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Abstract: MicroRNAs (miRNAs) are well-known regulators of biological mechanisms with a small
size of 19–24 nucleotides and a single-stranded structure. miRNA dysregulation occurs in cancer
progression. miRNAs can function as tumor-suppressing or tumor-promoting factors in cancer
via regulating molecular pathways. Breast and lung cancers are two malignant thoracic tumors
in which the abnormal expression of miRNAs plays a significant role in their development. Phos-
phatase and tensin homolog (PTEN) is a tumor-suppressor factor that is capable of suppressing the
growth, viability, and metastasis of cancer cells via downregulating phosphatidylinositol 3-kinase
(PI3K)/protein kinase B (Akt) signaling. PTEN downregulation occurs in lung and breast cancers
to promote PI3K/Akt expression, leading to uncontrolled proliferation, metastasis, and their re-
sistance to chemotherapy and radiotherapy. miRNAs as upstream mediators of PTEN can dually
induce/inhibit PTEN signaling in affecting the malignant behavior of lung and breast cancer cells.
Furthermore, long non-coding RNAs and circular RNAs can regulate the miRNA/PTEN axis in
lung and breast cancer cells. It seems that anti-tumor compounds such as baicalein, propofol, and
curcumin can induce PTEN upregulation by affecting miRNAs in suppressing breast and lung cancer
progression. These topics are discussed in the current review with a focus on molecular pathways.

Keywords: microRNA; cancer therapy; PTEN; lung cancer; breast cancer; long non-coding RNA;
circular RNA
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1. Introduction

Lung and breast cancers are malignant thoracic tumors. Lung cancer is a leading
cause of death worldwide that has a 5-year survival rate as low as 18% [1]. In most
cases of lung cancer (up to 80%), operation is not practical because of the delay in cancer
diagnosis [2,3]. Consequently, a minor improvement has been achieved in survival rate.
Annually, 220,000 patients with lung cancer are diagnosed in U.S.A where tobacco smoking
is the major reason for its development [4–6]. Late diagnosis and metastasis into other
vital organs of body such as the liver, bone, and nervous system are responsible for the
poor prognosis of lung cancer patients [7–9]. Lung cancers are embedded to two major
categories including small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC)
in which NSCLC comprises most of lung cancer cases (up to 88%) [10,11]. Each of them
has its subcategories. For instance, lung adenocarcinoma, lung squamous cell carcinoma,
and large cell carcinoma are subcategories of NSCLC [10]. The normal structure of lung
includes bronchiole and thin-walled alveoli surrounded by blood vessels. When lung
cancers are developed, this normal structure is impaired by the penetration of tumor cells
and stroma, providing an inflammatory response [7].

Similar to lung cancer, breast cancer remains a leading cause of death with high
morbidity and mortality. According to estimates, one in eight British women are diagnosed
with breast cancer [12–14]. The 5-year survival rate of breast cancer patients is dependent
on stage, so that breast cancer patients in stage 1 or 2 have good 5-year survival rates of as
much as 80%, but this number diminishes to 15% in stage 4 [12,15,16]. So, early diagnosis
of breast cancer is of importance in its treatment and improving prognosis. Breast cancer is
a heterogenous disease that can be divided into four categories based on the presence or
absence of hormone receptors for estrogen, progesterone, and human epidermal growth
factor receptor 2 (HER2) [15,16]. Lung and breast cancers are caused by multiple factors that
have not been understood completely [17,18]. However, attempts have been conducted
in improving knowledge toward genetic factors responsible for the development and
progression of these thoracic cancers. MicroRNAs (miRNAs), as non-coding and short
RNA molecules, are considered as potential diagnostic, therapeutic, and prognostic factors
for breast and lung cancers [19,20]. There are two major types including tumor-suppressor
and tumor-promoting miRNAs whose roles in the development of breast and lung cancers
have been elucidated [21–24]. In the case of lung cancer, miRNAs have demonstrated
capability to affect proliferation and metastasis. In this way, numerous factors are affected
by miRNAs. For instance, miRNA-195 and miRNA-497 can disrupt lung cancer progression
and colony formation via upregulating transforming growth factor-beta (TGF-β) [25]. There
are also miRNAs that facilitate lung cancer malignancy. miRNA-143-3p stimulates N6-
methyladenosine in elevating the brain metastasis of lung cancer cells [26]. Bone metastasis
of lung cancer cells can be inhibited by miRNA-192-5p via the negative regulation of
TRIM44 [27]. When the growth and migration of lung cancer cells enhance, they can induce
chemoresistance. miRNA-27b suppresses epithelial-to-mesenchymal transition (EMT) via
Snail downregulation to reverse chemoresistance [28].

A similar story is observed in breast cancer cells. Both tumor-suppressor and tumor-
promoting miRNAs have been recognized in breast cancer. Tumor-promoting ones such as
miRNA-532-5p elevate breast cancer proliferation via ras-related and estrogen-regulated
growth inhibitor (RERG) downregulation [29]. In contrast, tumor-suppressor miRNAs
such as miRNA-539 prevent breast cancer proliferation via specificity protein 1 (SP1)
inhibition [30]. It is noteworthy that miRNA-7 is capable of suppressing the activity
and expression of drug transporters including multidrug resistance protein 1 (MRP1) in
inducing chemosensitivity [31]. Studies demonstrate that miRNAs are key players in breast
cancer [32,33], and investigating their expression is of interest in providing therapeutics.

The role of miRNAs in breast and lung cancers is due to capability in regulating
molecular pathways and cellular events. Dysregulation in miRNA expression is correlated
with cancer development [34–36]. In the present review, our aim is to reveal the role of
miRNAs in the progression/inhibition of lung and breast cancer cells, with a focus on their
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relationship with phosphatase and tensin homolog (PTEN). This review is based on newly
recorded articles and providing a new insight toward signaling networks involved in lung
and breast cancers in which miRNAs and PTEN are key players.

2. MicroRNAs in Oncology

The function of miRNAs in regulating gene expression is mediated by attachment to
3′-untranslated region (3′-UTR) of messenger RNA (mRNA) to inhibit gene expression [37–40].
The complexity of miRNA function is due to the capability of miRNAs to affect more than one
mRNA and the presence of several miRNA binding sites at one 3′-UTR. Numerous miRNAs
have been recognized to date with multiple functions [41]. The first discovery of miRNAs oc-
curred in Caenorhabditis elegans, and significant research revealed conserved miRNAs in other
species, including human with different actions [42]. In addition to development, miRNAs
participate in the regulation of precise and accurate cellular events including apoptosis [43],
autophagy [44], differentiation [45], migration [46], angiogenesis [47], and so on.

