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Background: Identifying populations at high risk of HIV transmission is critical for prioritizing treatment

and prevention resources and achieving the UNAIDS 90-90-90 Targets.

Methods: HIV transmission rates can be estimated from phylogenetic trees as viral lineage-level diversi-

fication rates. To identify HIV-1 transmission foci in British Columbia, Canada, we inferred diversification

rates from phylogenetic trees of 36 271 HIV-1 sequences from 9630 anonymized individuals. Diversifica-

tion rates were combined with sociodemographic and clinical data, then aggregated by patients’ area of

residence to predict the distribution of new HIV cases between 2008 and 2018. The predictive power of

the model was compared with a phylogenetically uninformed model.

Findings: Aggregated diversification rate measures were predictive of new HIV cases in the subsequent

year after adjusting for prevalent and incident cases in the previous year. For every one-unit increase in

the mean of the top five diversification rates, the number of new HIV cases increased by on average 1·38-

fold (95% CI, 1·28–1·49). In a blind prediction of 2018 cases, diversification rate improved the model’s

specificity by 12%, accuracy by 9%, top 20 agreement by 100%, and correlation of predicted and observed

values by 162% relative to a model that incorporated epidemiological data alone.

Interpretation: By predicting the distribution of future HIV cases, a combined phylogenetic and epidemi-

ological approach identifies hotspots where public health resources are needed most.

Funding: Canadian Institutes of Health Research, University of British Columbia, Public Health Agency of
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esearch in context

vidence before this study

We searched PubMed for articles published between January

996 and December 2018, to limit the search to transmission mod-

ling in the HAART era, in any language that applied phyloge-

etic methods to infer HIV transmission history using the search
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erms “transmission”, “phylogenetic”, and “HIV”. The large major-

ty of studies applied some form of genetic clustering to iden-

ify sub-populations exposed to higher than average transmission

ates. Although HIVTRACE is the most commonly applied clus-

ering method using a threshold for pairwise TN93 genetic dis-

ances, there is no strong consensus in the field that this clustering

ethod is the most appropriate. Other clustering methods iden-

ify epidemiologically linked sequences using patristic (tree) dis-

ance, apply subtree pruning, or have minimum bootstrap support

equirements. Previous studies have compared the performance of

lustering methods applied to both empirical and simulated epi-
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demics. Clustering methods varied in their ability to distinguish

differences in sampling and transmission within the population.

Further, the membership, size, and growth of inferred clusters dif-

fered between methods.

A limited number of studies have explored alternative meth-

ods such as a Markov-modulated Poisson Process and a multi-

type birth-death branching model process, respectively, to infer the

evolution of HIV transmission rates within a phylogeny. However,

these methods rely on strong assumptions that transmission rates

evolve as discrete states, which is unlikely given the heterogeneity

of individuals’ risk activities, time to diagnosis, and travel patterns.

There remains room for improvement in resolving HIV transmis-

sion activity in order to prioritize treatment and prevention ser-

vices most efficiently.

Lineage-level diversification rate has been previously applied to

quantify species’ evolutionary relatedness in a conservation biol-

ogy framework, yet we found no studies that applied diversifica-

tion rate to quantify the evolutionary relatedness (and thus epi-

demiological connectedness) of viral lineages across the history of

the HIV epidemic, or for any other pathogens for that matter.

Added value of this study

We combined viral diversification rate with clinical and epi-

demiological data to predict where and how many new HIV

cases would arise in the future within British Columbia. This is

a novel and pragmatic approach, which lent greater predictive

power than using epidemiological data alone. We have demon-

strated that geographically-aggregated viral diversification rate is

a robust proxy for transmission rate that is without biases to clus-

tering thresholds, while still protecting patient confidentiality. Viral

diversification rate could also be employed to model the within-

and between-host evolution of other pathogens, as well as the HIV

epidemic in resource-limited settings.

Implications of all the available evidence

Spatiotemporal modeling of historic HIV transmission and epi-

demiological dynamics predicted the future trajectory of the HIV

epidemic. Such predictive models should be utilized by public

health authorities to target areas for prioritized treatment and

prevention services. Future evaluations of the relative predictive

power and sampling sensitivities of clustering, diversification rates,

and combined methods are required.

