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Abstract: Orofacial cleft (OFC) is one of the most prevalent birth defects, leading to substantial and
long-term burdens in a newborn’s quality of life. Although studies revealed several genetic variants
associated with the birth defect, novel approaches may provide additional clues about its etiology.
Using the Center for Craniofacial and Dental Genetics project data (n = 10,542), we performed linear
mixed-model analyses to study the genetic compositions of OFC and investigated the dependence
among identified loci using conditional analyses. To identify genes associated with OFC, we conducted
a transcriptome-wide association study (TWAS) based on predicted expression levels. In addition to
confirming the previous findings at four loci, 1q32.2, 8q24, 2p24.2 and 17p13.1, we untwined two
independent loci at 1q32.2, TRAF3IP3 and IRF6. The sentinel SNP in TRAF3IP3 (rs2235370, p-value
= 5.15 × 10−9) was independent of the sentinel SNP at IRF6 (rs2235373, r2 < 0.3). We found that
the IRF6 effect became nonsignificant once the 8q24 effect was conditioned, while the TRAF3IP3
effect remained significant. Furthermore, we identified nine genes associated with OFC in TWAS,
implicating a glutathione synthesis and drug detoxification pathway. We identified some meaningful
additions to the OFC etiology using novel statistical methods in the existing data.

Keywords: orofacial cleft; mixed model genome-wide association study; expression imputation;
transcriptome-wide association study; PrediXcan; EPACTS

1. Introduction

Orofacial cleft (OFC) is a group of congenital deformities showing a gap or breakage in oral
features. The gap most commonly appears in the palate (CP; cleft palate), which is the “roof” of the
mouth, upper lip (CL; cleft lip) or both (CLP; cleft lip and cleft palate). The majority (~70%) of OFC is
nonsyndromic, without additional features [1]. Although it varies among populations, the prevalence
of all OFC makes it one of the most common birth defects (approximately 1.2 out of 1000 live births
worldwide) [2]. OFC is a significant public health challenge since newborns with these anomalies
encounter substantial surgical, nutritional, dental, speech, medical and behavioral challenges in the
later phases of their lifetimes, leading to nominal economic and societal burdens [3]. The formation
of the head and the face in an embryo is a biological event elaborately coordinated by signaling and
pathways [1]. The etiology of OFC is considered a complex disorder that involves not only genetic
influences but also interactions with environmental factors.

Studies have shown that genetic components play a significant role in OFC; however, the specific
genetic architecture behind the etiology is still unclear. OFC showed a strong familial aggregation
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in that relatives of cleft cases showed higher risks of being affected than the general population,
and the risk decreased as the genetic distance increased [4,5]. Twin studies also confirmed the role
of genetics in the OFC status in monozygotic twins that showed higher concordance rates than
dizygotic twins [6]. While segregation analyses rarely found definitive results [7], linkage studies
mapped several loci for OFC [8–10]. Recently, genome-wide association studies (GWAS) in OFC
have successfully identified common and rare variants, and their interactions with environmental
factors [11–26]. Besides, there have been active investigations on candidate genes such as RUNX2,
GREM1, MTHFR, folate-related genes, ESRRG and SNAI1 [27–31]. However, the functional implications
of these loci are still obscure, except for IRF6 [32,33]. In addition to association studies with human
genotypes and phenotypes, the functional mechanisms of OFC genes were investigated using animal
models. Earlier animal studies have demonstrated the role of Irf6 gene in epithelial proliferation
and differentiation, which are crucial for craniofacial morphogenesis and ectodermal formation [34].
An understanding of the Irf6 mechanism has been furthered by a recent finding that showed the role
of Irf6 in the osteoblast differentiation of craniofacial bones [35]. Although animal models can help us
understand the functional mechanisms involved in human OFC etiology, there are certainly limitations
such as the limited number of homologs of human OFC genes and the inability to evaluate the roles of
common human genetic variations in animal models.