As an explosion has been observed in research about miRNAs, not it is obvious that
miRNAs are therapeutic targets in cancer therapy. As normal and cellular events are
regulated by miRNAs, and complicated signaling networks comprising upstream and
down-stream mediators are involved, miRNA expression disturbance is correlated with
cancer development [48–50]. Such pathways and roles have been examined in different
cancers to shed some light on the relationship between miRNA expression and cancer
emergence. It has been reported that one miRNA can affect the expression of another
one. For instance, miRNA-145 enhances the expression of miRNA-133b via promoter
methylation caused by c-Myc and DNMT3A [51]. Tumor-promoting miRNAs enhances
cancer growth and provide ignorance of cancer cells toward apoptosis [52]. Serum levels
of such miRNAs such as miRNA-1290 and miRNA-1246 can be considered as diagnostic
factors [53]. In contrast, there are miRNAs with an inhibitory impact on cancer growth.
miRNA-181a significantly increases cisplatin sensitivity in cervical cancer cells via apop-
tosis induction [54]. miRNA-200c enhances breast cancer sensitivity to trastuzumab via
stemness inhibition [55]. It can be highlighted that the proliferation and metastasis of
cancer cells are modulated by miRNAs [56,57]. Those miRNAs that promote cancer ma-
lignancy are involved in chemoresistance [58], while tumor-suppressor miRNAs induce
chemosensitivity [59]. In fact, miRNAs regulate cellular events, and dysregulation in
their expression leads to cancer emergence. In this way, all aspects of cancer cells such
as growth, invasion, and their response to therapy are affected by miRNAs. Notably,
molecular pathways such as nuclear factor erythroid 2–related factor 2 (Nrf2) [60], Wnt [61],
Signal Transducer And Activator Of Transcription 3 (STAT3) [62], and Zinc Finger E-Box
Binding Homeobox (ZEB) [63] are a few of the down-stream targets of miRNAs in cancer.
Furthermore, there are molecular pathways that are capable of functioning as upstream
mediators and regulating the expression of miRNAs such as circular RNAs (circRNAs) [64],
and long non-coding RNAs (lncRNAs) [65]. Revealing such interactions can pave the road
into effective cancer therapy that is the aim of this review article.

3. PTEN in Oncology
3.1. Signaling

PTEN is a tumor suppressor factor with nucleus and cytoplasmic localization with
various expressions in healthy and cancerous cells [66,67]. In order to provide a better
understanding of PTEN signaling, first, the phosphatidylinositol 3-kinase (PI3K)/protein
kinase B (Akt)/mammalian target of rapamycin (mTOR) axis should be described. At the
first step of this axis, p110 induces the conversion of phosphatidylinositol-4,5-bisphosphate
(PIP2) into phosphatidylinositol3,4,5-triphosphate (PIP3) through phosphorylation of the
3′-hydroxyl group [68–70]. PIP3 is an inducer of PI3K and leads to the recruitment of
Akt to membrane via binding their pleckstrin homology (PH) domains to PIP3 [71,72].
This interaction with PIP3 prevents the autoinhibition of Akt via phosphorylation at T308
by PDK1 and phosphorylation at S473 via mTOR [73–75]. This axis is further involved
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in promoting cancer cell proliferation, metastasis, and chemoresistance [9,76–81]. The
cytoplasmic function of PTEN comprises of preventing PIP3 generation and inhibiting
phosphorylation [82]. This action of PTEN suppresses the phosphorylation of p53 and acti-
vation of p21, resulting in preventing cell senescence. In addition to cytoplasmic functions,
PTEN possesses nuclear functions including regulating genome stability and DNA repair
(Figure 1) [83]. PTEN mutation in mice leads to genomic and chromosomal instability,
revealing the nuclear function of this tumor suppressor factor that is independent of the
PI3K/Akt/mTOR axis [84].
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Figure 1. An overview of phosphatase and tensin homolog (PTEN) signaling. The cytokines and
growth factors can induce the transformation of phosphatidylinositol-4,5-bisphosphate (PIP2) to
phosphatidylinositol3,4,5-triphosphate (PIP3) by binding to a related receptor. Then, PI3K stimulates
protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling to induce the expression
of genes involved in cancer progression, chemoresistance, and radioresistance. PTEN as a tumor-
suppressing factor prevents PIP2 transformation to PIP3, restricting cancer malignancy.

3.2. Role in Cancer

As a negative regulator of PI3K/Akt/mTOR signaling, and having a tumor-suppressor
role, the downregulation of PTEN expression can induce the malignant behavior of cancer
cells [85]. A newly published experiment has shown that PTEN loss is correlated with
resistance to CDK4/6 inhibitors via Akt stimulation [86]. It appears that PTEN loss in
hair follicle stem cells leads to the development of squamous cell carcinoma, showing
the tumor-suppressor role of PTEN [87]. When a decrease occurs in PTEN expression,
the proliferation and viability of cancer cells undergoes an increase. This is due to the
inhibition of glycolysis by PTEN as a factor involved in the promoted growth of cancer
cells [88]. The interesting point is that anti-tumor compounds including cryptotanshinone
suppress cancer proliferation and induce apoptosis via PTEN upregulation and the subse-
quent inhibition of PI3K/Akt/mTOR and nuclear factor-kappaB (NF-kB) pathways [89].
Dichloroacetate can suppress chemoresistance in cancer cells via the downregulation of
miRNA-543, upregulation of PTEN, and inhibition of the PI3K/Akt axis [90]. EMT is associ-
ated with the metastasis of cancer cells [81,91]. PTEN inhibits EMT via Abi downregulation,
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which is of importance in disrupting breast cancer progression [92]. Studies are in line with
the fact that both the proliferation and migration of cancer cells are negatively affected by
PTEN [93,94]. As PTEN possesses anti-tumor activity, its downregulation is associated with
undesirable prognosis [95]. In breast cancer, PTEN hypermethylation is associated with the
risk of breast cancer development and can be used as a reliable biomarker in this case [96].
One clinical study demonstrates an enhanced incidence of PTEN hypermethylation in
breast cancer patients [97]. The same phenomenon occurs for lung cancer, and PTEN
hypermethylation is observed upon the progression and chemoresistance development of
lung cancer cells [98].

Importantly, non-coding RNAs are potential upstream mediators of PTEN in different
cancers. For instance, lncRNA Linc00702 inhibits cancer progression via enhancing PTEN
expression and suppressing the PI3K/Akt axis [99]. In turn, lncRNA LINC00470 acceler-
ates cancer proliferation through providing PTEN degradation [100]. Similar to lncRNAs,
circular RNAs (circRNAs) are able to regulate PTEN expression in affecting cancer pro-
gression [101]. Notably, numerous studies have shed light on the relationship between
miRNAs and PTEN. Apoptosis, autophagy, and proliferation of cancer cells are affected by
miRNAs in different cancers [102,103]. As miRNAs are well-known regulators in cancer
cells, understanding their impact on PTEN expression can be beneficial in providing novel
therapeutics. In the next sections, a mechanistic discussion of PTEN regulation by miRNAs
in breast and lung cancers is provided.

