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Abstract: The presence of arterial media calcification, a highly complex and multifactorial disease,
puts patients at high risk for developing serious cardiovascular consequences and mortality. Despite
the numerous insights into the mechanisms underlying this pathological mineralization process, there
is still a lack of effective treatment therapies interfering with the calcification process in the vessel
wall. Current anti-calcifying therapeutics may induce detrimental side effects at the level of the bone,
as arterial media calcification is regulated in a molecular and cellular similar way as physiological
bone mineralization. This especially is a complication in patients with chronic kidney disease and
diabetes, who are the prime targets of this pathology, as they already suffer from a disturbed mineral
and bone metabolism. This review outlines recent treatment strategies tackling arterial calcification,
underlining their potential to influence the bone mineralization process, including targeting vascular
cell transdifferentiation, calcification inhibitors and stimulators, vascular smooth muscle cell (VSMC)
death and oxidative stress: are they a friend or foe? Furthermore, this review highlights nutritional
additives and a targeted, local approach as alternative strategies to combat arterial media calcification.
Paving a way for the development of effective and more precise therapeutic approaches without
inducing osseous side effects is crucial for this highly prevalent and mortal disease.

Keywords: arterial calcification; bone metabolism; cell death; oxidative stress; chronic kidney disease;
phenotypic transition; nutrition; vascular therapy

1. Introduction

Enough is as good as a feast. A true story for mineralizing processes in the human
body. Mineralization of bone and teeth is essential for their hardness and strength, whereas
uncontrolled mineralization could lead to ectopic calcifications in extra-skeletal sites such
as arteries and heart valves. The pathological buildup of calcium-phosphate crystals
in the cardiovascular system occurs at four distinct sites: (i) atherosclerotic plaques or
arterial intima calcification, (ii) media layer of the vessel wall or arterial media calcification,
also known as Mönckeberg’s arteriosclerosis, (iii) heart valves or valvular calcification
and (iv) small blood vessels in the skin or calciphylaxis. The focus of this paper will
be on arterial media calcification, but we refer to excellent reviews on the therapeutic
management of the other types of cardiovascular calcification [1–3]. Elderly patients
and those suffering from dysmetabolic states, including diabetes and chronic kidney
disease (CKD), either with or without the presence of osteoporosis, are at high risk to
develop arterial media calcification. Furthermore, several genetically-mediated arterial
diseases have been described as potential initiators of arterial media calcification, including
pseudoxanthoma elasticum (PXE), arterial calcification caused by CD73 deficiency (ACDC),
generalized arterial calcification of infancy (GACI) and Keutel syndrome [4,5]. The presence
of arterial calcification poses an increased risk for cardiovascular disease and mortality by
cause of reduced arterial compliance and arterial wall stiffness, which in turn precedes a
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multitude of severe cardiovascular consequences, including left ventricular hypertrophy,
diastolic dysfunction and cardiac failure [6,7].

Despite the significantly high prevalence of arterial media calcification [8,9] and its
tremendous economic burden to both patients and society [10], there still is a dearth of effec-
tive pharmacological therapies. Current anti-calcification treatments are confronted with a
low efficacy because they do not directly tackle arterial media calcification but solely focus
on amending common risk factors, such as hyperphosphatemia (e.g., phosphate binders).
Likewise, these treatment strategies are restricted to patient populations with CKD as they
aim to target CKD-specific conditions that are seldom seen without the occurrence of renal
impairment. Moreover, treatments to date are confronted with limited therapeutic com-
pliance due to important gastrointestinal side effects and also disturb physiological bone
metabolism as arterial media calcification highly resembles bone mineralization [11,12].
This review presents a comprehensive overview of different anti-calcifying therapeutics and
their impact on bone formation and sheds light on potentially novel targets. Continuous
research is of utmost importance to develop efficient and safe therapies against calcification
in the vessel wall without inducing osseous side effects, particularly for CKD, diabetes and
osteoporosis patients since they often already suffer from a compromised bone quality.

2. An Overview of Pivotal Cellular and Molecular Mechanisms of Artery and
Bone Mineralization

Arterial calcification resembles physiological bone mineralization, being a compro-
mising factor for the development of anti-arterial calcification therapeutics, the more since
CKD, osteoporotic and diabetic patients, who are the prime targets, also suffer from a
deteriorated bone status. In this paragraph, we will discuss the main pathological events
in arterial media calcification and this in relation to physiological bone mineralization.
Emphasis is also put on whether the recent novel treatment strategies against arterial media
calcification act as a friend or foe for physiological bone mineralization.