We performed secondary analyses on Center for Craniofacial and Dental Genetics (CCDG) data
on dbGaP (accession: phs000774.v2.p1) in order to understand the contributions of different genetic
components to OFC using novel statistical strategies. Our study is aimed at improving the current
understanding in OFC genetics for the following reasons. First, we performed a mega-analysis of
samples from multiple ethnic groups together by an applying mixed model-based genetic association
analysis with an estimated genetic relatedness matrix. The previous study [19] analyzed case-parent
trios and the unrelated case-control set separately, and then meta-analyzed them. Furthermore,
to adjust for the population structure in the case-control analysis, the principal components (PCs) of
ancestry were estimated using the maximal subset of unrelated subjects and a pruned set of SNPs.
Our study design reduces the complexity of the analysis while taking the full set of genetic information.
Second, we performed a conditional analysis to examine independent genetic influences among
multiple OFC loci. Last, we explored the functional implications of human genetic variations on OFC
etiology utilizing a computational model that predicted gene expression levels based on the genetic
variation in various types of human tissues.

2. Materials and Methods

2.1. Data Acquisition and Subjects

Genotype and phenotype data were accessed from the dbGaP repository with the accession ID
phs000774.v2.p1. The repository includes nonsyndromic cleft cases and their noncleft relatives, as well as
controls (n = 11,925), mostly from studies led by the University of Pittsburgh Center for Craniofacial
and Dental Genetics (CCDG) and also from genetic studies by the University of Iowa. The detailed
specifics of the cohort were previously described [19,36], but to summarize briefly, samples were
genotyped for 589,945 SNPs on the Illumina Human610-Quadv.1_BBeadChip (Illumina Inc., San Diego,
CA, USA), and genotypes were phased using SHAPEIT (Olivier Delaneau, Paris, France and Oxford,
United Kingdom). Phased genotypes were imputed with IMPUTE2 software (Bryan Howie and Jonathan
Marchini, Oxford, UK) using the 1000 Genomes Phase 1 reference panel (The 1000 Genomes Project
Consortium). QC procedures of genotype data are publicly available online at the CCDG study website
(http://www.ccdg.pitt.edu/docs/Marazita_ofc_QC_report_feb2015.pdf). The types of nonsyndromic OFC
were originally categorized as either cleft lip, cleft palate, or cleft lip and palate. In this study,
any cleft types (cleft lip and/or palate) were treated as a case (“OFC”), and subjects without any OFC
phenotype as a “control”. Subjects with both the genotypes and phenotypes (n = 10,542) were included
in this study.

http://www.ccdg.pitt.edu/docs/Marazita_ofc_QC_report_feb2015.pdf
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2.2. Conditional Genome-Wide Association Study Based on Efficient Mixed-Model Association Expedited
(EMMAX) Model

We used the Efficient Mixed Model Association eXpedited (EMMAX) algorithm for the mixed
model analysis of common variants (minor allele frequency > 0.01) [37]. The population structure and
sample relatedness were modeled using a kinship matrix estimated with the Balding–Nichols algorithm,
which is the default method of the ‘make-kin’ function in the EPACTS pipeline that includes the EMMAX
software (Hyun Min Kang, Ann Arbor, MI, USA) (https://genome.sph.umich.edu/wiki/EPACTS).
Variants with minor allele frequencies greater than 0.01 and call rates greater than 95% were used to
construct the kinship matrix. Modeling this genetic covariance as a random effect, the fixed SNP effect
is tested for association with the binary cleft trait. The EPACTS pipeline includes a suite of association
tests for genetic association analyses for population-level samples including EMMAX. An association
p-value smaller than 5.0 × 10−8 was considered as genome-wide significant. To investigate the
dependence among risk loci, we also performed conditional GWAS, adjusting for the effect of the
sentinel association. This process was repeated for nine rounds in order to identify ten independent loci.

