
Seq-RBPPred: Predicting RNA-Binding Proteins from Sequence
Yuyao Yan, Wenran Li, Sijia Wang,* and Tao Huang*

Cite This: ACS Omega 2024, 9, 12734−12742 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: RNA-binding proteins (RBPs) can interact with RNAs to regulate RNA translation, modification, splicing, and other
important biological processes. The accurate identification of RBPs is of paramount importance for gaining insights into the intricate
mechanisms underlying organismal life activities. Traditional experimental methods to predict RBPs require a lot of time and money,
so it is important to develop computational methods to predict RBPs. However, the existing approaches for RBP prediction still
require further improvement due to unidentified RBPs in many species. In this study, we present Seq-RBPPred (predicting RBPs
from sequence), a novel method that utilizes a comprehensive feature representation encompassing both biophysical properties and
hidden-state features derived from protein sequences. In the results, comprehensive performance evaluations of Seq-RBPPred its
superiority compare with state-of-the-art methods, yielding impressive performance including 0.922 for overall accuracy, 0.926 for
sensitivity, 0.903 for specificity, and Matthew’s correlation coefficient (MCC) of 0.757 as ascertained from the evaluation of the
testing set. The data and code of Seq-RBPPred are available at https://github.com/yaoyao-11/Seq-RBPPred.

1. INTRODUCTION
RNA-binding proteins (RBPs) are a class of proteins that
exhibit the capacity to interact with mRNA as well as
noncoding RNA molecules. These RBPs hold significant
prominence in the regulation of diverse metabolic processes
within the biological system, exerting their influence through
intricate RNA-related mechanisms, including translation,1

modification,2 splicing,3 and transport.4 The identification of
RBPs remains a significant challenge as numerous species
harbor a substantial number of RBPs that are yet to be
characterized. Achieving accurate identification of RBPs
assumes utmost importance in comprehending the functional
intricacies underlying organismal processes.

With the advancement of biotechnology, the availability of
genomic data has grown exponentially, leading to an increasing
trend of utilizing machine learning techniques to explore the
intricacies of the human genome. In recent years, there has
been a proliferation of applications employing machine
learning in genomics. These applications encompass a wide
range of areas, including the prediction of binding sites for
DNA and RNA binding proteins,5−9 the identification of cis-
regulatory elements such as promoters10,11 and enhancers,12,13

the prediction of DNA methylation patterns,14−16 and histone
modifications,17,18 the determination of cellular localiza-
tion,19−21 the analysis of alternative splicing events,22,23 and
the assessment of the impact of genetic variants on gene
expression,24 among others.

Although machine learning has been widely applied in
genomics, its utilization in predicting RBPs is still limited.
Currently, two primary methodologies are employed for RBP
prediction: structure-based approaches and sequence-based
approaches. The structure-based approach leverages three-
dimensional structural information on proteins to predict
RBPs. For instance, NAbind25 utilizes electrostatic information
derived from protein structures in combination with the
support vector machine (SVM)26 as a machine-learning
algorithm for RBP prediction. Another example is SPOT-
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stru,27 which employs a template-based approach to predict
RBPs by considering the folding recognition and binding
affinity of protein structures. The structure-based approach
provides valuable insights into the three-dimensional character-
istics of proteins, offering direct information about protein−
RNA interactions. However, it is reliant on the availability and
accuracy (ACC) of protein structures. Currently, there is a
relative scarcity of protein structure data, necessitating further
advancements in certain methods employed for predicting
protein structures.

The sequence-based approach primarily relies on amino acid
sequence information for RBP prediction. This approach is
more convenient and allows for prediction on a large scale of
protein sequences. Currently, the most accurate method for
predicting RBPs is Deep-RBPPred,28 an improved version
based on RBPPred.29 RBPPred utilizes SVM for RBP
prediction based on protein sequences. However, it takes a
long time to run and requires significant computational
resources. Deep-RBPPred uses a convolutional neural network
(CNN) for RBP prediction, demonstrating enhanced
prediction capabilities compared to RBPPred. Nevertheless,
in certain data sets, the prediction rate of Deep-RBPPred is still
not optimal.

