, CENPF, and PLK1 across different cancer types, along with the corresponding
miRNAs associated with each cancer.

However, it is important to acknowledge the limitations of this study. The sample size
was relatively small, and the data were mainly derived from public databases and lacked
independent experimental validation. Furthermore, our analysis was mainly based on
gene expression data and has not yet been combined with the validation of protein levels.
Although this study identified key target genes for lung adenocarcinoma through advanced
bioinformatics and machine learning techniques, these methods have several limitations.
First, the model is prone to overfitting problems, performing well on training data but poor
generalization on new data. Second, the model is highly dependent on feature selection
and parameter tuning, and incorrect selection significantly affects performance. Moreover,
data quality and sample size also have a significant impact on the model effect, with small
sample sizes leading to high variance and unreliable prediction results. The “black box”
nature of the machine learning model makes its internal mechanisms difficult to interpret,
and despite its high accuracy, understanding its biological significance still requires further
experimental validation. Therefore, these findings require more biological experiments to
confirm their clinical utility. When using machine learning techniques for genetic testing,
we must carefully combine them with traditional biological methods to ensure the accuracy
and reliability of the research conclusions.

In the future, we need to continue to research directions:

(1) further validate the specific functions and mechanisms of action of BUBIB, CENPF
and PLK1 to better understand their roles in lung adenocarcinoma;

(2) conduct larger studies are needed to validate the expression patterns of these genes
in different patient populations and their association with clinical features, and to confirm
their feasibility as diagnostic and prognostic markers.

(3) explore the development of specific therapeutics for these genes and evaluate their
efficacy and safety in animal models and clinical trials;

(4) Comprehensive analysis based on a variety of data to discover more relevant key
genes and propose a more comprehensive treatment strategy.

(5) Future studies should be extended to larger sample sizes to validate the role of these
key genes using multicenter, multi-ethnic data. Further in vitro and in vivo experiments
should be performed to validate the functions of these genes and their potential for clinical
treatment.

Despite these constraints, bioinformatics and machine learning analyses have revealed
novel mechanisms and pivotal genes that may contribute to the development of lung
adenocarcinoma. Further research is warranted to comprehensively elucidate the regulatory
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roles of these genes and to ascertain their potential as clinical biomarkers and therapeutic
targets. This knowledge could provide valuable insights for the precise diagnosis and
development of targeted treatment strategies for lung adenocarcinoma.

CONCLUSION

The key genes identified by our machine learning algorithms, BUBIB, CENPF, and PLK1,
are not only important in the occurrence and progression of lung adenocarcinoma but
also are potential biomarkers for clinical diagnosis, prognostic evaluation, and therapeutic
guidance. First, in terms of clinical diagnosis, high expression of these genes can be used as
early detection markers for lung adenocarcinoma, facilitating early detection and diagnosis
of disease through gene expression detection. Second, in terms of prognosis assessment,
high expression of BUBIB, CENPF, and PLK1 is significantly associated with poor overall
survival and thus can be used as a prognostic assessment tool to help physicians predict
the outcome of patients’ prognosis and develop personalized treatment options. Finally, in
terms of therapeutic guidance, the expression levels of these genes may be associated with
specific therapeutic responses and, thus, can serve as potential therapeutic targets. Targeted
therapy of BUBIB, CENPF, and PLK1 may improve therapeutic efficacy, especially in
patients with poor response to conventional treatment.
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