2.3. Transcriptome-Wide Association Study (TWAS) Using Predicted Expression Levels

We estimated gene expression levels from our genotype data based on the publicly available
tissue-specific gene expression database (i.e., GTEx version 6 data) (Broad Institute, Boston,
MA, USA), and we performed a transcriptome-wide association study of OFC using PrediXcan
(Eric R Gamazon, Chicago, IL, USA) [38,39]. We chose four tissue types (i.e., whole blood,
skeletal muscle, visceral adiposity and subcutaneous adiposity) that were relatively more relevant to
OFC. Since the current gene expression prediction model cannot model sample relatedness and most of
the GTEx samples were from Caucasians [38], we applied PrediXcan analyses on unrelated Caucasian
CCDG samples only (n = 1220). To adjust for the cryptic population structure in this population,
10 principal components (PCs) were calculated and adjusted for in the following association analysis.
Association tests were performed using the ‘glm’ function of the software R (Ross Ihaka and Robert
Gentleman, Auckland, New Zealand). The number of genes included in four tissue-specific TWASs
were 6736 in whole blood, 7220 in subcutaneous adipose tissue, 4527 in visceral adipose tissue and 6611
in skeletal muscle tissue. The significance thresholds for TWASs were set at Bonferroni levels with the
number of genes in each tissue-specific transcriptome (p-value < 7.42 × 10−6 for a whole-blood TWAS,
6.93 × 10−6 for a subcutaneous adipose tissue TWAS, 1.10 × 10−5 for a visceral adipose tissue TWAS and
7.56 × 10−6 for a skeletal-muscle tissue TWAS). Significant genes were tested for enrichment based on
the gene ontology data (MSigDB c5) using the GENE2FUNC function of FUMA GWAS [40,41]. For the
candidate gene analysis, we used all genes reported from previous linkage and association studies
(Table S1). We searched the 27 overlapping candidate genes from our PrediXcan analysis results.
The thresholds used in the candidate gene analyses were adjusted with a Bonferroni correction based
on the number of candidate genes in each tissue data, so significance thresholds were 0.005 for skeletal
muscle and 0.003 for the remaining three tissues.

3. Results

We included 10,542 subjects in the mixed model association analysis, and the demographic
characteristics are described in Table 1. The male-to-female ratio is similarly balanced in both the
case and control groups (43.3% and 58.5%, respectively). The mean ages of the case and the control
groups are 12.06 and 28.66 years (standard deviations of 13.03 and 16.95 years), and the control group
is significantly older because it includes parents without cleft. This study population contains nine
different ethnic groups: Caucasians and Asians largely represent the population (43.93% and 19.13%,
respectively), while Africans, Native Americans and mixed populations compose the remaining 36.94%.

https://genome.sph.umich.edu/wiki/EPACTS
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Table 1. Demographic Information.

Characteristics Categories Control (n = 7839) Case (n = 2703)

Cleft Type
Cleft Lip only - 620

Cleft Lip and Palate - 1771
Cleft Palate only - 312

Sex
Male 3397 (43.3%) 1581 (58.50%)

Female 4442 (56.7%) 1122 (41.50%)

Age 28.66 (±16.95) 12.06 (±13.03)

Race

African 219 (2.79%) 160 (5.92%)
Asian 1433 (18.28%) 584 (21.60%)

Caucasian 3563 (45.45%) 1068 (39.51%)
Caucasian and African 33 (0.42%) 11 (0.41%)
Caucasian and Asian 2 (0.026%) 2 (0.074%)

Caucasian and Native American 768 (9.80%) 171 (6.33%)
Caucasian, African and Native American 1617 (20.63%) 665 (24.60%)

Native American 152 (1.94%) 37 (1.37%)
Unspecified 52 (0.66%) 5 (0.18%)