2.1. Targeting the High Phenotypic Plasticity in the Vasculature

The vascular wall consists of five main cell types: endothelial cells, vascular smooth
muscle cells (VSMCs), pericytes, fibroblasts and vessel-residing stem cells. Arterial media
calcification is a cell-mediated pathological process, predominantly driven by VSMCs [13].
These distinct cells have a high phenotypic plasticity to control local blood pressure (contrac-
tile phenotype) and repair the arterial wall after injury (synthetic phenotype). Interestingly,
both VSMCs and osteoblasts originate from the mesenchymal stem cell. With this in
mind, multiple in vitro/preclinical studies have shown that certain pathological triggers
(i.e., high calcium and phosphate levels [14], uremic toxins [15], inflammation, oxidative
stress [16]) induce a transition of VSMCs into cells with an osteo-/chondrogenic pheno-
type. Furthermore, patients with arterial media calcification show both intramembranous
(without a cartilage intermediate) and endochondral (replacement of a cartilage interme-
diate into bone matrix) bone formation in the media layer of the vessel wall [17]. Similar
to osteoblasts, these transdifferentiated VSMCs release and deposit extracellular matrix
vesicles loaded with preformed calcium-phosphate crystals, enzymes, lipids and miRNAs
into their extracellular matrix [18,19]. The transdifferentiation of VSMCs to cells with a
bone-forming phenotype goes along with an upregulation of osteo-/chondrogenic marker
genes, including runt-related transcription factor 2 (Runx2), alkaline phosphatase (Alpl), se-
creted phosphoprotein 1 (Spp1) and bone gamma-carboxyglutamate protein 2 (Bglap2) [13].
Recent studies have shown that epigenetic regulator miRNA-103a and sirtuin-6, as well
as an SGK1 (serum- and glucocorticoid-inducible kinase 1) inhibitor, prevented VSMC
calcification by inhibiting upregulation of bone-marker genes Runx2 and Msh homeobox 2
(Msx2) [20–22], thereby putting forward VSMC transdifferentiation as a valuable target to
treat arterial media calcification. Furthermore, arterial stiffness, a well-known consequence
of arterial media calcification, favors bone-like switching of VSMCs by facilitating the nu-
clear translocation of mechanical stimuli sensors Yes-associated protein (YAP) and its highly
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related transcriptional co-activator with PDZ-binding motif (TAZ). Subsequently, nuclear
translocation of YAP/TAZ results in an upregulation of the mRNA expression of Runx2,
Alpl, Spp1 and SRY-Box Transcription Factor 9 (Sox9) in the VSMC [23,24]. Another theory
to block arterial calcification is stirring the VSMC transdifferentiation toward an adipocyte
phenotype instead of an osteo-/chondrogenic phenotype. Adipocytes also originate from
mesenchymal stem cells. Interestingly, the adipogenesis regulator sclerostin is suggested
to halt VSMC calcification by suppressing the Wnt/b-catenin signaling cascade [25]. It is
known that Wnt/b-catenin signaling in bone cells favors Runx2 expression while suppress-
ing adipogenic differentiation [26,27]. Given the striking similarities between bone-forming
cells and transdifferentiated VSMCs, the above-described therapeutic approaches have
been linked to interference with bone formation [28,29]. Although, the extent of osteo-
/chondrogenic marker gene (i.e., Alpl, Spp1, Bglap2) expression in transdifferentiated
VSMCs is 40-fold lower compared to that in osteoblasts [30]. For this reason, it will be
imperative to check whether dosages of these therapeutics targeting VSMC transdifferen-
tiation can be administered so that only calcification in the vasculature is affected, while
keeping bone mineralization intact.

Another important cell type in the vascular wall are the endothelial cells which also
possess a high phenotypic plasticity known as the endothelial to mesenchymal transi-
tion (EndMT). This phenomenon acquires endothelial cells with a multiple differentiation
potential toward fibroblasts/myofibroblasts, osteoblasts/osteocytes, chondrocytes and
adipocytes [31]. Multiple in vitro and in vivo studies have shown the involvement of
EndMT in arterial calcification [32–34]. However, EndMT is mainly regulated by transform-
ing growth factor β (TGFβ)/bone morphogenic protein (BMP) signaling, which also plays
a crucial role in osteoblast differentiation and mineralization by favoring transcription of
Runx2 [35,36]. Targeting EndMT in arterial calcification seems to be attractive, but again, a
close eye has to be kept on physiological bone mineralization.