In this paper, we developed Seq-RBPPred with the primary
objective of enhancing the precision of predicting RBPs. To
accomplish this, our approach involves the utilization of
Protr,30 UniRep,31 SeqVec,32 and ESM-1b33 to extract a
comprehensive set of 6944 features from protein sequences.
Subsequently, the eXtreme gradient boosting (XGBoost)34 was
employed for training and predicting RBPs (Figure 1).

In this study, we utilized two distinct training sets to
enhance the predictive capacity of our model. The first training
set, obtained from Deep-RBPPred, consisted of 2780 RBPs
and 7093 non-RBPs. To further enrich our training set, we
extracted additional protein sequences from the same species
present in EuRBPDB35 and PDB.36 By integrating these
sequences with training set 1, we created training set 2,
encompassing 4801 RBPs and 6243 non-RBPs. We partitioned
training set 1 into ten subsets, employing eight subsets for

training and two subsets for validation purposes. The Seq-
RBPPred model was applied to these subsets, and its
performance was compared against the Deep-RBPPred28

model using the same testing set. Our findings revealed that
Seq-RBPPred exhibited superior performance, thereby validat-
ing its efficacy over Deep-RBPPred. Furthermore, we
employed Seq-RBPPred to train and predict using the training
set 2. To facilitate comparative analysis, we applied the
methodology employed in Deep-RBPPred and the aforemen-
tioned machine learning approach to predict the same testing
set. Remarkably, the performance of Seq-RBPPred consistently
surpassed that of Deep-RBPPred, achieving an ACC of 0.922, a
Matthew’s correlation coefficient (MCC) of 0.757, a sensitivity
(SN) of 0.923, and a specificity (SP) of 0.903. To assess the
discriminative ability of the model across different samples, we
employed the receiver operating characteristic curve and
calculated the corresponding area under the curve
(AUROC). The AUROC provides a comprehensive evaluation
of the model’s performance, depicting the relationship between
the true positive rate and the false positive rate. Our results
demonstrated that Seq-RBPPred achieved an AUROC value of
0.971, further affirming its high predictive ACC.

2. METHODS
2.1. Data Preprocessing. We collected data on RBPs

from the EuRBPDB,35 and non-RBPs from the PDB,36

focusing on the same species present in both databases (Figure
S1a). EuRBPDB encompasses 162 species, while PDB
encompasses 2072 species. Given the dissimilarity between
the species in EuRBPDB and the PDB, we carefully curated a
set of 30 species, encompassing both RBPs and non-RBPs, to
maintain a balanced representation of positive and negative
samples for further analysis.

EuRBPDB is a comprehensive repository of eukaryotic
RBPs, serving as a comprehensive database encompassing a
total of 311,571 RBPs derived from various eukaryotic
organisms, including humans, mice, Drosophila, worms, and
other representatives from 162 eukaryotic species. It furnishes
a precise and exhaustive compilation of RBPs for each

Figure 1. Seq-RBPPred framework employs four distinct tools: Protr, UniRep, SeqVec, and ESM-1b, to extract a comprehensive set of features
from protein sequences. Specifically, it extracts 187, 5700, 1024, and 33 types of features, culminating in a total of 6944 features. These features are
then fed into the XGBoost algorithm, which is used to analyze and predict the proteins that act as RBPs. Within the processing mechanism of
XGBoost, each feature of the input samples is evaluated, and scores are allocated based on their discriminative capacity. The final determination of
whether a protein is an RBP is made by selecting the outcome with the highest score. More precisely, the output of Seq-RBPPred is a binary
classification, where “1” signifies the presence of an RBP in the input protein and “0” denotes its absence, thereby categorizing it as non-RBP.
Furthermore, we adopt ACC, MCC, SN, and SP as the evaluative metrics for our model.
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eukaryotic organism under consideration. Essential files,
namely, RBPlist and totalFa, are acquired by downloading
data from EuRBPDB. The RBPlist comprises a collection of
individual RBP sequences extracted from totalFa. It is
noteworthy that multiple corresponding sequences are often
encountered, necessitating their comprehensive documenta-
tion while giving precedence to the longest sequence.