We identified 289 genome-wide significant associations for OFC (Figure 1) at previously reported
loci [19]. The population structure was adequately controlled, and no systematic inflation was observed
in the Q-Q plot (Figure S1). The majority of significant associations, 240 out of 289, were from the
genomic region called the “gene desert” (8q24) [42]. Other genome-wide significant associations were
mapped to IRF6, TRAF3IP3, FAM49A and NTN1 (Table 2). The sentinel SNPs in TRAF3IP3 (rs2235370,
p-value = 5.15 × 10−9) were reported collectively as IRF6 in the previous GWAS [19]. The sentinel SNP
for TRAF3IP3 (rs2235370) was not in LD with the sentinel SNP for IRF6 (rs2235373) in any population
(r2 = 0.07 in European, 0.31 in Asian, 0.05 in African and 0.24 in Hispanic), indicating that the two
association signals were independent. At a less stringent significance threshold (p-value < 1.00 × 10−5),
21 association signals, including loci in PAX7 and DCAF4L2, were identified.
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Table 2. Genome-wide significant loci from the EMMAX analysis and their significance in the original multiethnic analysis.

Locus

EMMAX Analysis The Multiethnic Meta-Analysis [19]

Sentinel
SNP Chr:Pos Ref/Alt MAF β (S.E.) p-Value Gene Sentinel

SNP Meta OR † p-Value r2 ‡

8q24 rs72728755 8:129990382 T/A 0.16 0.08 (0.008) 1.94 × 10−22 Gene
desert rs17242358 2.00

[1.78–2.26] 5.63 × 10−30 0.97

1q32.2
rs2235370 1:209946027 C/A 0.13 −0.05 (0.009) 5.15 × 10−9 TRAF3IP3

rs11119345
1.81

[1.57–2.07] 2.52 × 10−17
0.84

rs2235373 1:209963803 G/A 0.26 −0.04 (0.007) 2.12 × 10−8 IRF6 0.30

2p24.2 rs7552 2:16733928 A/G 0.50 0.04 (0.006) 3.40 × 10−8 FAM49A rs7552 1.28
[1.17–1.40] 4.22 × 10−8 1.00

17p13.1 rs11273201 17:8930219 AACCCAAAACCCAC/A 0.27 −0.04 (0.007) 3.58 × 10−8 NTN1 rs11273201 1.44
[1.29–1.59] 7.84 × 10−12 1.00

Chr = chromosome; Pos = position in base pairs (hg19); Ref = reference allele; Alt = alternate allele; MAF = minor allele frequency, S.E. = standard error of β. † Odds ratio from the
meta-analysis of the case-parent trio analysis and case-control analysis. ‡ r2 LD statistics against all populations of 1000 Reference Genome.
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To further understand the individual genetic contributions of these markers, we performed
conditional analyses. In Table 3, the top ten associations from each sequential conditional GWAS are
presented. Manhattan plots from individual conditional analyses are shown in Figure S2. The first
genome-wide analysis conditioned on the most significant marker (rs72728755 at 8q24, p-value =

2.70 × 10−22) identified the next independently significant association, rs7552, which was in the 3′-UTR
of FAM49A, a protein-coding gene at 2p24.2 (p-value = 2.67 × 10−8). This signal was also genome-wide
significant but was the fifth significant signal in the first analysis. This may indicate that 8q24 biases
the effect of 2p24.2 toward the null association when tested together. Conditioning on the first two
variants, rs72728755 and rs7552 (8q24 and 2p24.2), the next most significantly associated variant was
rs2235370 at 1q32.2 in the intron of TRAF3IP3 (p-value = 1.33 × 10−8). When we adjusted for the 8q24
effect, the associations in IRF6 became insignificant, although a genome-wide significance was still
identified in TRAFIP3. This may indicate that the effect of 8q24 was highly correlated with IRF6 but
not with TRAFIP3.

Table 3. Top association from each step of the EMMAX conditional association analysis.