1. Introduction

Although highly active antiretroviral therapy (HAART) has led

to sustained decreases in HIV-related morbidity, mortality, and in-

cidence [1], HIV transmission foci remain, even in developed coun-

tries [2,3]. Identifying areas at high risk of ongoing HIV trans-

mission is critical for the efficient allocation of HIV prevention

and treatment services to meet the UNAIDS 90-90-90 Targets [4].

Population-level HIV drug resistance genotyping datasets, collected

for strain surveillance and during routine clinical care, provide a

unique molecular window into viral transmission [3]. Indeed, phy-

logenetic inference of HIV transmission hot spots from existing re-

sistance genotyping datasets represents a cornerstone of the United

States’ new strategy to end HIV [5].

For rapidly evolving pathogens like HIV, a well-informed molec-

ular phylogeny can provide an estimate of the between-host trans-

mission tree [6,7]. Phylogenetic clustering of HIV sequences is

commonly used to identify groups of individuals implicated with

higher transmission rates, information that is in turn used to prior-

itize HIV prevention services [2,8,9]. However, no standard cluster
etection method has been agreed upon and cluster membership

an vary dramatically between methods [10,11].

Alternatively, the transmission history of each virus in a phy-

ogenetic tree can be estimated by its lineage-level diversification

ate, defined as a tip’s splitting rate across the entire tree path,

eighted from tip to root [12,13]. Since transmission of HIV to

new host is equivalent to the formation of a new lineage, di-

ersification rates inferred from between-host phylogenies can ap-

roximate historical transmission rates. In previous work, we re-

orted that treatment experienced lineages displayed dramatically

educed HIV diversification rates, providing an independent vali-

ation of Treatment as Prevention® (TasP®) strategies [14]. Aggre-

ating viral diversification rates by patients’ geography of residence

hould illuminate areas with concentrated transmission activity.

Using longitudinal data collected from participants in the

ritish Columbia Centre for Excellence in HIV/AIDS (BC-CfE) Drug

reatment Program (DTP), we modeled the spatiotemporal distri-

ution of HIV lineage-level diversification rate in BC to predict

here new HIV cases arise over time. We hypothesized that a

odel incorporating geographically-aggregated viral diversification

ates would predict the location of new HIV cases significantly bet-

er than one incorporating clinical and epidemiological characteris-

ics alone.

. Methods

.1. Study setting and participants

Between May 1996 and March 29 2018, 9630 HIV-infected in-

ividuals had drug resistance testing performed through the BC-

fE’s Drug Treatment Program (DTP). Established in 1992, the DTP

s an open treatment and research cohort that provides all med-

cally eligible HIV-infected British Columbians with access to per-

onalized HAART and related laboratory monitoring at no cost [15].

ll HIV-infected BC residents are eligible whether or not they ac-

ess HAART. Baseline and follow up plasma samples are routinely

ollected for viral load monitoring and HIV drug resistance test-

ng; follow up continues until death or emigration from BC. Ethi-

al approval for this study was granted by the University of British

olumbia - Providence Health Care Research Ethics Board (H17-

1812). No further samples were collected nor were additional pa-

ients recruited.

.2. Clinical, epidemiological, and demographic variables

In addition to sequences, available data for this analysis in-

luded sample collection date; treatment initiation date; treatment

egimen; date of first viral load; physician estimated date of sero-

onversion; plasma viral load (HIV RNA copies/mL); HIV subtype

lassifications (generated using the SCUEAL algorithm) [16]; eth-

icity; birth year; sex at birth; sex; self-reported risk factors (in-

ection drug use, men who have sex with men, heterosexual con-

act, any receipt of blood product or exposure to blood risk, other

isk exposure); having ever tested positive for hepatitis C infection;

aving ever had acquired immune deficiency syndrome (AIDS); if

pplicable date of mortality and cause of death; local health au-

hority, health authority, postal code, census tract (CT), and census

etropolitan area (CMA) of patient residence; and forward sorta-

ion area (first three digits of postal code) of physician request-

ng test. Baseline CD4 counts were not available for this analysis.