To identify non-RBPs, PISCES37 in the PDB database is
utilized for screening purposes. Our processing methodology
aligns with that employed by RBPPred29 and Deep-
RBPPred.28 Non-RBPs conforming to the subsequent
processing criteria are included: a sequence identity threshold
of 0.25, exclusion of sequences shorter than 50 or longer than
10,000 residues, and an X-ray resolution superior to 3.0 Å.
Following the aforementioned procedures, a total of 11,606
chains were obtained.

Based on an analysis of 11,606 data strands, we have selected
non-RBPs that belong to the same species as EuRBPDB.
Protein chains obtained from PDB are excluded from our
selection if their titles contain any of the following terms:
“ribosomal”, “RNA”, “nucleoprotein”, “unknown function”,
“uncharacterized”, or “hypothetical”. Consequently, we have
identified a final set of 2777 protein sequences, which are
classified as non-RBPs.

To eliminate redundancy between RBPs from EuRBPDB
and non-RBPs from PDB, we merged the two data sets and
employed the psi-cd-hit program within the CD-HIT38

package. This program allowed us to remove redundant
sequences with a sequence identity of 25% or higher. As a
result, our nonredundant data set consists of 6618 RBPs and
1565 non-RBPs. To ensure consistency in the prediction
results and minimize the influence of length variations, we
adjusted the length of RBPs to match that of non-RBPs,
restricting both to a range of 50 to 10,000 amino acids.
Additionally, any proteins labeled as “fragment” were excluded
from the RBPs data set.

2.2. Training Set and Testing Set. For a fair comparison
with the previous methods, we trained on two data sets and
tested on the same testing set.

Training set 1, obtained from Deep-RBPPred,28 comprised
2780 RBPs and 7093 non-RBPs. To enhance the diversity of
our training set, we partitioned the processed data from
Section 2.1 into three distinct subsets. Two-thirds of these data
was allocated for training purposes and combined with training
set 1. To eliminate redundancy, CD-HIT38 was employed,
ensuring a sequence identity threshold of ≤30% (Figure S1b).
As Deep-RBPPred did not explicitly provide a testing set, we
employed the remaining third of the data as the testing set
(Figure S1a). To maintain the integrity of training set 1, we
excluded the same data present in the testing set from training
set 1, resulting in our final testing set.

We employed two training sets and one testing set for
feature extraction, and subsequently, the extracted data were
combined. The process of feature extraction is described in
Section 2.3. Ultimately, training set 1 comprises 2412 RBPs
and 6961 non-RBPs, while training set 2 consists of 4801 RBPs
and 6243 non-RBPs. As for the testing set, it encompasses
1626 RBPs and 329 non-RBPs.

2.3. Protein Features and Encoding. The features of
protein sequences hold paramount significance in acquiring
insights into the fundamental attributes of proteins. In this
regard, we employ four distinct methodologies to extract a
total of 6944 features from each protein sequence. The

availability of these discerning features facilitates the seamless
progression toward subsequent stages of model training.
2.3.1. Protr: Obtaining a Series of Physical and Chemical

Properties. Protr30 is an R-package specifically designed for
extracting a variety of protein descriptors, including amino acid
composition (AAC), pseudo amino acid composition (PAAC),
and composition, transition, distribution (CTD) descriptors.
AAC describes the proportions of various amino acids in a
protein, reflecting the fundamental characteristics of its
structure and function. PAAC considers the impact of the
sequence position on protein properties, adding spatial
structure considerations to traditional AAC. Composition
details the proportions of various amino acids in a protein,
reflecting its basic compositional characteristics. Transition
analysis analyzes the frequency of transitions from one amino
acid characteristic to another in the protein sequence, revealing
dynamic changes in the sequence. Distribution focuses on the
distribution patterns of specific amino acid properties (such as
hydrophobicity or hydrophilicity) throughout the entire
sequence. The comprehensive analysis of these features allows
us to understand the structure and function of proteins from
different perspectives. By analyzing these distribution patterns
in the sequence, we obtain a 147-dimensional vector that
deeply reveals the biological functions of proteins. Amino acids
are divided into three different categories based on their
unique chemical properties (Table S1), further enriching our
understanding of the relationship between protein structure
and function. Finally, using this comprehensive information in
the protein backbone sequence, we constructed a feature
vector with 187 dimensions for each protein sequence (Figure
S2), providing rich information for further biological research.
2.3.2. UniRep: Obtaining the Hidden State of a Protein.