Lastly, the outer layer of the arterial wall, also called the adventitia, is housed by vessel-
residing stem cells, including Gli1+ cells or VSMC progenitors. A trigger, such as chronic
renal failure, may induce Gli1+ migration toward the intima and medial layer of the vessel
wall, followed by osteo-/chondrogenic transdifferentiation [37]. Also, pericytes, observed
in all layers of the arterial wall are suggested to be a type of mesenchymal stem cells [38,39].
Pericytes are able to differentiate into osteoblasts, chondrocytes or adipocytes, depending
on their trigger [40,41]. Additionally, pericytes also act as macrophage precursors in the
brain, making them interesting therapeutic targets for arterial calcification treatment as
they might facilitate a ‘cleanup’ of calcium-phosphate crystals in the calcified artery [42,43].
However, more research is needed to further characterize the phenotypic switching of
vessel-residing stem cells and pericytes, in particular with regard to their expression levels
of bone-like marker genes versus osteoblasts, migration status and degree of dominance in
the arterial calcification process compared to VSMCs and endothelial cells.

2.2. Targeting Circulating Calcification Inhibitors and Stimulators

During arterial calcification, passive precipitation of saturated serum levels of calcium
and phosphate also occurs. However, our body produces several calcification inhibitors
including fetuin-A, pyrophosphate, matrix Gla protein (MGP) and osteopontin to avoid this
calcium-phosphate crystal precipitation [44]. Unfortunately, in the presence of particular
disease states, such as CKD, diabetes, osteoporosis or monogenic forms of arterial calcifica-
tion, circulating calcification stimulators (including inflammatory mediators, uremic toxins,
high phosphate and/or calcium levels, high glucose levels, oxidative stress factors) take
the upper hand [44]. In the context of CKD, patients are routinely given phosphate binders,
vitamin D analogs and calcimimetics to restore the imbalance in calcium and phosphate
serum levels [45]. However, with regard to arterial calcification, these therapies are prone to
low efficacy and compliance and are restricted to CKD patients only as hyperphosphatemia
and –calcemia are rarely seen in individuals with normal renal function (osteoporosis
patients and patients with monogenic forms of arterial calcification).
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Multiple studies have focused on increasing calcification inhibitors to tackle the calci-
fication process in the vessel wall. Pyrophosphate is a well-known calcification inhibitor
as it prevents the incorporation of inorganic phosphate into hydroxyapatite crystals [46].
Oral administration of pyrophosphate was believed not to be a suitable treatment strat-
egy due to its hydrolysis by intestinal alkaline phosphatases. However, researchers have
shown that supplementing drinking water with 0.3 mM of pyrophosphate resulted into
a significant reduction of tissue calcification in mice suffering from monogenic forms of
arterial/connective tissue calcification (PXE and GACI) [47]. Moreover, clinical trials are
running in which pyrophosphate (ClinicalTrials.gov Identifier: NCT04868578) is orally ad-
ministered to PXE patients. Furthermore, tissue non-specific alkaline phosphatase (TNAP),
expressed by calcified VSMCs, mediates the hydrolysis of pyrophosphate into inorganic
phosphate [48]. Recently, our research group provided evidence for the TNAP-inhibitor
SBI-425 to be able to inhibit warfarin-induced arterial media calcification in rats which,
however, went along with bone mineralization side effects [49]. This was rather unex-
pected as (i) basal TNAP levels are 100-fold higher in osteoblasts compared to VSMCs [50],
thus suggesting that the dosage of TNAP inhibitor needed would have minor effects on
osteoblasts and (ii) studies performed on mice did not show any side effects on bone
mineralization. However, it needs to be pointed out that it is more reliable to measure bone
metabolism in rats versus mice due to (i) the small size of the bone area being measured in
mice and (ii) the bone status of rats being more closely related to humans [51]. Furthermore,
TNAP-inhibitor SBI-425 failed to stop the development of more severe arterial calcifications
in an adenine-induced CKD rat model [52]. Interestingly, it has been shown by in vitro
experiments that halting VSMC calcification goes along with an upregulation of TNAP
activity, while an opposite effect has been seen during osteoblast mineralization [50]. In
addition, TNAP only regulates 50% of the pyrophosphate hydrolysis, suggesting that other
alkaline phosphatases may be more important in the CKD-induced vascular calcification
process [53].