he viral load assay detection limit changed several times prior to

008, so for consistency, only data from 2008 onwards was an-

lyzed in the final model. The detection limit over that period

as 40–10 000 000 copies viral RNA/mL plasma using a Roche

OBAS HIV-1 Ampliprep Taqman assay [17]. To suit the longitu-

inal nature of the analysis, patient data was carried over year to
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ear until new data was available (ie more recent viral load), un-

ess participants were removed due to death or migration out of

rovince. HIV sequences and patient information were stored in a

ecure Oracle database in access-restricted facilities at the BCCfE.

atient data were de-identified and doubly anonymized with ran-

omly generated 6-character identifiers. No document was created

inking identifiers to the patient.

.3. Phylogenetic inference

A total of 36 271 HIV resistance genotype tests from 9630 peo-

le living with HIV (PLHIV) were completed (mean, 3·77; me-

ian, 2; range 1–46 per individual). Genotypes comprised HIV

rotease and partial reverse transcriptase sequences, hereafter re-

erred to as partial pol. See Supplementary Appendix for details

n the sequence data. Sequences were aligned to the HXB2 refer-

nce genome (GenBank Accession #K03455) using MAFFT version

.310 [18]. The alignment was visualized and curated in AliView

1.17.1 [19]. Insertions and deletions relative to HXB2, as well as

mino acids corresponding to WHO recognized drug resistance

utation sites, were removed from the alignment [20]. A set of

huffled bootstrap alignments were generated to infer 100 approx-

mate maximum likelihood phylogenetic trees (in units of substitu-

ions per site), implemented in FastTree2.1 [21]. Subsequently, trees

ere pruned to include patients’ oldest samples and then rooted

sing root-to-tip regression in the R package ape version 5.0 [22].

ime interval trees for each study year were generated, which only

ncluded sequences from that year or earlier, such that each year

he trees only had tips added for newly infected (or newly con-

ected with care) participants (Fig. S3).

.4. Diversification rate

For each tip on a rooted bifurcating (time interval bootstrap)

ree, the viral lineage-level diversification rate (DRi) was calculated

s the reciprocal sum of Ni branch lengths (lj) from tip i to the

oot, with each consecutive edge (j) down-weighted by a factor of

/2 [12].

iversi f ication Ratei = Equal Splits−1
i

=
(

Ni∑
j=1

l j

2 j−1

)−1

The annual change in diversification rate for each lineage over

ime was calculated as the difference between the lineage’s mean

iversification rate across bootstraps for a given year and the pre-

eding year, with a value of zero for the first year a patient entered

he cohort. A lineage’s diversification rate would increase if a new

irus was added to the tree in close phylogenetic proximity. Di-

ersification rate, its distribution over time, and the robustness of

stimates to different tree-building algorithms are detailed in the

upplementary Appendix.

.5. Predictive modeling

Patient attributes and lineage-level diversification rates were

ggregated by their census tract of residence. Census tracts are

mall geographic areas that usually have a population under 10

00, which represent subdivisions of census agglomerations with

ore populations of ≥ 50 000 in the previous census [23]. Further

etails of patient attributes, aggregated variables, and geographic

nalysis are presented in the Supplementary Appendix. The mod-

ling outcome was the number of new HIV cases in each cen-

us tract in the subsequent year, as estimated by date of first de-

ectable viral load (see Supplementary Appendix for outcome va-

idity discussion). The viral load assay detection limit changed sev-

ral times prior to 2008, so for consistency, only data from 2008
nwards was analyzed in the final model. Since the outcome a dis-

rete count with a large percentage of zero values and some over-

ispersion (Fig. S2), a zero-inflated negative binomial (ZINB) model

as deemed most appropriate [24]. The ZINB model has two parts:

binomial model to predict whether there were greater than zero

ew cases and a negative-binomial model to predict the number

f cases if cases were greater than zero. Exponentiated coefficients

n each model were interpreted as adjusted odds ratios and ad-

usted relative risks, respectively. A hold out cross-validation su-

ervised machine learning algorithm was applied to train and test

he model (Fig. S7). The data was segregated into a training sub-

et (2009, 2010, 2012, 2013, 2015, and 2016) and a testing sub-

et of interspersed years (2008, 2011, and 2014). The 2017 dataset

2017 predictors, 2018 new cases) was reserved for a final blind

rediction and the full dataset for 2018 was obtained after the final

odel was selected. To assess how informative diversification rate

easures were in predicting new HIV cases, the full ZINB model

as reduced to a nested model excluding any phylogenetic mea-

ures (referred to as reduced ZINB). The goodness-of-fit of these

odels, a full zero-inflated Poisson (ZIP), and a full Hurdle model

ere compared in Table S3. For both the testing dataset and the

lind prediction dataset, the predictive fit of the full ZINB and re-

uced ZINB were compared in terms of their Pearson’s correlation

oefficient of predicted and observed values (for observed values

reater than zero); sensitivity; specificity; positive predictive value;

egative predictive value; accuracy; and top 20 agreement, which

s the proportion of census tracts predicted as being among the top

wenty for highest number of new HIV cases that were observed

Fig. 3).

.6. Spatial autocorrelation

In order to assess whether there was significant spatial auto-

orrelation in our dataset, we calculated a global Moran’s I for

he training subset of the outcome data as well as for the final

odel residuals, then tested whether it was significantly greater

han expected using a Monte Carlo simulation [25]. Spatial weights

ere equally divided among neighbors that shared at least one ver-

ex with each other. To further evaluate if the inclusion of spatial

utocorrelation in the model would improve the goodness of fit

r predictive power, we built a Bayesian hierarchical zero-inflated

oisson model with conditionally autoregressive (CAR) priors using

he R package, CARBayes [26]. CAR priors apply a binary neighbor-

ased matrix, which is appropriate for irregular lattice data, as in

he case of census tract level spatial data [27,28]. The CAR priors

ere modeled using a single set of random effects, as described by

eroux et al. [29] A Markov Chain Monte Carlo simulation (burn in:

00 000; chain length: 300 000; thinning level 30) was applied to

earch the posterior space. The goodness of fit and posterior coef-

cient estimates were compared to the final ZINB model.

. Results

.1. Study population

Of the 13 431 cumulative Drug Treatment Program participants

nrolled up to March 29 2018, 9630 (72%) individuals were rep-

esented in the HIV sequence database and 6944 (52% overall) of

hem reported their baseline census tract of residence or postal

ode and were included in the final analysis (Table 1). The ana-

yzed population was comparable to the DTP population with se-

uences in most regards including the distribution of sexes (male:

1·3% among DTP participants with sequences, 83·3% among an-

lyzed population); dominant HIV subtype (subtype B: 92·4%,

2·5%); median baseline age (38, 38); and median baseline di-

ersification rate (52·5 (subs/site)−1, 52·0 (subs/site)−1). The study
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Table 1

Characteristics of the Drug Treatment Program cohort with sequences compared to the study population restricted to those who have reported

a census tract of residence.

DTP cohort with sequences Study population

Parameter Characteristic N∗ Total % N∗ Total %

Total participants 9630 9630 100 6944 6944 100

Sex Male 8861 7208 81·3 6634 5525 83·3
Female 8861 1592 18·0 6634 1053 15·9
Male-Female∗∗ 8861 51 0·6 6634 47 0·7
Female-Male∗∗ 8861 10 0·1 6634 9 0·1

Sex

at

birth

Male 8861 7259 81·9 6634 5572 84·0
Female 8861 1602 18·1 6634 1062 16·0

Subtype B 9630 8895 92·4 6944 6420 92·5
C 9630 361 3·7 6944 254 3·7
AE 9630 163 1·7 6944 118 1·7
A 9630 85 0·9 6944 59 0·8
AG 9630 60 0·6 6944 43 0·6
Other 9630 34 0·4 6944 26 0·4
D 9630 32 0·3 6944 24 0·3