UniRep31 uses a multiplicative long short-term memory
network to learn the statistical representations of protein
sequences from UniRef50,39 focusing on a profound under-
standing of biological characteristics. Through this learning
mechanism, UniRep can precisely encode input sequence
length vectors. The protein sequence features learned from the
samples encompass three dimensions: the average hidden
layer, the final hidden layer, and the final cell, each with a
feature dimension of 1900. The aggregation of these features
reflects the complex biological nature of proteins including
their structural characteristics, evolutionary information,
biophysical properties, and statistical representations. Here,
the structural characteristics refer to the three-dimensional
arrangement and conformation of amino acids in proteins,
which are crucial for their functional efficacy. In terms of
statistical representations, UniRep transforms the fundamental
features of proteins into semantically rich statistical data
through deep learning, thereby capturing the essence of their
structures and functions.

Integrating these features, each protein sequence is endowed
with a feature vector of 5700 dimensions, emphasizing an in-
depth analysis of the biological functions of proteins. In
practical applications, the use of UniRep for feature extraction
has further validated its utility and ACC in the field of
bioinformatics, as evidenced by the changes in the number of
protein samples in the training and testing sets. Upon utilizing
UniRep for feature extraction, the number of RBPs in training
set 1 is reduced from 2780 to 2,682, while the non-RBPs
decrease from 7093 to 6986. In the EuRBPDB35 set, the
number of RBPs experiences a change from 4243 to 3,953, and
the non-RBPs in the PDB36 are reduced from 1043 to 1039.
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Additionally, the number of RBPs in the testing set is altered
from 2122 to 1,988, and the non-RBPs show a decrease from
522 to 521 (Figure S3).
2.3.3. SeqVec: Effectively Capturing the Biophysical

Properties. SeqVec32 utilizes ELMo (embeddings from
language models),40 a natural language processing language
model, for modeling protein sequences and uses continuous
vectors to represent these sequences. It adeptly captures the
essence of proteins by leveraging large-scale, unlabeled
biophysical properties, including the hydrophobicity which
determines amino acids’ interactions with water, charge
characteristics that influence the attraction or repulsion
among amino acids, and molecular size that impacts the
positioning and folding within the protein structure. This
approach facilitates the generation of a 1024-dimensional
feature vector for each protein sequence.
2.3.4. ESM-1b: Predicting Structure, Function, and Other

Protein Properties Directly from a Single Sequence. ESM-
1b33 uses a self-supervised language modeling approach, is
effectively applied to various natural language processing tasks,
and is suitable for unlabeled amino acid sequences within
protein data. This model profoundly learns from a vast protein
sequence database, capturing biological structural features at
the amino acid level and extending to the entire protein
structure. Additionally, ESM-1b reflects the evolutionary
relationships between proteins, revealing sequence homology.
It also internalizes and represents secondary and tertiary
structural information on proteins, crucial aspects of spatial
protein structure. Notably, during the pretraining process, the
model relies solely on the sequences themselves without any
external learning signals, indicating that these biological
characteristics emerge naturally in an unsupervised environ-
ment. In the case of ESM-1b, the author selected protein
sequences with a length below 1,023, thus our data set
exclusively includes protein sequences meeting this criterion.
Consequently, training set 1 consists of 2418 RBPs and 7067
non-RBPs, while the EuRBPDB35 training set contains 3505
RBPs and the PDB36 training set comprises 1038 non-RBPs.
As for the testing set, it encompasses 1769 RBPs and 519 non-
RBPs. Each protein sequence is associated with a 33-
dimensional feature vector.