4. MicroRNA and PTEN Relationship
4.1. MicroRNAs and PTEN Inhibition
4.1.1. Breast Cancer

As PTEN has an inhibitory impact on the progression of breast cancer cells, its down-
regulation can occur by tumor-promoting miRNAs. miRNA-106b and miRNA-93 are
potential factors in enhancing cancer growth and invasion via PTEN downregulation. This
axis leads to activation of the PI3K/Akt pathway, which promotes cancer malignancy [104].
As PI3K/Akt participates in enhancing cancer growth, the way is paved to inducing
chemoresistance. This statement can be confirmed by the effect of miRNA-2020-5p on
PTEN expression in breast cancer cells. The miRNA-202 family has a dual role in cancer,
exerting both tumor-promoting and tumor-suppressor roles [105]. As miRNA-202 demon-
strates upregulation in human endometrium and adipose tissue-derived stem cells, it can
be concluded that this miRNA family is involved in cell cycle regulation [106]. miRNA-
202-5p undergoes upregulation in drug-resistant breast cancer cells, while PTEN shows
a decrease in expression. By an increase in miRNA-202-5p, the proliferation and drug
resistance of breast cancer cells enhance, while apoptosis is inhibited. These malignant
behaviors are mediated by PTEN downregulation via miRNA-202-5p and the subsequent
induction of PI3K/Akt signaling [107]. Notably, clinical studies have also confirmed a
relationship between miRNAs and PTEN. In this way, miRNA-144 has been shown to be
upregulated in 22% of breast cancer cases, and PTEN has a low expression in 78% of cases.
There is a negative relationship between PTEN and miRNA-144 in migratory breast cancer
cells [108]. The downregulation of PTEN by microRNAs is mediated by binding to 3′-UTR.
Introducing PTEN that lacks 3′-UTR for miRNA promotes its expression and suppresses
breast cancer progression [109].

Exosomes are vesicle-shaped structures with a diameter of 50–150 nm that can trans-
port miRNAs as cargo. Various exosomal miRNAs have been identified in breast cancer
such as exosomal miRNA-455-5p, -1255a, and -148a that can be used as therapeutic and
diagnostic factors [110,111]. Exosomal miRNAs are capable of regulating PTEN expression
in ensuring breast cancer malignancy. It seems that exosomal miRNA-9 and miRNA-155
possess high expression in metastatic breast cancer cells. This increase in the aggressive
behavior of breast cancer cells is mediated via downregulating PTEN [112]. It is worth
mentioning that PTEN-regulating miRNAs can be considered as potential diagnostic fac-
tors in breast cancer. Serum levels of miRNA-214 as a regulator of PTEN can provide
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distinction between malignant and benign tumors, and healthy cells. Furthermore, the
expression level of miRNA-214 undergoes downregulation after operation [113]. A same
story occurs for miRNA-21, so that the expression of this miRNA is high in advanced
stages and is associated with lymph node metastasis. Following miRNA-21 upregulation,
the expression of PTEN demonstrates a decrease of as much as 80% [114]. The increased
expression of miRNA-425-5p, as a negative regulator of PTEN, is observed in breast cancer
that is associated with unfavorable prognosis [115].

Cancer stem cells (CSCs), also known as cancer-initiating cells (CICs), possess self-
renewal and multipotent differentiation potential that comprise a small proportion of tumor
cells [116,117]. In breast cancer, CD44+/CD24− are considered as surface markers of breast
cancer stem cells (BCSCs) [118,119]. Carcinogenesis, migration, and chemoresistance are
mediated by BCSCs [120]. Previously, it was demonstrated that miRNA-222 and miRNA-
221 are negative regulators of PTEN in breast cancer progression. It appears that the
aforementioned miRNAs possess regulatory impacts on BCSCs. By downregulating PTEN,
miRNA-222 and miRNA-221 induce Akt phosphorylation to promote the growth and
viability of breast cancer cells. miRNA-222 and miRNA-221 overexpression result in the
enrichment of surface markers of CD44+/CD24− in BCSCs [121]. This study demonstrates
that in addition to cancer cells [122], CSCs are also affected by miRNA and PTEN interaction.
miRNA-10b functions as a double-edged sword in cancer. It exerts both tumor-promoting
and tumor-suppressing roles in cancer [123–125]. In breast cancer, miRNA-10b possesses a
tumor-promoting role by affecting CSCs. miRNA-10b maintains the self-renewal capacity
of BCSCs by PTEN downregulation and paving the way for Akt activation. The prolonged
activation of Akt leads to an increase in the self-renewal capacity and expression of cancer
stem cell markers that are in favor of breast cancer malignancy [126].

The identification of miRNAs targeting PTEN is of interest in providing novel ther-
apeutics. For instance, miRNA-182-5p diminishes PTEN expression in increasing breast
cancer survival and invasion. Silencing miRNA-182-5p is correlated with an increase in
PTEN expression and suppressing breast cancer malignancy [127]. The interesting point is
that both the proliferation and metastasis of breast cancer cells are affected by the relation-
ship between miRNA and PTEN. The overexpression of miRNA-29b results in apoptosis
inhibition and cancer metastasis via PTEN downregulation [128]. It is noteworthy that
miRNAs can diminish the impact of environmental factors in breast cancer development.
Phthalates (PAEs) are endocrine-disrupting compounds, and their role in breast cancer
progression and initiation has been confirmed [129,130]. Exposing breast cancer cells to
butyl benzyl phthalate is correlated with an increase in proliferation, transition from the
G1 to S phase in the cell cycle, cyclin D1, the proliferation of cell nuclear antigen (PCNA),
and a decrease in p21 expression. The investigation of molecular pathways demonstrates
that butyl benzyl phthalate can bind to 3′-UTR of PTEN in reducing its expression, which
is of importance for activating Akt and decreasing p21 expression [131]. These signaling
networks provide breast cancer progression during exposure to environmental factors.

FOXO3a is an important member of the FOXO family with anti-tumor activity. In order
to exert its inhibitory effect on cancer progression, FOXO3a should be stabilized in the nu-
cleus. FOXO3a inhibition leads to breast cancer carcinogenesis [132]. FOXO3a overexpression
is a desirable factor for prognosis, and its downregulation occurs in drug-resistant breast
cancer cells [133]. Increasing evidence demonstrates that FOXO3a is a down-stream target
of Akt [134–136]. As a tumor-promoting factor, miRNA-21 downregulates the expression of
PTEN to induce Akt activation. Consequently, Akt stimulates the translocation of FOXO3a
from the nucleus to the cytoplasm to prevent its anti-tumor action. Following FOXO3a down-
regulation, expressions of miRNA-34b and miRNA-34c undergo downregulation to increase
CDK4 and CDK6 expression in favoring breast cancer progression [137]. Therefore, miRNAs
are potential regulators of PTEN in breast cancer cells affecting proliferation, metastasis, and
immune evasion [138]. These studies are in agreement with the fact that PTEN and its upstream
and downstream mediators are in stringent surveillance of miRNAs affecting breast cancer
progression and development (Table 1).
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Table 1. MicroRNAs (miRNAs) inhibiting PTEN in promoting breast cancer progression.

miRNA Signaling Network Outcomes Refs.

miRNA-106b
miRNA-93 PTEN/PI3K/Akt

Increasing cancer cell proliferation and metastasis
PTEN downregulation

Inducing PI3K/Akt signaling
[139]

miRNA-182-5p - Silencing miRNA-182-5p impairs cancer malignancy via PTEN upregulation [127]

miRNA-221/222 PTEN/Akt Promoting colony formation capacity
Inducing Akt signaling via PTEN inhibition [121]

miRNA-19a/b PTEN/Akt/p21

Inhibiting cell cycle arrest at G1/S phase
Binding to 3′-UTR of PTEN in reducing its expression

P21 inhibition
Upregulating PCNA and cyclin D1

[131]

miRNA-9
miRNA-155 - Involvement of these exosomal miRNAs in metastasis of breast cancer cells via