Health

Authority

Vancouver Coastal 8459 4923 58·2 6589 4217 64·0
Fraser 8459 1894 22·4 6589 1581 24·0
Vancouver Island 8459 858 10·1 6589 475 7·2
Interior 8459 478 5·7 6589 191 2·9
Northern 8459 306 3·6 6589 125 1·9

Self-

reported

risk

fac-

tors∗∗∗

Injection drug use 5500 3175 57·7 3948 2146 54·4
Men who have sex with men 6874 3487 50·7 5051 2783 55·1
Heterosexual contact 6874 2201 32·0 5051 1562 30·9
Other 6874 308 4·5 5051 214 4·2
Exposure to blood products 6874 225 3·3 5051 161 3·2

Self-

reported

eth-

nic-

ity∗∗∗

White 5753 3944 68·6 4284 2998 70·0
First Nations 5753 1275 22·2 4284 811 18·9
Asian 5753 435 7·6 4284 378 8·8
Black 5753 247 4·3 4284 192 4·5
Hispanic 5753 221 3·8 4284 176 4·1

Clinical

illness

Ever had hepatitis C virus 8318 3268 39·3 6247 2265 36·3
Ever had AIDS 8861 1074 12·1 6634 824 12·4
Died 7231 1527 21·1 5283 966 18·3

Baseline

measures

N∗ Median IQR N∗ Median IQR

Baseline diversification rate (subs/site)−1 9630 52·5 34·4–89·1 6944 52 34·3–88·3
Baseline log10 (viral load) log10(viral RNA/mL plasma) 9630 4·5 3·8–5·0 6944 5·3 4·5–7·0
Baseline age 9624 38 31–46 6916 38 31–45

∗ N = the number of participants who provided information for a given characteristic.
∗∗ Identifying as transgender was self-reported. Male-Female indicates an individual who was born a male and transitioned to a female, and

Female-Male indicates an individual who was born a female and transitioned to a male.
∗∗∗ Patients may report multiple risk factors and ethnicities.
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population underrepresented participants from the Vancouver Is-

land (10·1%, 7·2%), Interior (5·7%, 2·9%), and Northern (3·6%, 1·9%)

Health Authorities, and First Nations people (22·2%, 18·9%). Addi-

tionally, the median baseline viral load was somewhat lower in the

DTP population with sequences than among those who reported

a census tract (4·5, 5·3 log10 copies/mL). Although patient charac-

teristics for the entire Drug Treatment Program population were

not available for comparison to the study group, estimated risk

exposure characteristics of the prevalent HIV population in 2014

from the British Columbia Centre for Disease Control were com-

parable to the study population in terms of, for instance, the per-

cent of PLHIV who identified as MSM (BCCDC, 49%; study popula-

tion, 55.1%), with the caveat that we are comparing different years

[30].

3.2. Diversification rate

The distribution of lineage-level diversification rates across a

representative approximate maximum likelihood tree from 2018

is presented in Fig. 1. Lineages associated with rapid and ex-

tensive branching are typified by high diversification rates. We

showed that our diversification rate calculations were robust to

tree-building methods and HIV genomic region (Supplementary

Appendix). Although there was a slight increase in both mean and

median diversification rate over time attributable to sampling from
larger tree (see Supplementary Appendix), the population-level

istribution of diversification rates did not significantly change

cross the study period (Kruskal-Wallis, p = 0·385).

.3. Predictive modeling

The unadjusted relationships of aggregated variables with the

utcome were calculated to inform their model inclusion (Table

2). Among the highest Pearson correlation coefficients were new

IV cases in the previous year (r = 0·74, p<0·001), the total num-

er of PLHIV with changes in diversification rate ≥ 1 (subs/site)−1

r = 0·72, p<0·001), the sum of PLHIV (r = 0·69, p<0·001), and the

ean of the top 5 diversification rates (r = 0·48, p<0·001). After

dentifying a final ZINB model, a likelihood ratio test confirmed

hat it fit the data significantly better than its Poisson equiva-

ent (p<0·001), Hurdle equivalent (p<0·001), and the reduced ZINB

ithout phylogenetic measures (p<0·001) (Table S3). Further, the

IC, BIC, and log-likelihood values for the aforementioned models

ere all lower for the full ZINB model.