Tables 1−3 respectively present the number of RBPs and
non-RBPs retained after employing different methods for

feature extraction in training set 1, training set 2, and the
testing set. The sequences processed through diverse methods
are combined, and their intersection is determined. Con-
sequently, the final training set 1 consists of 2412 RBPs and
6961 non-RBPs. In training set 2, the EuRBPDB35 contains
3379 RBPs and the PDB36 includes 1034 non-RBPs.

The sequences processed through diverse methods are
combined, and their intersection is determined. Consequently,

the final training set 1 consists of 2412 RBPs and 6961 non-
RBPs. In training set 2, the EuRBPDB35 contains 3379 RBPs
and the PDB36 includes 1034 non-RBPs. These data sets are
merged with the training data set 1, followed by the removal of
redundant entries, resulting in training data set 2, comprising
4801 RBPs and 6243 non-RBPs. Regarding the testing set,
EuRBPDB contributes 1708 RBPs and PDB contains 517 non-
RBPs. We exclude the data present in the Deep-RBPPred
sequences from both EuRBPDB and PDB, yielding a final
testing set comprising 1626 RBPs and 329 non-RBPs. Each
protein sequence within the final testing and training sets is
associated with a 6944-dimensional feature vector.

2.4. Machine Learning Analysis. Seq-RBPPred, integra-
tes XGBoost34 as the central component of its algorithm,
harnessing the robust capabilities of XGBoost to execute its
designated tasks with efficiency and ACC. Additionally, to
underscore the exceptional performance of XGBoost in binary
classification models, we include random forest,41 deep
forest,42 and DmLab43 as classifiers for comparative analysis.
2.4.1. XGBoost. XGBoost34 represents a boosting algorithm

implementation that effectively incorporates the gradient-
boosting decision tree algorithm. It demonstrates remarkable
proficiency in addressing both classification and regression
problems. Due to its exemplary performance, simplicity, and
speed, XGBoost has gained substantial popularity in numerous
data competitions and has found extensive utilization across
various industries.

For training purposes, we employ the xgb.XGBClassifier
module within the scikit-learn44 framework. This enables us to
generate binary classification outputs on both the validation

Table 1. Number of Positive and Negative Samples After the
Training Set 1 Uses Different Methods to Obtain Features

method
RBPs (after feature

extraction)
non-RBPs (after feature

extraction)

Protr 2767 7003
UniRep 2682 6986
SeqVec 2780 7093
ESM-1b 2418 7067
obtaining
intersection

2412 6961

Table 2. Number of Positive and Negative Samples After the
Training Set 1 Uses Different Methods to Obtain Features

method
RBPs (after feature

extraction)
non-RBPs (after
feature extraction)

Protr 4102 (from
EuRBPDB)

1039 (from PDB)

UniRep 3953 (from
EuRBPDB)

1039 (from PDB)

SeqVec 4243 (from
EuRBPDB)

1043 (from PDB)

ESM-1b 3505 (from
EuRBPDB)

1038 (from PDB)

obtaining intersection 3379 (from
EuRBPDB)

1034 (from PDB)

redundancy after merging
with training set 1

4801 6243

Table 3. Number of Positive and Negative Samples After the
Training Set 1 Uses Different Methods to Obtain Features

method
RBPs (after feature

extraction)
non-RBPs (after
feature extraction)

Protr 2053 (from
EuRBPDB)

520 (from PDB)

UniRep 1988 (from
EuRBPDB)

521 (from PDB)

SeqVec 2122 (from
EuRBPDB)

522 (from PDB)

ESM-1b 1769 (from
EuRBPDB)

519 (from PDB)

obtaining intersection 1708 (from
EuRBPDB)

517 (from PDB)

delete the same sequences as
the training set 1

1626 329
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and testing sets alongside individual scores for each protein
sequence within the testing set.
2.4.2. SVM Classifier. SVM,26 known as a linear classifier,

primarily tackles binary classification problems through
supervised learning, wherein it classifies data based on
provided training examples.