The calcification inhibitor fetuin-A interacts with pre-formed calcium-phosphate min-
erals creating calciprotein particles. These particles are cleared from the circulation via
the reticuloendothelial system. However, during arterial calcification, these calciprotein
nanoparticles undergo re-arrangement into more densely packed needle-shaped particles
and precipitate in the arteries [54,55]. Moreover, low circulating levels of fetuin-A are
linked to high calcification scores in CKD patients on dialysis [56]. Recently, an interesting
drug SNF472 has been used to target coronary artery calcification (phase 2 clinical trials)
and calciphylaxis (phase 3 clinical trial) in end-stage renal disease patients on hemodialy-
sis [57–60]. SNF472 is an intravenous formulation of myo-inositol hexakisphosphate (IP6),
a natural phytate product. This compound is a promising therapeutic as it targets the
growth and formation of solid calcium deposits (hydroxyapatite) while not affecting free
calcium, thereby avoiding the risk for hypocalcemia and exerting a therapeutic efficacy
independent of the etiology of arterial calcification [61]. However, an important drawback
of SNF472 is its short plasma half-life and modest potency, which is circumvented by
injecting this drug through the dialysis machine during the hemodialysis sessions. This
limits the use of SNF472 for CKD patients stage 3–4 not undergoing dialysis but already
developing cardiovascular calcifications. For this reason, the research group of Schantl et al.,
is designing more pharmacological stable derivatives of IP6 (i.e., (OEG2)2-IP4) [62]. With
regard to the bone, however, an imbalance between osteoid deposition and subsequent
bone mineralization was observed in (OEG2)2-IP4-treated CKD rats [62]. In addition, the
highest intravenous dosage of SNF472 (600 mg) reduced bone mineral density in end-stage
renal disease patients with coronary artery calcification [63], again pointing out the need
for caution with anti-arterial calcification therapeutics in target populations with an already
compromised bone status.

Lastly, we describe the group of vitamin K-dependent calcification inhibitors. Vitamin
K is needed for the gamma-carboxylation or activation of MGP, growth arrest-specific
6 (Gas6) and gla-containing coagulation factors, e.g., prothrombin [64–66]. Vitamin K
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deficiency is a dominant feature in the CKD population and thus also a well-established
risk factor for arterial calcification [67,68]. For example, vitamin K-dependent gamma-
carboxylation of MGP prevents arterial calcification through interfering with the binding
of BMP2 to its receptor and by this inhibiting osteo-/chondrogenic transdifferentiation of
VSMCs [69]. Recent studies have also shown that coagulation might play an important role
in the arterial calcification process. Long-term exposure to protein-bound uremic toxins
induced calcification in the aorta of CKD rats and was associated with the upregulation of
coagulation pathways (i.e., extrinsic/intrinsic prothrombin activation pathway) [70]. This
was in line with the results of Kapustin et al., revealing that Gla-containing coagulation
factors prothrombin, protein C and S inhibited VSMC calcification [66]. Furthermore, Gas6,
another vitamin K-dependent calcification inhibitor, exerts its anti-arterial calcification
effects by preventing endothelial cells and VSMCs to go into apoptosis [71]. The effect
of cell death, in relation to vitamin K, in the arterial media calcification process will
be discussed in the next paragraph. Taken together, restoring the vitamin K status in
CKD patients would be a valid anti-arterial calcification therapy. However, a recent
multicenter randomized controlled trial showed that withdrawal of vitamin K antagonists
in hemodialysis patients did not influence the progression of arterial calcification after
18 months [71]. On the other hand, there is still some debate on whether or not it is
advisable/effective to administer vitamin K supplements (in the form of menaquinone-
4 and 7) to CKD and diabetes patients [72–74]. Larger randomized clinical studies, as
well as longer observations, are needed to reveal the anti-arterial calcification effects of
vitamin K supplementation.