No. SNP ID Chr:Pos Ref/Alt MAF β (S.E.) p-Value Locus/Gene

1 rs72728755 8:129990382 T/A 0.16 0.08 (0.008) 1.94 × 10−22 8q24

2 rs7552 2:16733928 A/G 0.50 0.03 (0.006) 2.67 × 10−8 FAM49A

3 rs2235370 1:209946027 C/A 0.13 −0.05 (0.009) 1.33 × 10−8 TRAF3IP3

4 rs16957821 17:8948104 C/G 0.24 0.04 (0.007) 1.40 × 10−7 NTN1

5 rs12600562 17:44977040 G/T 0.47 −0.03 (0.006) 7.06 × 10−7 LRRC37A2

6 rs12543318 8:88868340 C.A 0.45 −0.03 (0.006) 5.43 × 10−7 8q21

7 rs3845903 3:66517670 C/T 0.03 −0.10 (0.020) 2.79 × 10−6 LRIG1

8 rs10778143 12:102094643 A/C 0.33 0.03 (0.007) 1.76 × 10−6 CHPT1

9 rs6929507 6:1632072 T/C 0.01 0.13 (0.027) 2.14 × 10−6 GMDS

10 rs138322543 9:100641771 CCACCA/C 0.27 0.03 (0.007) 4.82 × 10−6 TRMO

Abbreviations: No. = The sequential order of the conditional analysis; Chr = chromosome; Pos = position in base
pairs; Ref = reference allele; Alt = alternate allele; MAF = minor allele frequency.

We additionally found three independent associations at a suggestive significance level (p-value
< 1.00 × 10−6). Conditioning on three genome-wide significant loci, rs16957821 was identified within
NTN1 at 17p13.1 (p-value = 1.40× 10−7), which had been previously reported by CL/P and OFC (cleft lip
and/or palate) GWAS and replication studies [15,16,19,22,36]. The tenth independently associated
variant (rs138322543, p-value = 5.43 × 10−7) is not within a gene, but the nearest gene is DCAF4L2,
which was previously identified by OFC GWAS [15,16,19].

From our TWAS analyses on four tissue types (whole blood, skeletal muscle, subcutaneous adipose
and visceral adipose tissues), we found nine genes with transcriptome-wide significant associations
(p-value < 2.00 × 10−6) (Table 4 and Figure S3). THEM79 and GLMP were predicted to be significantly
associated with OFC in whole blood, DDT in skeletal muscle and subcutaneous adipose tissues,
and DDTL, MIF, MIF-AS1, GSTT2 and USP2 in subcutaneous adipose tissue. Previously, MIF was
reported in association with susceptibility to juvenile arthritis [43], GSTT2 with S-phenylmercapturic
acid levels in smokers [44], and USP2 suggestively with urate levels [45]. In the visceral adipose
tissue, we identified four genes that overlapped or related to the subcutaneous adipose tissue result:
MIF, MIF-AS1, DDTL, GSTT2, with the addition of GSTT2B. More genes with suggestive evidence of
associations are described in Table S2. From the gene ontology analyses, we found that MIF and DDT
were enriched in terms of intramolecular oxidoreductase activity (adjusted p-value = 1.31 × 10−2) and
the activity transposing carbon-carbon double bonds (adjusted p-value = 3.11 × 10−3); GSTT2B and
GSTT2 were enriched in terms of glutathione transferase activity (adjusted p-value = 7.00 × 10−3),
as well as in terms of the alkyl or aryl group transferase activity (adjusted p-value = 1.59 × 10−2)
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Table 4. Genes identified from the association analysis of the predicted expression levels.

Gene Ensembl ID GRCh37 Coordinate β (S.E.) z p-Value

Whole blood

THEM79 ENSG00000163472 1: 156,252,726–156,262,976 2.71 (0.56) 4.87 1.13 × 10−6

GLMP ENSG00000198715 1: 156,259,880–156,265,480 1.57 (0.33) 4.83 1.37 × 10−6

Skeletal muscle

DDT ENSG00000099977 22: 24,313,554–24,322,660 1.12 (0.21) 5.25 1.52 × 10−7

Adipose (Subcutaneous)