PTEN downregulation [112]

miRNA-10b PTEN/Akt Maintaining self-renewal capacity of breast cancer cells
Akt hyperactivation via PTEN downregulation [126]

miRNA-221/222 PTEN/Akt/NF-kB/COX-2

Enhancing stem cell-like features of breast cancer cells
Increasing colony formation capacity

Promoting stemness via ALDH1 upregulation
PTEN inhibition

Activating Akt/NF-kB/COX-2 axis

[140]

miRNA-181c - Increasing cancer growth by binding to 3′-UTR of PTEN [109]

miRNA-425-5p -
Association with poor prognosis of breast cancer patients
Dually promoting cancer cell proliferation and metastasis

PTEN inhibition
[115]

miRNA-30a PTEN/Akt
Downregulating PTEN expression

Providing condition for Akt phosphorylation
Promoting cancer cell survival and growth

[122]

miRNA-21 PTEN/Akt/ERK1/2 Silencing miRNA-21 disrupts cancer metastasis (EMT) via PTEN upregulation
and subsequent inhibition of Akt/ERK1/2 [141]

miRNA-19a-3p - miRNA downregulation by cold atmospheric plasma leads to breast cancer
suppression via PTEN upregulation [142]

4.1.2. Lung Cancer

Both miRNAs and PTEN can be considered as diagnostic and prognostic factors
in lung cancer. For instance, miRNA-494 overexpression is associated with the poor
prognosis, pathological tumor node metastasis (TNM), and lymph node metastasis of
lung cancer cells. Furthermore, PTEN is associated with grade of differentiation [143].
Although this study has not evaluated miRNA and PTEN relationship in lung cancer, it
shows that their expression is a determining factor for malignant behavior of lung cancer
cells. Therefore, it is of significant importance to reveal miRNA and PTEN associations
in lung cancer. The metastasis and growth of lung cancer cells mainly depend on the
miRNA/PTEN axis. It has been reported that miRNA-106a binds to 3′-UTR of PTEN to
reduce its expression, leading to lung cancer progression [144]. Decreasing the expression of
such miRNAs causes the anti-apoptotic and pro-metastatic impacts to disappear by PTEN
upregulation [145]. The aim of tumor-promoting miRNAs in PTEN inhibition is to activate
PI3K/Akt signaling in increasing lung cancer progression [146]. Clinical studies have also
confirmed miRNA and PTEN interaction in determining prognosis. It seems that miRNA-
93-5p upregulation is correlated with poor prognosis via PTEN downregulation [147]. It is
noteworthy that miRNAs can synergistically regulate PTEN in lung cancer progression.
miRNA-21 and miRNA-155 synergistically induce PTEN downregulation in enhancing
lung cancer progression [148].

It was mentioned that miRNAs affect PTEN in triggering PI3K/Akt signaling. It
appears that downstream targets of Akt play a significant role in lung cancer progression.
S-phase kinase-associated protein 2 (Skp2) is a member of F-box family, and its overexpres-
sion in lung cancer cells mediates their resistance to cisplatin chemotherapy [149]. As a
tumor-promoting factor, miRNA-1297 reduces PTEN expression to activate Akt signaling,
leading to Skp2 expression and the malignant behavior of lung cancer cells [150]. It is
worth mentioning that miRNAs can regulate the proliferation of cancer cells by target-
ing glycolysis. Hexokinase 2 (HK2) and pyruvate kinase isozyme M2 (PKM2) are two
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important enzymes in glycolysis. HK2 is involved in the first step of glycolysis and is a
rate-limiting enzyme [151], while PKM2 participates in the last step of glycolysis [152].
By PTEN downregulation, miRNA-214 induces PI3K/Akt signaling, leading to HK2 and
PKM2 upregulations, and paving the way for the progression of lung cancer cells [153].
Therefore, the growth, viability and invasion of lung cancer cells are mainly regulated by
the miRNA/PTEN axis [154].

One of the interesting points is the relationship between PTEN and the immune system
in cancer [155]. It has been reported that PTEN loss is associated with the activation of
programmed death-ligand 1 (PD-L1), mediating the immune evasion of cancer cells [156].
miRNA-142-5p can reduce the cytotoxicity of CD4+ cells against lung cancer via PTEN
inhibition. PI3K/Akt and PD-L1 activations occur following miNRA-142-5p upregulation
in lung cancer [157]. Therefore, the miRNA/PTEN axis not only affects the proliferation
and invasion of lung cancer but also regulates immune response. It is noteworthy that the
response of lung cancer cells to radiotherapy can also be regulated by the miRNA/PTEN
axis. In this way, miRNA-181a downregulates PTEN expression to promote the progression
and malignancy of lung cancer cells, resulting in their resistance to radiotherapy [158].
Downregulating miRNA-21 and miRNA-95 expressions promote PTEN expression to
suppress PI3K/Akt signaling, resulting in the radiosensitivity of lung cancer cells [159]. It
has been reported that lung cancer cells can secrete extracellular vesicles for transferring
miRNAs. The miRNA-23a transferring leads to PTEN downregulation in lung cancer cells
exposed to radiation, leading to angiogenesis [160].

STAT3 and PTEN demonstrate interactions in cancer cells. IL-8 can reduce PTEN
expression via phosphorylation to stimulate STAT3 signaling, resulting in enhanced cancer
progression [161]. Furthermore, STAT3 can function as an upstream mediator of PTEN by
activating lncRNA cancer susceptibility candidate 9 (CASC9) to diminish PTEN expression,
resulting in bladder cancer progression [162]. On the other hand, miRNAs such as miRNA-
551b-3p can induce STAT3 signaling in enhancing the growth and metastasis of cancer
cells [163]. Future studies can evaluate how miRNAs affect PTEN and STAT3 interaction in
lung cancer. Taking everything into account, experiments demonstrate that miRNAs are
versatile molecules in lung cancer by regulation PTEN signaling and affecting proliferation,
invasion, and therapy response (Table 2) [164–170].

Table 2. miRNAs inhibiting PTEN expression in enhancing lung cancer progression.

miRNA Signaling Network Outcomes Refs

miRNA-93 LKB1/PTEN/CDKN1A/PI3K/Akt

Upregulation of miRNA-93 in lung cancer cells
Association with proliferation and metastasis of cancer cells

Inhibiting LKB1/PTEN/p21 axis
Inducing PI3K/Akt

[171]

miRNA-21 PTEN/EMT Reverse relationship with PTEN
Promoting metastasis via EMT induction [172]

miRNA-21 PTEN/Akt/GSK-3b

Increasing cyclin D1 and cyclin E1 expressions
Enhancing cancer cell proliferation

Promoting metastasis via EMT induction
Activating Akt/GSK-3b signaling via PTEN downregulation

[173]

miRNA-21 -
Enhancing cell proliferation and invasion

Apoptosis inhibition
PTEN inhibition

[174]

miRNA-26a PTEN/Akt Enhancing metastasis via PTEN downregulation and the subsequent
induction of Akt signaling [175]

miRNA-21 -
Binding to 3′-UTR of PTEN

Reducing the mRNA level of PTEN
Promoting growth and metastatic features

[176]

miRNA-205 PTEN/Akt/mTOR
PTEN inhibition

Activating Akt/mTOR signaling
Increasing malignancy of lung cancer cells

[177]

miRNA-183-5p PTEN/Akt/p53
Exerting oncogenic role

Promoting Akt phosphorylation via PTEN downregulation
Activating p53

[178]
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4.2. MicroRNAs and PTEN Induction
4.2.1. Breast Cancer

miRNAs capable of promoting PTEN expression are considered as a tumor-suppressing
factor in breast cancer. To date, most of the studies have focused on revealing the role
of tumor-promoting miRNAs in breast cancer progression. However, a newly published
experiment has investigated the efficacy of miRNA-424-5p in breast cancer therapy. This
tumor-suppressing miRNA diminishes colony formation, cell viability, and the prolifera-
tion of breast cancer cells, and it induces apoptosis. In this way, miRNA-424-5p promotes
PTEN expression to downregulate PI3K/Akt/mTOR signaling, resulting in breast cancer
suppression (Figure 2) [179]. However, we still have a long way in revealing the role of
miRNAs in suppressing PTEN expression.
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Figure 2. miRNAs suppressing/inducing PTEN expression in breast cancer, and affecting the
progression, viability, and response of cancer cells to therapy.