The mean of the top five ln(diversification rates) was signifi-

ant in both the binomial and negative binomial parts of the model

Table 2). The adjusted odds of a census tract having greater than

ero new HIV cases in the subsequent year was 3·10 (95% CI, 1·61–

·97) times higher for every one-unit increase in the mean of the

op five ln(diversification rates). In census tracts with greater than

ero new HIV cases, for every one-unit increase in the mean of the
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Fig. 1. A representative bootstrap approximate maximum likelihood phylogenetic tree of baseline HIV sequences available for all participants (n = 9630) as of March 2018

with branches colored by the lineage-level diversification rate. Cooler colors represent slower diversification rates while warmer colors represent faster diversification. Grey

concentric rings qualitatively distinguish lineages that have diverged the most from the root.

Table 2

The final zero-inflated negative binomial (ZINB) predictive model is a two-part model com-

posed of a binomial model to predict whether there were greater than zero new cases, and

a negative-binomial model to predict the number of cases, if cases were greater than zero.

Binomial {0, >0} model Adjusted odds ratio 95% CI p-value

Total PLHIV 0·81 0·74–0·88 <0·001

Mean of top five ln(diversification rate) 3·10 1·61–5·97 <0·001

Negative binomial {count if >0} model Adjusted relative risk 95% CI p-value

Total new cases 1·07 1·03–1·11 <0·001

Mean of top five ln(diversification rate) 1·38 1·28–1·49 <0·001

Total # PLHIV with change in diversification rate ≥ 1 1·10 1·07–1·13 <0·001

t
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op five ln(diversification rates) in that tract, the adjusted risk of

ew HIV cases in the subsequent year was 1·38 (95% CI, 1·28–1·49)

imes higher. Moreover, for every additional PLHIV with change in

iversification rate ≥ 1 (subs/site)−1 in a census tract, the adjusted

isk of new HIV cases in the subsequent year was 1·10 (95% CI,

·07–1·13) times higher. The spatiotemporal distribution of new

IV cases in downtown Vancouver across the study period was

eterogeneous and was collectively predicted by the distribution

f significant predictor variables (Fig. 2).

Comparing the predictive fit of the ZINB model to its reduced

quivalent for the testing dataset, the mean Pearson correlation co-
fficient of predicted and observed values for the full ZINB model

f 0·77 was 17% higher than that of the reduced ZINB model at

·66 (Fig. 3; Table S4). Interestingly, the reduced ZINB model had a

4% higher mean sensitivity than the full ZINB model (0·75, 0·66),

ut the full ZINB model had an 11% higher mean specificity (0·68,

·61) due to the reduced ZINB producing more false positives. The

ean accuracy was the same for both models (0·67). The top 20

greement (proportion of census tracts predicted to be among the

op 20 highest number of new HIV cases that were observed) was

8% higher for the full ZINB model (0.68) compared to the reduced

odel (0.53).
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Fig. 2. A combination of epidemiological and phylogenetic variables predicted the spatiotemporal distribution of new HIV cases in downtown Vancouver, BC in the sub-

sequent year. Only predictor values for odd study years between 2008 and 2017 with corresponding new HIV cases in the subsequent years were shown for conciseness,

however even years were also included in the analysis. The outcome, (a) total new HIV cases, was collectively predicted by (b) the total prevalent cases of PLHIV, (c) the

mean of the top five ln(diversification rates, DR), and (d) the sum of PLHIV with annual changes in diversification rate (DR) ≥1 (subs/site)−1. Grey census tracts have values

of zero.

Fig. 3. A comparison of the predictive power of the full ZINB and ZINB without phylogenetic measures (reduced ZINB). Hollow triangles represent testing data subset

values and are summarized by their mean, while the diamonds illustrate the predictive values for the blind prediction of 2018 new HIV cases based on 2017 predictors.

Criteria considered for predictive power include the Pearson’s correlation coefficient (for observed cases greater than zero to remove the effect of zero-inflation); sensitivity;

specificity; positive predictive value; negative predictive value; accuracy; and the top 20 agreement.

b

i

1
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d

Z

Of the 201 new HIV cases with sequences in 2018, only 64

had reported census tracts or postal codes in BC by February 4

2019, a markedly lower percent than previous years (Table S5).