MIF ENSG00000240972 22: 24,236,191–24,237,414 1.79 (0.28) 6.39 1.62 × 10−10

MIF-AS1 ENSG00000218537 22: 24,236,613–24,241,117 1.39 (0.24) 5.87 4.25 × 10−9

DDT ENSG00000099977 22: 24,313,554–24,322,660 2.94 (0.54) 5.43 5.66 × 10−8

GSTT2 ENSG00000099984 22: 24,322,249–24,326,106 −1.42 (0.28) −5.16 2.46 × 10−7

USP2 ENSG00000036672 11:
119,225,925–119,252,436 −1.75 (0.38) −4.57 4.93 × 10−6

DDTL ENSG00000099974 22: 24,309,089–24,314,721 −1.46 (0.32) −4.54 5.68 × 10−6

Adipose (Visceral)

MIF ENSG00000240972 22: 24,236,191–24,237,414 1.66 (0.26) 6.52 7.09 × 10−11

DDTL ENSG00000099974 22: 24,309,089–24,314,721 −2.60 (0.45) −5.81 6.37 × 10−9

MIF-AS1 ENSG00000218537 22: 24,236,613–24,241,117 1.10 (0.19) 5.78 7.31 × 10−9

GSTT2 ENSG00000099984 22: 24,322,249–24,326,106 −1.05 (0.19) −5.53 3.27 × 10−8

GSTT2B ENSG00000133433 22: 24,299,601–24,303,373 −1.36 (0.28) −4.94 7.92 × 10−7

We also looked up previously reported candidate genes in our four tissue-specific TWAS (Table S3).
We listed 34 OFC loci reported from previous GWASs, including suggestive evidence in the largest and
most recent meta-analysis [22,46]. Of these 34 candidate genes, the GTEx database contained 27 genes
at 25 loci (Table S1); the number of available candidate genes varied by tissues (12 in whole blood,
11 in skeletal muscle tissue, seven in subcutaneous adipose tissue and eight in visceral adipose tissue).
Bonferroni significance levels were also differently set depending on the tissues, with 0.004 for whole
blood and skeletal muscle tissue, 0.007 for subcutaneous adipose tissue and 0.006 for visceral adipose
tissue. RHPN2 at 19q13.11 was identified as being Bonferroni-significant from skeletal muscle and
subcutaneous adipose tissue transcriptome association tests (p-value = 1.90 × 10−3 and 1.45 × 10−3).
In both tissues, the upregulation of RHPN2 had a beneficial effect on the risk of OFC.

4. Discussion

Since we performed association analyses on OFC (cleft lip and/or palate), including “cleft palate
only” cases, a direct comparison to GWASs of “cleft lip with or without cleft palate case” may not
be eligible. However, we hypothesize that there is a genetic variant that has influence on the shared
genetics between two related phenotypes. A recent meta-analysis performed GWAS on three cleft
phenotypes, including two well-studied phenotypes, CL/P and CP, and additionally a constitute
phenotype, OFC (the same as “OFC” in the study) [22], where they identified a novel locus, FOXE1,
in association with OFC but not with CL/P or CP. FOXE1 had been reported in linkage studies and a
candidate gene setting [8–10] but had never been identified by prior GWAS. This study showed that
seven out of ten genome-wide association signals from CL/P and CP studies could be captured with
the OFC study. Three out of the ten genome-wide significant signals were not recaptured by the OFC
study, and two of these (3q28 and 15q24) were from the whole population analysis, while the other one
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(17q23.2) was from the European analysis; however, only the last one was replicated by a multiethnic
GWAS [19].