4.2.2. Lung Cancer

In lung cancer cells, PTEN induction is a negative factor for proliferation and metasta-
sis. miRNA-4299 is a new emerging miRNA in lung cancer that is capable of promoting
PTEN expression. The downregulation of miRNA-4299 occurs in lung cancer cells, and it is
associated with TNM stage, histological grade, and lymph node metastasis. Enhancing
miRNA-4299 expression is associated with good prognosis and can suppress the prolif-
eration and migration of lung cancer cells via PTEN upregulation and the subsequent
inhibition of PI3K/Akt signaling [180]. miRNA-130 is another important miRNA in lung
cancer, but its exact role has not been completely understood. It has been reported that
miRNA-130 can function as a tumor-promoting factor via inducing enhancer of zeste
homolog 2 (EZH2) expression [181], while another study focuses on the tumor-suppressing
role of miRNA-130 in lung cancer, showing that it can induce apoptosis in lung cancer
cells and impair their proliferation via PTEN upregulation [182]. Similar to breast cancer,
most studies have focused on revealing the role of tumor-promoting miRNAs in PTEN
inhibition, and more studies are needed in the identification of miRNAs inducing PTEN
signaling in lung cancer suppression (Figure 3).
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4.3. MicroRNAs, PTEN, and Chemotherapy
4.3.1. Breast Cancer

One of the preferred strategies in breast cancer therapy is chemotherapy. However, re-
search is not always in favor, and increasing evidence demonstrates the capability of breast
cancer cells to develop chemoresistance [183–188]. miRNAs have demonstrated a potential
contribution in breast cancer chemoresistance. miRNA-30c triggers chemoresistance in
breast cancer cells via histone deacetylase 9 (HDAC9) upregulation [189]. On the other
hand, tumor-suppressor miRNAs such as miRNA-200c-3p are downregulated by lncRNA
X-inactive specific transcript (XIST) in mediating chemoresistance [190]. miRNA-222 is
suggested to be involved in inducing chemoresistance in breast cancer cells via affecting
PTEN. The overexpression of miRNA-222 is associated with PTEN downregulation, paving
the way for Akt upregulation and subsequent inhibition of p27kip1. This axis provides Adri-
amycin resistance in breast cancer cells [191]. This signaling network is more complicated
when it is found that Akt can affect more down-stream targets. Akt is capable of activating
NF-kB via phosphorylating IkB kinase (IKK) [192–195]. NF-kB can induce cyclooxygenase-
2 (COX-2) expression, which is an obvious finding in different malignancies [196–199]. As
tumor-promoting factors, miRNA-222 and miRNA-221 reduce PTEN expression to elevate
stem-cell properties and the proliferation of breast cancer cells. PTEN inhibition results
in Akt activation, upregulating NF-kB and inducing COX-2, which are of importance for
enhancing breast cancer malignancy [140].

In addition to COX-2, FOXO family members can be affected by Akt. FOXO1, FOXO3,
and FOXO4 are members of the FOXO transcription family. Akt is capable of phosphory-
lating FOXO1 to provide the translocation of FOXO1 at the route of nucleus to cytoplasm,
where it is degraded by the ubiquitin–proteasome pathway [200,201]. Upon PTEN activa-
tion, the expression of Akt is inhibited, and FOXO1 enters the nucleus, where it induces
cell cycle arrest and apoptosis [202]. Such interactions are important for the drug resistance
of breast cancer cells. It has been reported that miRNA-222 as a tumor-promoting factor
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triggers Akt phosphorylation via PTEN downregulation. This leads to a decrease in FOXO1
expression and level in the nucleus, which is of importance for enhancing chemoresistance
in breast cancer cells [203]. Several experiments were discussed examining the role of
miRNA-222 in triggering chemoresistance in breast cancer cells. Now, it is completely obvi-
ous that miRNA-222 is tumor-promoting in breast cancer, and it can promote proliferation
and chemoresistance [204]. It can be concluded that the expression of tumor-promoting
miRNAs such as miRNA-19 undergo upregulation in drug-resistant breast cancer cells,
while a decrease occurs in PTEN expression [205].

One of the interesting points of drug resistance is the relationship between factors
regulating the proliferation and metastasis of cancer cells. It seems that when tumor-
suppressing factors regulating cancer proliferation are downregulated, the way for the
upregulation of metastatic factors is paved. Such association has been investigated in
the drug resistance of breast cancer cells. It has been reported that EMT induction can
trigger the chemoresistance of cancer cells [206–208]. In breast cancer cells, miRNA-
93 demonstrates an increase in expression that mediates the downregulation of PTEN,
resulting in EMT induction and subsequent obtaining of drug resistance [209]. Although
just one study has evaluated the EMT and PTEN relationship and their regulation by
miRNAs in the drug resistance of breast cancer cells, we have still a long way in the
identification of more miRNAs. For instance, p53 is a apoptosis-related factor that can
function as an upstream mediator of PTEN in cancer therapy [210]. The combination of
anti-miRNA-222/221 with cisplatin induces p53 expression to stimulate PTEN, resulting in
increased efficacy in the eradication of triple-negative breast cancer cells [211].

The tumor-promoting miRNAs reduce the expression of PTEN in inducing chemore-
sistance. It seems that PTEN downregulation is associated with the resistance of cancer
cells to chemotherapy-mediated apoptosis. The underlying molecular pathways involved
in this kind of chemoresistance have been revealed. miRNA-222 can promote the resis-
tance of breast cancer cells to Adriamycin chemotherapy via PTEN downregulation and
the subsequent induction of Akt, leading to p27 inhibition and decreasing apoptotic cell
death [191]. A same strategy is followed by miRNA-202-5p in inducing doxorubicin resis-
tance, so that this miRNA significantly diminishes PTEN expression to stimulate PI3K/Akt
signaling, resulting in apoptosis inhibition and providing chemoresistance [107]. Hence,
the application of anti-tumor compounds capable of inducing apoptosis can be considered
as a promising strategy in chemosensitivity. Overall, miRNAs are divided into two major
groups, inducers and inhibitors of PTEN, that affect the response of breast cancer cells to
chemotherapy (Table 3) [212].