Regardless, observed new HIV cases in 2018 were compared to

blind predictions from the model using 2017 predictors (Fig. 3, Fig.

S6). The Pearson correlation coefficient between observed and pre-

dicted number of HIV cases for the full ZINB model was markedly
etter than the reduced model by 162% (0·42, 0·16). The sensitiv-

ty for both models was high, although the reduced model had a

4% higher sensitivity of 0·90 compared to 0·79 in the full model.

he full ZINB model had a 12% higher specificity than the re-

uced model (0·46, 0·41), a 9% higher accuracy than the reduced

INB model (0·50, 0·46), and a 100% higher top 20 agreement

(0.4, 0.2).
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.4. Spatial autocorrelation

A Markov Chain permutation test for global Moran’s I revealed

hat although there was significant spatial autocorrelation within

he outcome (p<0·001), the final ZINB model residuals were not

ignificantly spatially autocorrelated (p = 0·086). To further investi-

ate if explicit incorporation of spatial autocorrelation could im-

rove the model, a Bayesian hierarchical zero-inflated Poisson

odel with conditionally autoregressive (CAR) priors was con-

tructed. The log likelihood of the CAR model (−1718) was poorer

han that of the final ZINB model (−1547) and the AIC value of the

AR model (3108) was nearly indistinguishable from the final ZINB

odel (3109). Coefficient estimates from the CAR model (Table S6)

verlapped greatly with the final ZINB model, further corroborat-

ng that the exclusion of a spatial autocorrelation term in the final

INB model did not artificially inflate coefficient errors.

. Discussion

Our findings revealed that geographically-aggregated HIV

ineage-level diversification rate, supplemented with clinical and

pidemiological data, better predicted the number and location of

uture new HIV cases across BC than clinical and epidemiological

ata alone. Models that predict where new HIV cases will arise are

aluable to public health authorities for prioritizing treatment and

revention services to areas of greatest need.

Multiple measures of aggregated diversification rate were sig-

ificantly correlated with new HIV cases in the subsequent year.

fter adjusting for prevalent and incident cases in the previous

ear, the mean of the top five diversification rates and the num-

er of individuals with large annual changes in diversification rate

ere both predictive of new HIV cases. This supports the utility of

ineage-level diversification rates as estimates of HIV transmission

nd suggests that the communities where actively transmitting PL-

IV reside tend to be those where new HIV cases arise. Though

nitially counterintuitive, increases in the prevalent PLHIV popula-

ion of a census tract decreased the risk of new HIV cases in the

ubsequent year. This was likely because the census tracts with

he highest prevalence were well known to public health officials

nd already had significant prevention and treatment programs in

lace. Additionally, there may be some element of transmission

aturation whereby areas with previously high incidence may now

ave fewer susceptible people in the population who have never

een infected, reducing the local transmission rate. Counter to pre-

ious studies [17,31], we did not find that any measures of com-

unity viral load were predictive of where new HIV cases arose

fter correcting for other variables, however this could be because

ur study group was limited to those with resistance tests and re-

orted census tracts.

The full model exhibited an improved correlation of observed

nd predicted new HIV cases and a higher specificity in both the

esting and blind prediction data relative to the reduced model,

hereas the reduced model had a higher sensitivity than the full

odel. There is a trade-off between the two models, as the re-

uced model detected more true positives, but also more false

ositives, than the full model. Including diversification rate im-

roved the positive predictive rate, or the proportion of true pos-

tives among all detected positives. In the case of allocating lim-

ted public health care resources to geographic communities, iden-

ifying false positive areas, that in reality will not have any new

IV cases arise within them, as hot spots would waste limited re-

ources. The specificity, in this case, is arguably more important

ecause it permits public health authorities to sift out low priority

reas (true negatives) to focus on high priority areas without wast-

ng any resources. While the differences in the models’ predictive

owers were modest, they demonstrated that the inclusion of di-
ersification rate measures was informative to the number and lo-

ation of new HIV cases in the subsequent year. Further optimiza-

ion of variable selection could improve its predictive power fur-

her. The 2018 blind predictions were somewhat hindered by the

ow percent of new HIV cases with sequences who also had census

ract information. The dataset we were working with lacked infor-

ation related to patients’ sexual behavior, such as marital status,

requency of sexual activity, or consistency of condom use. Incor-

orating these factors into the model could have further improved

he model’s predictive power, however their inclusion could also

hreaten to over parameterize the model.