In this study, we employ the SVM algorithm in the scikit-
learn44 library, utilizing the radial basis function (RBF) kernel.
This facilitates the production of binary classification outputs
on the validation and testing sets as well as individual scores
for each protein sequence within the testing set.
2.4.3. Random Forest. The random forest41 classifier

constitutes an ensemble classifier that comprises numerous
decision trees. By training on a subset of randomly selected
training samples and variables, a notable performance.

Within our investigation, the RandomForestClassifier
module within scikit-learn44 is employed for data training.
The resulting model is subsequently utilized to generate binary
classification outputs on the subtesting set and the testing set,
enabling the determination of whether a given protein
sequence corresponds to an RBP. Additionally, scores are
obtained for each protein sequence within the testing set.
2.4.4. Deep Forest. Zhou42 proposed the deep forest

method, which consistently yields favorable outcomes despite
its modest number of layers and basic forest trees. In this
method, the random forest serves as the fundamental unit
where a single random forest consistently surpasses the
performance of an individual neuron.

We use CascadeForestClassifier in the deep forest42 package
for training on the designated training set. Subsequently,

binary classification outputs are derived for the validation and
testing sets, accompanied by scores for each protein sequence
within the testing set.
2.4.5. DmLab: Training and Getting a Set of Rules.

DmLab43 represents software capable of ranking features based
on their importance and identifying interdependencies
between them. Its core principle revolves around employing
Monte Carlo feature selection techniques. In DmLab, the
random seed is set to 2022, and the program processes the data
to obtain a series of feature rules. By applying these obtained
rules to the test set, the prediction ACC for said test set can be
determined.

2.5. Performance Evaluation. In this study, the
effectiveness of the model was further assessed through the
utilization of cross-validation and independent testing set
validation. DmLab43 uses the 5-fold cross-validation. The
training group is randomly divided into ten parts in Seq-
RBPPred, SVM,26 random forest,41 and deep forest.42

Specifically, eight subsets were designated as subtraining sets
while the remaining two subsets served as subtesting sets.

Each of the aforementioned methods was evaluated on an
independent testing set. To ascertain the model’s performance,
various metrics including ACC, MCC, SN, and SP were
employed. These metrics were defined as follows

ACC
TP TN

TP FN TN FP
= +

+ + + (1)

Figure 2. Performance of RBPPred, Deep-RBPPred, SVM, random forest, deep forest, DmLab, and Seq-RBPPred on the subtesting set and
independent testing set is evaluated. (a,b) Seq-RBPPred achieves the best performance in the subtesting set, suggesting that XGBoost can be more
suitable for predicting RBPs than the other methods mentioned in the article. (c) Performance of the model trained on training set 1 on the testing
set. (d) Performance of the model trained on training set 2 on the testing set, where Seq-RBPPred outperformed others in terms of ACC, MCC,
and SN, while RBPPred scored the highest in SP. Overall, Seq-RBPPred proves to be more suitable for predicting RBPs than the other methods.
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MCC
TP TN FP FN

(TP FN) (TP FP) (TN FP) (TN FN)
= · ·

+ · + · + · +
(2)

SN
TP

TP FN
=

+ (3)

SP
TN

TN FP
=

+ (4)

In the above equation, TP is true positive, FN is false negative,
TN is true negative, and FP is false positive.

At the same time, to make the evaluation index more
objective, we employed the receiver operating characteristic
curve and calculated the AUROC. The larger the AUROC, the
better the performance.

3. RESULTS
We present Seq-RBPPred, a sequence-based approach for the
prediction of RBPs. To predict RBPs, we extracted relevant
features from each protein sequence. These features are then
encoded and utilized to train machine learning models, which
are subsequently compared to previous prediction methods.
Additionally, we employ SVM,26 random forest,41 deep
forest,42 and DmLab43 as alternative classifiers for training
and prediction to demonstrate the superior performance of
XGBoost34 in binary classification tasks.