2.3. Targeting Cell Death Events in the Vasculature

Next to vascular cell transdifferentiation and a disbalance between pro- and anti-
calcifying factors, VSMC death is a central process in the onset of calcification in the vascu-
lature. Interestingly, VSMC death is boosted in pediatric patients undergoing hemodialysis
and the initiation of hemodialysis treatment is associated with shifting the onset of arterial
calcification, which begins predialysis, into overt calcification [75]. Also, cultured human
VSMCs exposed to serum from uremic patients displayed extensive VSMC death [76].
VSMC-derived apoptotic bodies, enriched with high calcium concentrations, are released in
the extracellular matrix and act as an excellent nidus for the deposition of the crystals [77,78].
Cellular DNA is released as well upon VSMC death, which has been demonstrated to initi-
ate arterial calcification by precipitating calcium-phosphate crystals in the vessel wall [79].
Even though (i) Proudfoot and her team already suggested more than twenty years ago
that VSMC death significantly contributes to the development of arterial media calcifica-
tion [77,78] and (ii) Patel et al., showed that VSMC calcification was associated with a 50%
increase of apoptosis while osteoblast’s viability remained unchanged [30], no effective
treatments targeting VSMC death without imposing detrimental effects on physiological
bone formation has been developed yet. For example, the caspase inhibitor ZVAD.fmk
inhibited calcification in human VSMC nodules via antiapoptotic effects [77] and caspase
inhibition was also demonstrated to inhibit the maturation and release of apoptotic bod-
ies [80]. Since caspases also execute non-apoptotic roles involved in osteogenesis [81,82]
and pan-caspase inhibition resulted in significant alterations in the expression of several
osteogenic genes [81,83], effects of these possible anti-arterial calcification treatments at the
level of the bone need further investigation. In addition to preventing apoptotic cell death,
caspase inhibitors are shown to induce a switch from apoptosis to necrosis [84,85]. Interest-
ingly, necrotic cell death is a well-known hallmark of atherosclerosis [86–88]. Apoptotic
bodies, characterized by a preserved integrity of their membrane, are rapidly and efficiently
phagocytosed. However, impaired clearance of apoptotic bodies results in secondary necro-
sis inducing membrane rupture and thus leakage of calcium and phosphate [87,88]. As the
role of necrosis in arterial media calcification is not yet clear, one should be cautious with
using caspase inhibitors since this may lead to necrotic cell death and trigger calcification.
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The absence of effective treatments targeting VSMC apoptosis as indicated by the
substantially unspecific TUNEL assay (i.e., apoptosis detection method), which is con-
sidered to detect DNA damage in general and thus also detects non-apoptotic forms of
cell death [89], supports the involvement of other cell death types in arterial calcification.
This deserves further interest, especially since several new types of regulated cell death
have been identified during recent years [90]. Ferroptosis is an iron-dependent form of
regulated cell death in which an excess of iron, mainly ferrous iron, via the Fenton reaction
induces the generation of free radicals. This in turn initiates lipid peroxidation of polyun-
saturated fatty acid-containing phospholipids, ultimately resulting in the accumulation
of toxic lipid hydroperoxides and membrane damage [91,92]. Because the contribution of
lipid peroxidation and ferroptosis to vascular diseases, such as atherosclerosis [93,94], but
not yet to arterial media calcification, is a well-known phenomenon, the latter should be
considered. The administration of vitamin E (i.e., membranous lipid peroxidation inhibitor)
and selenium (i.e., important co-factor for glutathione peroxidase 4 which detoxifies lipid
hydroperoxides) has already been shown to inhibit calcification in cultured VSMCs [95,96].
Furthermore, iron tends to be sequestered in vascular cells of CKD patients as a result
of hepcidin upregulation, which degrades the iron exporter ferroportin, and therefore
accelerates the production of hydroxyl radicals [97,98]. Interestingly, hemodialysis patients
are administered iron intravenously to alleviate their functional iron deficiency, further
favoring cellular iron sequestration. A direct calcification aggravating effect of iron seen
in vitro [99] further substantiates the potential role of iron sequestration and subsequent
lipid peroxidation/ferroptosis.

The use of lipophilic membranous radical trapping agents (e.g., vitamin E and ferrostatin-1)
is a possible way to tackle lipid peroxidation/ferroptosis. Fascinatingly, vitamin E exerts bone-
protecting functions [100] and in a study by Valanezhad et al., the administration of ferrostatin-1
to the MC3T3-E1 osteoblast cell line, in which ferroptosis was induced, promoted osteoblast
differentiation [101]. Also, treatment with the anti-diabetic drug metformin attenuated calci-
fying and ferroptotic events in VSMCs and rats fed a high-fat diet [102]. Besides, metformin
shows stimulatory effects on bone formation by promoting osteoblastic differentiation partly
via AMP-activated protein kinase (AMPK) signaling pathway activation [103,104]. Melatonin
has previously been published to reduce high-glucose-induced ferroptosis in osteoblasts in
an in vitro and in vivo model of type 2 diabetes mellitus via activation of the Nrf2 signaling
pathway [105]. Interestingly, (i) stimulating Nrf2 activity has already been suggested to sup-
press arterial calcification by regulating VSMC death and osteogenic transdifferentiation [106],
(ii) melatonin attenuates calcification of cultured VSMCs [107] and (iii) clinical trials investi-
gating the effect of melatonin on coronary artery calcification are running (ClinicalTrials.gov
Identifier: NCT03966235 and NCT03967366). This, together with melatonin’s ability to enhance
bone formation and improve osteoporotic lesions [108–110], puts forward melatonin supple-
mentation as a possible therapeutic strategy for arterial calcification with a win-win situation for
patients with a disturbed bone metabolism.