A mixed-model analysis can not only adjust for population structures, but it can also adjust for
sample relatedness, making the approach especially useful for multiethnic family studies. To account
for the population structure, the previous CCDG GWAS study [19] estimated the principal components
for the pooled ancestry based on the subset of subjects and SNPs. On the other hand, the EMMAX
analysis accounts for the population structures, including those of excluded ancestries, by building
up genetic relationships between all pairs of subjects based on all available SNPs. This additional
information on the genetic covariance between subjects and the population structure enabled our
study to identify a comparable set of loci associated with OFC. At the genome-wide significant level
(p = 5.00 × 10−8), the CCDG GWAS [19] identified seven loci in the pooled population, i.e., 19q13 near
RHPN2, PAX7 at 1p36, ARHGAP29 at 1p22, IRF6 at 1q32, 8q24 and NTN1 at 17p13, and a novel locus
2p24 near FAM49A. In this study, we identified five genes at four loci (8q24, IRF6 and TRAF3IP3
at 1q32, FAM49A at 2p24 and NTN1 at 17p13). All four loci identified by the CCDG GWAS [19]
were recapitulated, and the other three genes, 19q13 near RHPN2, PAX7 at 1p36 and ARHGAP29
at 1p22, were not. However, we suggest that TRAF3IP3 should be considered as a novel finding,
one independent from IRF6. Compared to the traditional linkage or trio-based methods, the linear
mixed-model analysis can be beneficial to a larger sample size for variants with a lower penetrance.
At the suggestive significance level (p-value < 1.00 × 10−6), we identified several novel genes, DIEXF,
another gene at 1q32.2 (p-value = 5.51 × 10−8), DCAF4L2 at 8q21.3 (p-value = 3.64 × 10−7), and a novel
locus GMDS at 6p25.3 (p-value = 6.70 × 10−7).

We observed that many association signals showed different allele frequency distributions between
subpopulations (Table S4), which supports the idea that we need to pay extensive attention to controlling
the population structure in genetic analyses. Recently, meta-analyses of multiple races showed that a set
of genome-wide significant loci considerably differed by racial groups [22]. Furthermore, a GWAS in a
Chinese population suggested that the roles of SNPs at the well-known 1q32.2 locus were different in
the Chinese haplotype structure [17]. In this study, the most significant SNP was at the well-known 8q24
locus, and allele frequencies for this SNP (rs72728755) varied in subpopulations; the alternate allele (A)
is rare in Asians and Native Americans but is quite prevalent in other populations. Allele frequencies
of the top SNP at the 2p24.2 locus show that the ‘G’ allele is minor only in Caucasians but major in all
other populations. In a previous CCDG GWAS [19], stratified analyses were performed on Asians
and Caucasians, but this locus was not reported, which means that the 2p24.2 signal was detectable
by the addition of other population samples in our mixed-model analysis. At the locus of 1q32.2,
the alternate allele does not exist in Africans and is uncommon in Caucasians, while it is common in
Asian, Native American and other mixed populations. The TRAF3IP3 gene was also not previously
identified from the previous CCDG analysis, but it is likely that adding other populations improved
the statistical power to detect this locus.

While our initial GWAS results were consistent with previous findings [46], some signals were not
independent of each other. Conditioning on 8q24, the effect of 1q32.2 diminished and strengthened
another signal at 2p24.2 (FAM49A) which had been less significant than that from 1q32.2. This could
indicate that 8q24 is strongly associated with 1q32.2 and that the effect from these loci masks the effect
from 2p24.2. Interestingly, the effect of one of the most well-established loci in the OFC association,
IRF6, was removed after adjusting for the 8q24 effect, but the effect of a marker in TRAF3IP3 at the same
locus (1q32.2) survived. TRAF3IP3 is a gene encoding the TRAF3-interacting protein 3, and TRAF3
encodes a TNF receptor-associated factor 3. Although TRAF3IP3 has never been identified by previous
linkage and GWA studies, the gene is proximate to IRF6 at the 1q32.2 locus, suggesting that TRAF3IP3
may play a regulatory role for IRF6. From our analysis, this TRAF3IP3 gene was associated with a
lower risk of cleft (β = −0.0518). Additionally, after adjusting the effects of 8q24, 2p24.2 and 1q32.2,
one of the genome-wide significant loci from the initial analysis, 17p13.1 (NTN1), became insignificant.
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This can also suggest that the 17p13.1 locus is closely associated with the three loci adjusted in the step,
especially with 8q24 and 1q32.2, which had been reported together with 17p13.11 by Leslie et al. [19].