3.1. Performance on the Training Set. The training set
is divided randomly into ten parts, with eight sections serving
as subtraining sets and the remaining two sections as
subtesting sets.

During training test 1, Seq-RBPPred achieves an ACC of
0.942, an MCC of 0.843, an SN of 0.864, and an SP of 0.968.
DmLab yields an ACC of 0.864, an MCC of 0.732, an SN of
0.808, and an SP of 0.919. SVM obtains an ACC of 0.884, an
MCC of 0.672, an SN of 0.614, and an SP of 0.974. Random
forest produces an ACC of 0.920, an MCC of 0.779, an SN of

0.742, and an SP of 0.979. Deep forest demonstrates an ACC
of 0.931, an MCC of 0.813, an SN of 0.823, and an SP of
0.967.

In training test 2, Seq-RBPPred achieves an ACC of 0.940,
an MCC of 0.879, an SN of 0.926, and an SP of 0.951. DmLab
yields an ACC of 0.875, an MCC of 0.750, an SN of 0.872, and
an SP of 0.877. SVM obtains an ACC of 0.885, an MCC of
0.769, an SN of 0.810, and an SP of 0.945. Random forest
produces an ACC of 0.906, an MCC of 0.810, an SN of 0.852,
and an SP of 0.948. Deep forest demonstrates an ACC of
0.917, an MCC of 0.831, an SN of 0.885, and an SP of 0.942.

Figure 2a,b demonstrates the predictive performance of
various methods on subtesting sets within training sets 1 and 2.
Notably, Seq-RBPPred, employing XGBoost, exhibited supe-
rior performance, highlighting the advantages of XGBoost in
RBP prediction over other methods. The strengths of XGBoost
are attributable to its gradient boosting framework, which
effectively addresses various types of data biases, a crucial
aspect for complex bioinformatics tasks such as RBP
prediction. Additionally, the regularization component in-
corporated in its training process significantly reduces the risk
of overfitting, which is essential for dealing with the high
complexity and variability inherent in RNA sequence data.
Furthermore, XGBoost’s efficiency and scalability in handling
large data sets underscore its superiority in RBP prediction.

3.2. Performance of Seq-RBPPred on the Independ-
ent Testing Data Set. When applying the aforementioned
method to an independent testing set consisting of 1626 RBPs
and 329 non-RBPs, Seq-RBPPred consistently achieves the
highest performance. Deep-RBPPred,28 incorporates two
methods, namely “balance” and “imbalance”, for testing the
protein sequences within our independent testing set.

Within training test 1, the independent testing set results for
Seq-RBPPred reveal an ACC of 0.813, MCC of 0.578, SN of
0.787, and SP of 0.942. Deep-RBPPred generates a score for
each sequence within the independent testing set with a
threshold of 0.5. Protein sequences with scores above 0.5 are
considered RBPs, while those below 0.5 are deemed non-RBPs.

Figure 3. Performance of RBPPred, Deep-RBPPred, SVM, random forest, deep forest, DmLab, and Seq-RBPPred on the testing set. (a) AUROC
of the models trained on training set 1, including Deep-RBPPred, SVM, random forest, deep forest, DmLab, and Seq-RBPPred, when tested on an
independent test set. Among them, Seq-RBPPred achieved the highest AUC with a value of 0.959. (b) AUROC of the models trained on the
training set 2, including SVM, random forest, deep forest, DmLab, and Seq-RBPPred, when evaluated on an independent test set. Once again, Seq-
RBPPred exhibited the highest AUC with a value of 0.971.
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In the balance model, the ACC is 0.855, the MCC is 0.592, the
SN is 0.860, and the SP is 0.830. In the imbalance model, the
ACC is 0.794, the MCC is 0.536, the SN is 0.771, and the SP is
0.909. It is observed that the balance model within Deep-
RBPPred outperforms Seq-RBPPred in terms of ACC, MCC,
and SN. However, Seq-RBPPred demonstrates superior ACC,
MCC, SN, and SP when compared with the unbalanced model
within Deep-RBPPred. Our evaluation utilizes the entire data
of Deep-RBPPred and not its balanced data set, we focus on
comparing it with the imbalanced model of Deep-RBPPred.