Preventing an excess of labile redox-active iron and cellular iron sequestration can
also be hypothesized to be beneficial in the pathological process of arterial calcification as
well as disturbed bone metabolism. Iron overload is known to influence bone formation by
inhibiting osteoblast proliferation and differentiation and facilitating osteoclast differen-
tiation [111,112]. Treatment with lactoferrin, an iron-chelator, improved bone formation
and reduced bone resorption [113]. However, iron has been controversially published to
suppress arterial calcification in the vessel wall of CKD-induced rats by the prevention of
osteo-/chondrogenic transdifferentiation of VSMCs and suppression of the CKD-induced
elevated expression of the phosphate transporter Pit-1 [114]. This might be linked to the
fact that iron supplementation to CKD patients in first instance restores their functional
iron deficiency and thereby prevents further renal function decline: our research group
demonstrated that intestinal uptake of iron in CKD rats significantly reduced arterial calci-
fication in combination with a better preservation of renal function [115]. Figure 1 gives a
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schematic overview of VSMC death-related processes and their interference with the bone
mineralization process.

Figure 1. Targeting vascular smooth muscle cell (VSMC) death and oxidative stress-related pro-
cesses as a possible way to tackle arterial media calcification and its effect on bone mineralization.
(A) Apoptosis, a caspase-dependent type of cell death, contributes to the development of arterial
media calcification. Apoptotic bodies act as a nucleation site for the deposition of calcium-phosphate
crystals. The caspase inhibitor ZVAD.fmk has shown its efficiency in inhibiting arterial calcification
but may cause detrimental effects on bone metabolism as caspases play an important role in physi-
ological bone mineralization as well. (B) Oxidative stress, a central process in the onset of arterial
calcification, either results in the generation of reactive oxygen species (ROS) which in turn drives the
onset of apoptosis and ferroptosis, or the upregulation of poly(ADP-ribose) polymerase-1 (PARP-1)
which stimulates the osteogenic transdifferentiation of VSMCs. Antioxidants and PARP inhibitors
(i.e., minocycline) encounter arterial calcification but respectively enhance or disturb physiological
bone mineralization. (C) A possible role of lipid peroxidation and ferroptosis (i.e., an iron-mediated
type of regulated cell death) in arterial media calcification. Both mechanisms might be targeted
without causing side-effects on the bone metabolism as metformin, vitamin E and ferrostatin-1
(Fer-1), which are therapeutics shown to inhibit ferroptotic events, show stimulatory effects on bone
formation. Furthermore, selenium administration is known to inhibit VSMC calcification but also
is an important co-factor of glutathione peroxidase 4 (Gpx4), an important regulator in ferroptosis.
(D) The intravenous (IV) injections of iron to CKD patients on dialysis and inflammatory states cause
a hepcidin upregulation, which in turn downgrades ferroportin (i.e., an important iron exporter)
and causes intracellular iron sequestration. On one hand, this can induce lipid peroxidation and
ferroptosis, and on the other hand, iron overload is known to favor a disturbed bone metabolism.
Upward arrow indicates upregulation while downward arrow indicates downregulation.

2.4. Targeting Oxidative Stress in the Vasculature

Oxidative stress, manifested by the production of reactive oxygen species (ROS),
drives the progression of arterial media calcification by regulating VSMC death and the
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osteo-/chondrogenic phenotypic switch [116], as visualized in Figure 1. The prevention of
oxidative stress may thus tackle both VSMC death and the osteo-/chondrogenic transd-
ifferentiation of VSMCs. The production of ROS is normally encountered by antioxidant
enzymes but pathophysiological settings trigger excess production of these highly reactive
molecules and consequently imbalanced ROS homeostasis [117]. This opens the opportu-
nity for antioxidant therapy to become a potential candidate to counteract oxidative stress
and subsequently arterial calcification. Restoring the balance in oxidant formation and
antioxidant capacity might be beneficial for a disturbed bone metabolism as well because
oxidative stress induces apoptosis of osteoblasts and osteocytes and underlies the differen-
tiation of pre-osteoclasts into osteoclasts [118,119]. Whereas several natural antioxidants
from dietary sources, e.g., quercetin [120] and diosgenin [121], or non-dietary sources,
e.g., rosmarinic acid [122] and synthetic compounds (e.g., sodium thiosulfate [123,124] and
hydrogen sulfide [125]) showed anti-calcification properties both in vitro and in vivo [126],
administration of other anti-oxidative agents resulted in controversial effects. Tempol on
one hand ameliorated arterial calcification in a CKD rat model via the reduction of ROS in a
study of Yamada et al. [127], while on the other hand Bassi et al., showed increased medial
calcification as a result of tempol administration [128]. Although anti-oxidants positively
affect bone homeostasis by activating osteoblast differentiation and reducing osteoclast
activity [119], the use of anti-oxidants as potential anti-calcific treatment should be fur-
ther studied with a special focus on the relationship with physiological bone metabolism.
Furthermore, in response to oxidative stress and DNA damage, poly(ADP-ribose) [PAR]
is synthesized by PAR polymerases (PARP) to favor DNA repair [129]. However, PAR,
which is released in the extracellular matrix, promotes the pathological arterial calcifi-
cation process by stimulating the osteogenic transition of VSMCs [130]. The antibiotic
minocycline, a PARP inhibitor, reduced the development of arterial media calcification in
adenine-induced CKD rats. Unfortunately, minocycline’s anti-arterial calcification effects
went along with a decrease in cortical thickness and mineral density in the long limb bones
of the animals [131]. Indeed, another PARP inhibitor, PJ34, impeded osteogenic metabolism
by regulation of BMP-2 signaling [132].