Table 3. miRNAs regulating PTEN signaling in breast cancer chemotherapy.

miRNA Chemotherapeutic
Agent

Impact on
Chemotherapy Remarks Refs.

miRNA-93 Doxorubicin Resistance
PTEN downregulation

EMT induction
Increasing cancer metastasis and malignancy

[209]

miRNA-202-5p Doxorubicin Resistance Enhancing tumor volume and progression
Downregulating PTEN and subsequent induction of PI3K/Akt signaling [107]

miRNA-222 Adriamycin Resistance Activation of PI3K/Akt signaling via PTEN downregulation
Association with poor prognosis [203]

miRNA-222 Adriamycin Resistance

PTEN downregulation
Inducing Akt signaling

P27 inhibition
Triggering the resistance of cancer cells to apoptosis

[191]

miRNA-222
miRNA-29a

Adriamycin
Doxorubicin Resistance Overexpression in drug-resistant cancer cells

Association with PTEN downregulation [204]

miRNA-520h Paclitaxel Resistance
Binding to OTUD3 and reducing its expression

PTEN inhibition
Paving the way for Akt induction

[212]

miRNA-221/222 Cisplatin Resistance Downregulation of miRNA-221/222 enhances cisplatin sensitivity
Activation of p53/PTEN signaling following miRNA inhibition [211]
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4.3.2. Lung Cancer

Due to the malignant behavior of lung cancer cells in terms of proliferation and metas-
tasis, they can obtain resistance to chemotherapy [213]. Increasing evidence demonstrates
the role of miRNAs in lung cancer cells acquiring chemoresistance [214,215]. Furthermore,
PTEN downregulation occurs in drug-resistant lung cancer cells [216,217]. In this section,
the association of miRNA with PTEN signaling in regulating the response of lung cancer
cells to chemotherapy is discussed.

Cisplatin resistance is an increasing challenge in the treatment of lung cancer [218,219].
Autophagy as a “self-digestion” mechanism is suggested to be involved in the chemore-
sistance of lung cancer cells [220–224]. miRNA-181 as a tumor-suppressing factor inhibits
autophagy via light chain-3 (LC3) and autophagy-related gene 5 (ATG5) downregula-
tion. This is mediated via PTEN upregulation and the subsequent inhibition of PI3K/Akt
signaling [225]. However, autophagy can also sensitize lung cancer cells to chemother-
apy [226,227]. This dual role of autophagy and its association with the miRNA/PTEN axis
can be considered in further experiments. Apoptosis induction and impairing proliferation
are two major pathways followed by miRNAs inducing PTEN in providing the cisplatin
sensitivity of lung cancer cells [228].

In enhancing the chemosensitivity of lung cancer cells, silencing the expression of
tumor-promoting miRNAs is of importance. It has been reported that miRNA-23a down-
regulation paves the way for erlotinib sensitivity via PTEN upregulation. Upon PTEN
activation, PI3K/Akt signaling inhibition occurs, impairing lung cancer progression [229].
miRNA-21 is one of the most important miRNAs in lung cancer, and its association with
chemoresistance has been investigated in several studies. Increasing evidence demonstrates
miRNA-21 involvement in enhancing cancer proliferation and metastasis via inducing
molecular pathways such as Akt and matrix metalloproteinases (MMPs). Anti-tumor
compounds such as sinomenine reduce miRNA-21 expression in disrupting lung cancer
progression [230,231]. By PTEN downregulation, miRNA-21 promotes the expression
of Akt and extracellular-signal regulated kinase (ERK) pathways, leading to the gefi-
tinib resistance of lung cancer cells [232]. Upon hypoxic conditions, exosomal transfer of
miRNA-21 occurs that subsequently mediates the resistance of lung cancer cells to cisplatin
chemotherapy [233]. So, the most important pathway that miRNA-21 follows in inducing
the chemoresistance of lung cancer cells is PTEN downregulation and the subsequent
induction of PI3K/Akt signaling [234,235].

miRNA-1269b is a new emerging miRNA in cancer with an oncogene role, and it is
capable of increasing cancer growth and invasion via Akt phosphorylation [236]. Cisplatin-
resistant lung cancer cells demonstrate an increase in the expression of miRNA-1269b.
An examination of molecular pathways shows that miRNA-1269b enhances cancer pro-
liferation in vitro and in vivo and is correlated with chemoresistance. For this purpose,
miRNA-1269b reduces PTEN expression to induce PI3K/Akt signaling [237]. The PTEN
downregulation by miRNAs occurs via binding to 3′-UTR [238]. Interestingly, the prolif-
eration and metastasis of cancer cells are in close relationship with each other and can
trigger chemoresistance [239–241]. It has been reported that TGF-β can induce EMT in
mediating chemoresistance [242–245]. miRNA-134/487b/655 stimulates TGF-β-mediated
EMT in lung cancer cells. Then, the downregulation of membrane-associated guanylate
kinase, WW, and PDZ domain-containing protein 2 (MAGI2) occurs, leading to PTEN loss
and the gefitinib resistance of lung cancer cells [246]. Overall, studies are in agreement
with the role of the miRNA/PTEN axis in regulating the response of lung cancer cells to
chemotherapy (Table 4) [247,248].
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Table 4. miRNAs affecting the response of lung cancer cells to chemotherapy.

miRNA Chemotherapeutic
Agent

Effect on
Chemotherapy Remarks Refs.

miRNA-181 Cisplatin Sensitivity

PTEN upregulation
Inhibition of PI3K/Akt/mTOR signaling

Apoptosis induction
Disrupting cancer metastasis

[249]

miRNA-29b-3p Cisplatin Sensitivity

Disrupting cell viability
Reducing proliferation

Inducing apoptosis via Bax upregulation
Triggering PTEN signaling

[228]

miRNA-23a Erlotinib Resistance Silencing miRNA-23a restores PTEN expression to suppress PI3K/Akt
signaling, leading to erlotinib sensitivity [229]

miRNA-134/487b/655 Gefitinib Resistance
Inducing TGF-b1 signaling in reducing PTEN expression

Enhancing cancer metastasis via EMT induction
Providing chemoresistance

[246]

miRNA-21 Gefitinib Resistance
Reverse relationship between miRNA-21 and PTEN

Activation of Akt and ERK signaling pathways
Association with poor prognosis

[232]

miRNA-21 Cisplatin Resistance Hypoxia induces exsoaomal transfer of miRNA-21
Exerting PTEN inhibition [233]

miRNA-92b Cisplatin Resistance
Establishing cancer proliferation

Reducing sensitivity to chemotherapy
PTEN inhibition

[248]

miRNA-1269b Cisplatin Resistance
Enhancing cancer cell growth

Apoptosis inhibition
Inducing PI3K/Akt signaling via PTEN downregulation

[237]

miRNA-21 EGFR-TKI Resistance
Negative association with PTEN expression

Triggering PI3K/Akt signaling
Reducing chemosensitivity

[234]

4.4. Regulation of microRNA/PTEN Axis
4.4.1. Breast Cancer

As miRNAs can regulate PTEN expression in breast cancer, and this is of importance
in cancer proliferation and invasion as well as response of cancer cells to chemotherapy,
experiments have focused on revealing the role of upstream mediators regulating the
miRNA/PTEN axis in breast cancer cells.