Spatial autocorrelation is a concern when fitting models to spa-

ial data, as the assumption of independent observations may not

e met and can lead to overestimates of statistical significance

32]. The Moran’s tests suggested that while the number of new

IV cases was spatially autocorrelated between adjacent commu-

ities, this spatial dependence was accounted for in the model

hrough our included predictors. By including the number of new

ases in the previous year as a predictor, for example, we informed

he model where values were likely to be similar. A brief compar-

son of the final ZINB model to a Bayesian hierarchical model that

ccounted for spatial autocorrelation revealed that the models did

ot differ greatly in their goodness of fit or coefficient estimates.

uture improvements to the model could consider more complex

easurements of adjacency and proximity.

Restricting analyses to individuals who resided in a census tract

ould theoretically introduce geographic sampling bias by exclud-

ng those who were in small rural communities not covered by

ensus tracts and those who had insecure housing. However, we

ound that participants with reported census tracts were compara-

le to the DTP group with sequences available. A greater sampling

ias was likely derived from those who were disconnected from

are entirely, as undiagnosed PLHIV might disproportionately con-

ribute to HIV transmission [33]. Individuals in well-serviced com-

unities with strong health seeking behaviors were more likely to

e connected with care, diagnosed, and have an associated viral se-

uence. In 2014, an estimated 83% of PLHIV in BC were diagnosed

4]; nevertheless efforts should be made to engage hard-to-reach

ndividuals in care in a way that is non-threatening, inclusive, and

easible. Furthermore, we assumed that our study population did

ot migrate between census tracts within BC during the study pe-

iod. Although this assumption is surely not true for all individuals,

ur dataset was restricted to the geography of patient residence at

he first viral load test. Migration between census tracts would add

oise to the model, leading to an underestimation of the added

redictive power of phylogenetic metrics.

Other attempts have been made to quantify the evolution

f pathogen transmission rates across phylogenies [34,35]. These

ethods fundamentally differ from the methodology described

ere as these tree-wide estimates assume that the transmission

ates evolve as a discrete state according to either a Markov-

odulated Poisson process [34] or a multi-type birth–death

ranching model process [35], in contrast to our lineage-level es-

imates, which do not rely on assumptions about the evolution of

ates.

It is imperative that researchers in genomic epidemiology miti-

ate the risk of patient identification [36]. In this study, protection

f patients’ privacy and confidentiality was achieved by merging

ensus tracts until no fewer than three PLHIV resided in the final

erged census tract at any point in time. Another reason for ag-

regating multiple census tracts is that rates computed using small

opulations at risk are relatively unstable [37].

In future work, we intend to validate the model on other HIV-

fflicted geographies with lower sampling coverage, although the

odel would likely have to be re-trained to be applicable to widely

ifferent localized epidemics. Thus, the model’s external validity
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lies in its premise, while the relationship between geographically-

aggregated phylogenetic, clinical, and epidemiological data and the

resulting number and location of new HIV cases will likely dif-

fer somewhat by geography. Simulating an epidemic could also

be useful to assess the effect of down-sampling on the distribu-

tion and interpretation of diversification rates. Further, calculating

the lineage-level diversification rates of individuals within clusters

could increase the resolution of existing prioritization schemes.

Lineage-level diversification rate may also represent a useful met-

ric for transmission of other rapidly-evolving pathogens.

Viral lineage-level diversification rates approximate HIV trans-

mission and when aggregated by individuals’ geography of resi-

dence revealed high priority transmission hot spots. Phylogenetic

analyses of pre-existing HIV genotyping data can refine predictions

of where public health resources will have the greatest impact.
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