3. Nutritional Care to Treat Arterial Media Calcification

Furthermore, nutritional care is essential to slow down the progression of CKD and
diabetes but could also be beneficial for halting the development of arterial calcification.
Food additives, including quercetin [133,134], curcumin [135,136], vitamin K [137] and phy-
tates [138] increase the activity of calcification inhibitors and reduce oxidative stress in the
arterial wall [139]. Next to this, it has been shown that vitamin K supplements inhibit arte-
rial calcification [137] while stimulating bone mineralization [140,141]. Similarly, melatonin
protects against calcification in the vessel wall but also improves osteoporotic lesions [110].
Also, magnesium supplementation has been demonstrated to effectively target arterial
calcification by passively binding inorganic phosphate, in this way reducing the formation
of hydroxyapatite crystals, and actively targeting VSMC transdifferentiation and VSMC
death [142,143]. In a study of Diaz-Tocados et al., moderate (0.3%) dietary magnesium
supplementation to uremic rats significantly reduced arterial calcification whilst improving
bone metabolism [144] and in humans, magnesium has been shown to effectively prevent
the progression of arterial calcification [145,146]. Although magnesium plays a key role in
bone health, the association between magnesium supplementation and improving bone
health requires further in-depth research [147]. Furthermore, eicosapentaenoic acid (EPA),
an omega-3 polyunsaturated fatty acid that can find its source in fatty fish and its fish oils,
is reported to directly inhibit arterial calcification [148–150], while improving osteoporotic
bone status by the inhibition of osteoclast activity [151,152]. These types of anti-arterial
calcification therapeutics could be especially beneficial to patients experiencing a low bone
turnover status, such as osteoporosis patients and a substantial group of CKD patients.
However as mentioned above, a single therapy strategy (i.e., vitamin K supplementation)
will be not effective since the arterial calcification process is a result of a complex interplay
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between different pathological pathways and thus indicating the need for a multifactorial
treatment strategy. On the other hand, improving imaging techniques to catch microcalcifi-
cations (PET scan 18-FDG), allowing start of treatment at an early stage, might allow the
use of low dosages of anti-arterial calcification compounds and by this reduce side effects
on the bone [153].

4. Towards a Local Approach to Tackle Arterial Media Calcification

Nanomedicine is an upcoming field with many therapeutic applications found mainly
in cancer and other diseases. Multiple nanoparticle-based drug delivery systems have been
approved by the FDA. The great advantage of nanomedicine is the ability of conjugating
specific proteins on the surface of the nanoparticle, as well as shielding of compounds
from circulating degrading enzymes leading to higher bioavailability and prolonged blood
circulation. Interestingly, the research group of Vyavahare et al., developed a nanoparticle
conjugated to an elastin antibody to target the diseased vasculature [154]. Elastin degrada-
tion is a typical feature in arterial calcification as VSMCs express matrix metalloproteinases
cleaving the elastin fibers [155,156]. Vyavahare et al., showed that targeted delivery of
albumin nanoparticles loaded with a calcium-chelating agent (EDTA) and conjugated to an
anti-elastin antibody blocked the development and progression of arterial media calcifi-
cation in CKD rats without inducing side effects on bone mineralization [157]. Moreover,
this nanoparticle-based targeted delivery has also shown its efficacy in in vivo models for
abdominal aortic aneurysm which is also characterized by degraded elastin fibers [158–160].
Nonetheless, therapeutic efficacy of nanomedicine highly depends on a number of factors,
such as nanoparticle size, charge and distribution. These parameters influence the in vivo
fate of the nanoparticles, including systemic distribution, cellular uptake and circulation
lifetime. In addition, cost-effectiveness balance can be tricky [161]. High amounts of drugs
could be necessary to obtain a significant percentage of drug entrapment into the nanopar-
ticles. In order to optimize therapeutic efficiency, it is indispensable to conduct numerous
trial and error procedures for optimizing the nanoparticle preparation parameters.