Satisfactory results were achieved when training our method
on the data from training set 1, thereby validating the
effectiveness of Seq-RBPPred in the RBP prediction.
Consequently, we proceeded to employ the model trained
using training set 2 on an independent testing set to evaluate
the performance of Seq-RBPPred. In training test 2, Seq-
RBPPred within the independent testing set yields an ACC of
0.922, an MCC of 0.757, an SN of 0.926, and an SP of 0.903.

Similarly, we evaluated the results of SVM, random forest,
deep forest, and DmLab as model classifiers while ensuring
consistent input data (Tables S2 and S3). The findings indicate
that Seq-RBPPred performs better within the binary
classification model.

Figure 2c,d demonstrates the performance of the model
trained using training sets 1 and 2 on the independent testing
set. In training test 2, Seq-RBPPred demonstrates superior
performance by achieving the highest values for ACC, MCC,
and SN. Additionally, RBPPred exhibited the highest score in
SP. This could be attributed to Seq-RBPPred’s design
emphasis on enhancing the ACC of positive samples (true
positives), thereby achieving superior performance in terms of
ACC, MCC, and SN. However, this focus may lead to a
comparatively poorer classification of negative samples (true
negatives), subsequently reducing the SP score. The
prioritization of ACC for positive instances may result in a
trade-off with the classification effectiveness for negative
instances, impacting the overall SP score in the evaluation
metrics. Overall, Seq-RBPPred is more suitable for predicting
RBPs than other methods.

To reduce the impact of score thresholds on the
comparative analysis of results, this study employs ROC
curves for a more comprehensive evaluation of the predictive
capabilities of various methodologies on the independent
testing data set. Seq-RBPPred demonstrates optimal perform-
ance on both training set 1 and training set 2, achieving area
under the curve (AUC) values of 0.959 and 0.971, respectively.
Figure 3 distinctly illustrates the ROC curves for diverse
methodologies on the independent testing set, using training
sets 1 and 2 as the training data sets. These results suggest that
enhancing the feature representation of amino acid sequences
significantly aids Seq-RBPPred in more effectively learning
RBP, thereby improving the ACC and efficiency of predictions.

4. DISCUSSION
As the volume of genomic data continues to expand and
advancements in machine learning techniques progress,
computational approaches are increasingly being utilized in
the field of genomics. However, the application of these
methods in predicting RBPs remains somewhat limited. RBPs
play a pivotal role in the biological processes of organisms.
Presently, there are two primary methods for RBP prediction:
one based on protein structural information and the other on
protein sequence information. Among these, Deep-RBPPred,

which uses protein sequence information, has shown a higher
ACC. However, it suffers from an extended computational
time and requires further enhancement in ACC.

To overcome these limitations, we propose a novel
XGBoost-based method, named Seq-RBPPred, for RBP
prediction. This method integrates 6944 protein sequence
features and employs machine learning techniques as described
in prior research to improve predictive performance (code
available at https://github.com/yaoyao-11/Seq-RBPPred).
Our analysis indicates that Seq-RBPPred surpasses Deep-
RBPPred in training and prediction results for both RBPs and
non-RBPs. Additionally, Seq-RBPPred demonstrated favorable
performance in an independent testing set. To ensure a fair
evaluation, we compared the AUROC curves of DmLab, SVM,
random forest, deep forest, and Seq-RBPPred on an
independent testing set. Notably, Seq-RBPPred shows the
largest AUC, indicating its superior performance. These results
affirm the advantages of this method over Deep-RBPPred in
terms of ACC and computational efficiency. Consequently, we
postulate numerous potential RBPs await discovery using this
approach.

While Seq-RBPPred has achieved some progress, there is
still room for improvement. Currently, we have employed only
conventional machine learning methods and have not utilized
deep learning as the classifier in our model. Therefore, future
research could explore the use of deep learning techniques for
predicting RBPs.
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