lncRNAs are an important part of ncRNAs with a length more than 200 nucleotides
capable of regulating miRNAs in breast cancer [250]. Furthermore, lncRNAs regulate
PTEN in affecting the proliferation and metastasis of breast cancer cells [251,252]. LncRNA
PTENP1 is a tumor-promoting factor in breast cancer that not only affects breast cancer
progression but also influences drug sensitivity. LncRNA PTENP1 reduces PTEN expres-
sion via miRNA-20a sponging to upregulate PI3K/Akt signaling, resulting in breast cancer
proliferation, metastasis, and adriamycin resistance [253]. In reducing the expression of
miRNAs, lncRNAs can function as competing endogenous RNA (ceRNA). Although pre-
vious study demonstrated a tumor-promoting role of PTENP1 in breast cancer, another
study reveals the tumor-suppressing role of this important lncRNA. LncRNA PTENP1
upregulates PTEN expression by miRNA-19b inhibition via sponging. Then, Akt down-
regulation and p53 upregulation occur to restrict the proliferation and metastasis of breast
cancer cells [171]. It seems that lncRNA PTENP1 functions as a double-edged sword in
breast cancer, and its exact role is not certain. However, it can effectively regulate breast
cancer progression via affecting the miRNA/PTEN axis [254]. By the identification of
tumor-promoting lncRNAs, they can be targeted in further studies for suppressing breast
cancer progression. For instance, lncRNA GAS5 triggers tamoxifen resistance via miRNA-
222 sponging and the subsequent inhibition of PTEN. Silencing GAS5 impairs breast cancer
progression and enhances their sensitivity via activating the miRNA-222/PTEN axis [255].
To date, studies have focused on the recognition of tumor-promoting lncRNAs such as
HOXC13-AS and ZFAS1, and further studies can identify tumor-suppressing lncRNAs
regulating the miRNA/PTEN axis. It is obvious that (A) tumor-suppressing miRNAs are
downregulated by lncRNAs in breast cancer progression, (B) PTEN downregulation occurs,
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(C) the way is paved for inducing factors involved in breast cancer malignancy such as
PI3K/Akt, (D) breast cancer cells promote their proliferation and invasion, and (E) finally,
they can obtain resistance to chemotherapy [36,256].

It is worth mentioning that in addition to lncRNAs, circular RNAs (circRNAs) can
regulate the miRNA/PTEN axis in breast cancer cells. To date, two studies have evaluated
the regulatory impact of circRNAs on the miRNA/PTEN axis in breast cancer cells that are
included here. CircSLC8A1 is an inhibitor of cancer progression by regulating miRNAs and
enhancing PTEN in bladder cancer therapy [257]. This circRNA exerts anti-tumor activity
in breast cancer cells. By sponging miRNA-671, circSLC8A1 activates PTEN expression to
inhibit PI3K/Akt signaling, limiting breast cancer progression [258]. Similar to lncRNAs,
circRNAs reduce the expression of target miRNAs via sponging. This provides the condi-
tion for the activation of PTEN signaling and subsequent inhibition in the proliferation and
invasion of breast cancer cells [259].

In addition to lncRNAs and circRNAs, other molecular pathways can function as
upstream mediators of the miRNA/PTEN axis in breast cancer cells. Tumor necrosis factor-
related apoptosis-inducing ligand (TRAIL) is a member of the tumor necrosis family (TNF)
family that is capable of inducing apoptosis in cancer cells and is a promising target in
cancer therapy [260]. However, it has been reported that cancer cells can obtain resistance
to TRAIL-mediated apoptosis [261]. It seems that TRAIL resistance can trigger EMT in
breast cancer cells to promote their metastasis and malignancy. In TRAIL-resistant cancer
cells, miRNA-221 undergoes upregulation that subsequently reduces the expression of
PTEN [262]. This study is also in line with previous experiments showing that the prolifer-
ation and invasion of breast cancer cells are in close relationship and the miRNA/PTEN
axis plays a significant role. One of the hallmarks of cancer is the tumor microenvironment.
Cancer-associated fibroblasts (CAFs) are the main stromal components of cancer cells with
a potential role in cancer progression [190,263–265]. In breast cancer cells, CAFs can secrete
exosomes containing miRNA-22 to bind to PTEN, reducing its expression and mediating ta-
moxifen resistance [266]. Therefore, upstream mediators of the miRNA/PTEN axis should
be considered in breast cancer cells for developing novel therapeutics [267,268].

4.4.2. Lung Cancer

One of the well-known tumor-suppressing lncRNAs in lung cancer is growth arrest-
specific transcript 5 (GAS5). Enhancing the expression of lncRNA GAS5 effectively disrupts
the proliferation and migration of lung cancer cells via miRNA-205 downregulation and
enhancing PTEN expression [269]. It is noteworthy that lncRNA GAS5 can regulate the
response of lung cancer cells to chemotherapy via modulating the miRNA/PTEN axis. For
this purpose, lncRNA GAS5 reduces miRNA-21 expression to induce PTEN signaling [270].
Increasing evidence demonstrates that lung cancer cells, due to their aggressiveness and
uncontrolled proliferation and metastasis, can obtain resistance to radiotherapy. The po-
tential of GAS5 in providing radiosensitivity has been evaluated. By reducing miRNA-21
expression, lncRNA GAS5 induces apoptosis in lung cancer cells exposed to radiotherapy.
It seems that PTEN upregulation and the subsequent inhibition of Akt signaling play a sig-
nificant role in this case [271]. In contrast, tumor-promoting lncRNAs promote lung cancer
progression via regulating the miRNA/PTEN axis. LncRNA LEF1-AS1 undergoes upregu-
lation in lung cancer patients. This lncRNA promotes miRNA-221 expression to inhibit
PTEN signaling, leading to proliferation inhibition and apoptosis induction in lung cancer
cells [272]. Therefore, the identification of lncRNAs regulating the miRNA/PTEN axis can
be of importance in developing novel therapeutics in lung cancer therapy [252,266]. One
of the hallmarks of cancer cells is their alteration in metabolism. In order to meet their high
need for energy, they utilize glycolysis [273]. CircRNAs can regulate the miRNA/PTEN
axis in targeting the glucose uptake and metabolism of lung cancer cells. CircLARP4 re-
duces miRNA-135b expression to induce PTEN signaling. Then, it inhibits the Akt/HIF-1a
axis to induce apoptosis in lung cancer cells and impair glycolysis [274].
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NF-kB signaling is a regulator of biological mechanisms, mainly the immune system,
and it can induce inflammation in promoting cancer progression [275–277]. Targeting and
suppressing NF-kB signaling can significantly reduce lung cancer viability and prolifera-
tion [278–282]. It has been reported that NF-kB promotes miRNA-548as-3p expression to
induce PTEN downregulation. Then, the way is paved for PI3K/Akt induction to promote
the proliferation of lung cancer cells [283]. However, we are still at the beginning point,
and more studies will reveal upstream mediators of the miRNA/PTEN axis [284].

4.5. MicroRNA/PTEN Axis: A Target of Anti-Tumor Compounds
4.5.1. Breast Cancer

One of the interesting points of the miRNA/PTEN axis is its targeting by anti-tumor
compounds. Most of the anti-tumor compounds evaluated in breast cancer therapy are
phytochemicals targeting the miRNA/PTEN axis. In this section, we provide a mechanis-
tic discussion of the role of naturally occurring compounds with anti-tumor activity in
regulating the miRNA/PTEN axis.