5. Extrapolation of Anti-Arterial Media Calcification Therapeutics toward the Human
Situation and Other Types of Cardiovascular Calcification

Many therapeutic approaches against arterial media calcification are still in the pre-
clinical phase. However, to which extent can the findings in animals be translated to the
human situation? With regard to arterial media calcification, rodent models are primarily
used. For example, (i) non-CKD models, such as genetically modified mice expressing less
calcification inhibitors (i.e., fetuin-A, MGP), and rats receiving high dosages of warfarin
and (ii) CKD-related models, including rats undergoing 5/6th nephrectomy or receiving
an adenine diet, both combined with high phosphate intake [162,163]. Typical features of
human arterial media calcification can be found in these animal models: VSMC transdiffer-
entiation, low levels of circulating calcification inhibitors, VSCM cell death and oxidative
stress. Also, the prevalence of CKD-induced arterial media calcification (40–70%) in these
animals models is comparable to the human situation [17,164–166]. At the moment, larger
animal models (i.e., pigs, rabbits, dogs) for arterial media calcification are lacking, which is
unfortunate as the cardiovascular anatomy and physiology of larger animals are more com-
parable to the human situation. On the other hand, zebrafish are increasingly used to study
cardiovascular disease as alternatives for non-human primates, pigs and rodents [167].
Despite the relative simplicity of their cardiovascular system, the heart rate and vascular
anatomy are highly comparable to those of humans, and they share many (pathological)
mineralization-related pathways [167,168]. Although the blood pressure is an important
difference, zebrafish show similar responses to vasodilators, vasoconstrictors and car-
diovascular drugs (e.g., nitric oxide donor sodium nitroprusside) [167,169]. Next to this,
knock-out of specific calcification-related genes can be performed by the injection of mor-
pholinos [170,171], and zebrafish have already been used to study calcification in PXE and
GACI [172–174], further favoring the use of zebrafish as an interesting alternative animal
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model to study arterial media calcification. Additional advantages are the transparency of
the embryos, allowing non-invasive observation of the blood vessels, and their short life
span, making it an attractive model to study age-related diseases [167].

Some of the above mentioned treatment strategies could also be promising therapies
for the other types of cardiovascular calcification. Arterial media calcification shares
similar pathological mechanisms to arterial intima calcification and valvular calcification;
i.e., precipitation and nuclear growth of calcium-phosphate crystals, transdifferentiation
of vascular cells into osteo-/chondrogenic like cells, imbalance in circulating calcification
inhibitors and stimulators, cell death and oxidative stress [175]. However, there is still
debate as to whether it is beneficial to block atherosclerotic plaque calcification. Highly
calcified plaques may be considered as stable atherosclerotic plaques, while less or spotty
calcified plaques are associated with plaque rupture [176].

6. Conclusions

In conclusion, arterial media calcification is (i) a complex, multifactorial disease and
(ii) very challenging to tackle due to its similarities to physiological bone mineralization.
Therefore, in the future a focus has to be put on combination therapies to interfere with the
multiple key mechanisms of arterial media calcification and target therapies directly to the
diseased vasculature (i.e., by using nanoparticles) to avoid compromising the bone com-
partment. Nutritional additives have been shown to exert beneficial effects in halting the
progression of CKD and the development of arterial media calcification and can therefore
complementarily contribute to this multifactorial treatment strategy. A first considerable
group of anti-calcification therapeutics includes targeting vascular transdifferentiation
during which special focus needs to be paid to selecting the appropriate doses in order
to prevent adverse effects on physiological bone metabolism. Next, restoring the balance
between calcification inducers and inhibitors can be considered. Finally, as VSMC death
plays a pivotal role in the pathological process of vascular calcification, focusing on tar-
geting cell death, especially ferroptosis, is a promising therapy. The ferroptotic role in
bone metabolism, however, has not yet been elucidated, requiring in-depth research before
assuming that targeting lipid peroxidation/ferroptosis to tackle arterial media calcification
does not affect physiological bone mineralization. In the development of anti-calcifying
therapeutics, animal models are key, but the translation to the human situations remains
challenging and requires critical evaluation.
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