We identified significant associations in the predicted expression TWAS, and our result may add
novel evidence to OFC etiology. Two human h-class isoenzymes, GSTT1 and GSTT2, are both located
at 22q11.2 and are separated by approximately 50 kb. Previously, copy-number variations (CNVs)
at 22q11.2 were reported in association with a low birth weight and preterm delivery outcomes [47].
An increased risk of cleft lip with or without a cleft palate has been associated with maternal
smoking in children with null polymorphisms in GSTT1, implicating that it may modify the effect of
maternal smoking by involving the removal of toxic compounds generated from smoking [48–50].
The expression level for GSTT1 was not included in our TWAS, but the isoenzyme coding gene GSTT2
was identified with a significance. The messenger RNA expression of GSTT2 was reported as being
associated with Charcot–Marie–Tooth disease, which is one of the most common inherited neurological
disorders [51]. GSTT1 and GSTT2 genes are known to be involved in glutathione synthesis and
drug detoxification [52,53]. Additionally, a GWAS of liver enzymes reported that a SNP (rs2739330)
associated with a serum γ–glutamyl transferase enzyme was an eQTL for DDT, DDTL, GSTT1 and
MIF [54], suggesting a shared genetic control over our TWAS genes. By including another closely
located TWAS significant gene, GSTT2B, our TWAS result may imply glutathione synthesis and a drug
detoxification-related OFC etiology.

Our study exhibits several limitations. OFC prevalence varies among populations, and some
genes identified from previous GWASs showed distinct patterns by population in our analyses
(e.g., the desert region in 8q24) [13]. This might indicate a differential transcriptomic variation of
OFC-related genes in populations. Since the GTEx database has mainly developed expression datasets
for Caucasians, this study also included subjects with Caucasian ancestry only. Thus, findings from
our TWAS analysis would not apply to races other than Caucasians. Furthermore, due to a lack of
tissues directly related to orofacial clefts, this study carefully selected four tissues that were relatively
more relevant to our biological understandings. In addition to whole blood and skeletal muscle tissue,
we have taken subcutaneous and visceral tissues into account. In the fusion process developmental
theory, insufficient penetration of the middle layer of the embryo (“mesoderm”) causes cleft [55,56].
A study that tracked the fate of major mesodermal subcompartments in mice demonstrated that
visceral and subcutaneous adipocytes were segregated from posterior lateral plate mesoderm by
late embryogenesis [5]. Visceral and subcutaneous adipose tissues were used as surrogates for the
mesodermal lineage; however, studies with eQTL from orofacial tissues will provide more fundamental
evidence. Last, not all of our candidate genes were included in the GTEx eQTL data. More findings
on eQTLs associated with those candidate genes will help us to better understand OFC etiology. It is
likely that candidate genes of interest did not show a significant association with expression levels in
the GTEx database, so no eQTLs were identified. However, the GTEx project is ongoing, and more
samples from diverse populations may add eQTLs associated with the candidate genes. For example,
a COGENE (Craniofacial and Oral Gene Expression Network) project reported an elevated expression
profile for GSTT1 in craniofacial tissues during embryonic development, but GSTT1 was not included
in the trained expression dataset. Instead, genome-wide significant signals were identified from GSTT2
and GSTT2B in this study.

5. Conclusions

Using a mixed-model association analysis, we confirmed previous findings for OFC as well as
independence among risk loci. We have identified that unlike IRF6, the genome-wide significant
association of TRAF3IP3 is independent from the association signal at 8q24. Additionally, TWAS using
predicted expression levels identified novel genes associated with OFC that implicate the etiology
related to glutathione synthesis and drug detoxification. In conclusion, in spite of several limitations,
we added meaningful evidence to the OFC etiology using novel statistical strategies.
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