Curcumin is a plant derived-natural compound derived from Curcuma longa with
anti-tumor activity against breast cancer cells capable of inducing apoptosis and suppress-
ing metastasis [285–290]. Curcumin is an important regulator of cell cycle in cancer. It
seems that curcumin administration can mainly result in cell cycle arrest of cancer cells in
the G2/M phase [291,292]. Curcumin can induce apoptosis in cancer cells via activating
caspase cascade and upregulating caspase-3 expression [293]. It has been reported that
curcumin can regulate miRNA expression in cancer therapy [294–296]. Upon curcumin
administration, the expression level of tumor-promoting miRNAs including miRNA-21
and miRNA-27a undergoes downregulation, while an increase occurs in the expression
of tumor-suppressing miRNAs such as miRNA-22 and miRNA-145 [297]. As PI3K/Akt
activation is a common finding in cancer, it has been reported that curcumin administra-
tion downregulates PI3K/Akt expression via inducing PTEN signaling [298]. Curcumin
can suppress the progression of chemoresistant-cancer cells via enhancing PTEN expres-
sion [299]. Curcumin administration suppresses breast cancer proliferation and stimulates
cell cycle arrest at the G1/S phase. Mechanistically, curcumin downregulates the expression
of miRNA-19a and miRNA-19b to induce PTEN signaling, leading to Akt downregulation
and providing conditions for breast cancer therapy [300]. It seems that curcumin exerts its
anti-tumor activity in a time- and dose-dependent manner. Exposing breast cancer cells to
curcumin is correlated with miRNA-21 downregulation, the subsequent induction of PTEN,
and the upregulation of caspase-3/9 in impairing breast cancer progression [301]. The
important downstream target that is affected by the miRNA/PTEN axis is PI3K/Akt sig-
naling. For this purpose, thidiazuron activates the miRNA-202-5p/PTEN axis to suppress
PI3K/Akt signaling, leading to breast cancer inhibition [302].

Cantharidin (CTD) is a well-known compound in traditional Chinese medicine that
can suppress cancer proliferation via triggering DNA damage [303]. It can induce apoptosis
in cancer cells and reverse chemoresistance [304,305]. In breast cancer cells, CTD inhibits
cancer progression in a time-dependent manner. CTD decreases the expression of miRNA-
160b-93 as a tumor-promoting factor to enhance the expression of its downstream target
PTEN, resulting in breast cancer inhibition [306]. Matrine is also an alkaloid derived
from Sophora flavescens with capability in regulating the expression of miRNAs in cancer
therapy [307]. It is noteworthy that it has been reported that matrine can regulate the
miRNA/PTEN axis in colorectal cancer therapy [231], which is the same strategy that is
followed in breast cancer therapy. In a time- and dose-dependent manner, matrine reduces
breast cancer proliferation and triggers cell cycle arrest at the G1/S phase. Via miRNA-21
inhibition, matrine promotes PTEN expression to induce Akt dephosphorylation, leading
to an accumulation of Bad, p21 and p27 in breast cancer therapy [308].

Based on the published experiments, the following points can be concluded:

• Phytochemicals can be considered as epigenetic drugs in regulating miRNA expression,
• By targeting miRNAs, natural compounds can modulate PTEN expression,
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• PTEN upregulation can impair PI3K/Akt signaling as the important pathway required
for cancer progression,

• Apoptosis induction and proliferation inhibition are the major outcomes of using phyto-
chemicals targeting the miRNA/PTEN axis in breast cancer therapy (Figure 4) [309–313].
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specific transcript 5 (GAS5) function as the main upstream mediators of the miRNA/PTEN axis in breast cancer.

4.5.2. Lung Cancer

Similar to breast cancer, anti-tumor compounds can regulate the miRNA/PTEN axis
in affecting lung cancer progression. In this way, the expression of tumor-suppressing
miRNAs undergoes downregulation, while an increase occurs in the expression of tumor-
promoting miRNAs. Triptolide is a potent anti-tumor agent that has demonstrated in-
hibitory effect on cancer progression via targeting molecular pathways. Triptolide admin-
istration impairs the metastasis of lung cancer cells via EMT inhibition and reducing the
expression levels of matrix metalloproteinase-9 (MMP9) [314]. This plant-derived natural
compound induces apoptosis in lung cancer cells via miRNA-204-5p upregulation and
the subsequent inhibition of Akt signaling [315]. In enhancing PTEN expression, trip-
tolide promotes miRNA-21 expression to induce apoptosis in lung cancer cells, impairing
their proliferation and viability [316]. The regulation of the miRNA/PTEN axis by anti-
tumor compounds is of importance in enhancing the chemosensitivity of lung cancer cells.
Baicalein administration is correlated with the cisplatin sensitivity of lung cancer cells via
miRNA-424-3p downregulation, subsequent induction of PTEN signaling, and a significant
decrease in PI3K/Akt expression [317]. As miRNAs are considered as key players in
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cisplatin resistance [318], their modulation by anti-tumor compounds paves the way for
sensitivity. Exposing lung cancer cells to lidocaine induces miRNA-21 downregulation to
promote PTEN expression, leading to PI3K/Akt suppression and cisplatin sensitivity [319].
One of the interesting points is the anti-tumor activity of propofol as an anesthetic agent.
This compound is exclusively applied in cancer therapy, and it is capable of regulating dif-
ferent molecular pathways in cancer therapy, particularly miRNAs [320–322]. In non-small
cell lung cancer, propofol downregulates miRNA-21 expression to induce apoptosis in a
time- and dose-dependent manner. Upon miRNA-21 inhibition, propofol increases PTEN
expression, which mediates anti-tumor activity against lung cancer cells [323]. Although a
few studies have evaluated miRNA/PTEN axis regulation by anti-tumor compounds, it
seems that this pathway is a novel target for impairing lung cancer growth (Figure 5) [324].
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5. Conclusions and Remarks

In the present review, a mechanistic discussion of miRNA and PTEN interaction in
lung and breast cancers was provided. We investigated this interaction in lung and breast
cancers as the most malignant thoracic tumors. The results were in line with each other.
PTEN loss occurs in both lung and breast cancers, leading to their progression via the
activation of PI3K/Akt signaling, and downstream targets including EMT, GSK-3b, HIF-1a,
and so on. miRNAs are divided into two main categories, including tumor-suppressing
miRNAs that promote PTEN expression and tumor-promoting miRNAs that reduce PTEN
expression. Furthermore, the miRNA/PTEN axis can be regulated by upstream mediators
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and anti-tumor compounds. LncRNAs and circRNAs are the most well-known regulators
of the miRNA/PTEN axis in lung and breast cancers. Anti-tumor compounds promote the
expression of tumor-suppressing miRNAs in inducing PTEN expression and suppressing
cancer malignancy.

It is noteworthy that the expression of miRNA and PTEN as well as their interaction
and capability of being used as diagnostic and prognostic factors in lung and breast cancers
have been investigated. With respect to the fact that PTEN loss occurs in cancer patients,
and miRNAs regulating PTEN have been identified, they can be used as reliable biomarkers.
Novel therapeutics can be developed for application in clinical studies and treatment of
lung and breast cancer patients. However, we are still at the beginning point, and more
studies are needed to evaluate the miRNA/PTEN axis in these malignant tumors.
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