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Aspergillus species are ubiquitous environmental moulds, with spores
inhaled daily by most humans. Immunocompromised hosts can develop
an invasive infection resulting in high mortality. There is, therefore, a press-
ing need for host-centric therapeutics for this infection. To address it, we
created a multi-scale computational model of the infection, focused on its
interaction with the innate immune system and iron, a critical nutrient for
the pathogen. The model, parameterized using published data, was found
to recapitulate a wide range of biological features and was experimentally
validated in vivo. Conidial swelling was identified as critical in fungal strains
with high growth, whereas the siderophore secretion rate seems to be an
essential prerequisite for the establishment of the infection in low-growth
strains. In immunocompetent hosts, high growth, high swelling probability
and impaired leucocyte activation lead to a high conidial germination rate.
Similarly, in neutropenic hosts, high fungal growth was achieved through
synergy between high growth rate, high swelling probability, slow leucocyte
activation and high siderophore secretion. In summary, the model reveals a
small set of parameters related to fungal growth, iron acquisition and
leucocyte activation as critical determinants of the fate of the infection.
1. Introduction
Invasive aspergillosis is a human infection with increasing incidence, related to
the use of immunosuppressive therapies, such as cancer chemotherapy and
immunosuppression medications [1]. More recently, it has also been observed
that 10% to 14% of critically ill patients with COVID-19 developed invasive
aspergillosis [2,3]. Mortality remains high, 30–60% in recent surveys [4], despite
advances in diagnostics and therapy. Increasing triazole resistance in this infec-
tion [5] has raised the spectre of a ‘perfect storm’ [6] in an increasing population
of susceptible individuals with a diminished repertoire of treatment options.

The research presented here was motivated by the search for host-centric
interventions in immuno-compromised patients that can be used in combination
with antifungal treatments. An important mechanism in innate immunity is the
sequestration of iron from pathogens, a nutrient critical for nearly all organisms.
A well-established literature supports the concept that the ‘battle over iron’ is
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characteristic of the host’s attempt to attenuatemicrobial growth
during many infections [7]. Iron is particularly relevant to the
pathogenesis of aspergillosis [8]. The iron sequestration feature
of the innate immune response involves several intertwined pro-
cesses that unfold across spatial and temporal scales. Thismakes
it challenging to assess the effect of perturbations of individual
mechanisms on infection dynamics. A computational model
that captures the key mechanisms, broadly reflects the under-
lying immune biology, and is well-validated can play an
essential role in hypothesis generation and the discovery of
emergent properties of the immune response.

Several models related to respiratory Aspergillus infections
and their pathology have been previously published. For
example, agent-based models have shown the necessity of
chemotactic signals for proper fungal clearance [9,10]. Our
own work includes a model of the innate immune response
to A. fumigatus, showing that a key determinant of infection
is the range at which macrophages can detect the fungus [11],
and an intracellular regulatory network linking iron metab-
olism to oxidative stress in a fungal cell [12]. The model
presented here is parameterized entirely with information
from the literature, rather than through data fitting, and is
validated by showing that it can recapitulate a wide range of
experimental data and features reported in the literature that
were not used in its construction, as well as experimental
data generated for the purpose of model validation. The
model was then used to identify major drivers of the growth
of fungal burden, providing potential targets for intervention.
2. Methods
2.1. A computational model of the immune response to

invasive aspergillosis
The model is an agent-based model of invasive pulmonary
aspergillosis scaled to a mouse lung, the experimental system
used in this study, focusing on the ‘battle over iron’ between
host and fungus. We first describe its main components.

2.1.1. Space and time
A three-dimensional space representing a small portion of a
mouse lung is divided into a discrete grid of one thousand
voxels (10 voxels in each of three dimensions), representing a
total volume of 6.4 × 10−2 μl. Each voxel has an edge length of
40 μm (6.4 × 10−5 μl). Cells and molecules have no space coordi-
nates other than the voxel in which they are located at a given
time. This approach is similar to that used in the general
immune modelling platform C-IMMSIM [13]. The space has per-
iodic boundary conditions, and simulated time progresses in
discrete steps of 2 min.

2.1.2. Molecules
The model includes five kinds of molecules: cytokines (IL-6
(interleukin 6), IL-10 (interleukin 10), TGF (transforming growth
factor β1), TNF-α (tumour necrosis factor α), CXCL2 (chemokine
(C-X-C motif) ligand 2), CCL4 (chemokine (C-C motif ) ligands
4)), a siderophore (triacetylfusarinine C (TAFC)), iron-carrier
molecules (transferrin and lactoferrin), iron and the hormone h-
epcidin. The cytokines are subject to a half-life of 1 h [14–20].
Furthermore, all the molecules are subject to a constant exchange
between the simulated volume and the serum (system). Iron in
this model is used only as a temporary buffer for the transference
of iron between dying cells (i.e. macrophages, A. fumigatus) and
iron-carrier molecules.
The concentration of a molecule in one voxel is called the
local concentration, and we will refer to the concentration
across the whole simulated space as the global concentration.
By contrast, the serum concentration (i.e. outside the simulator)
is the systemic concentration. Equation (2.1) determines the flux
of molecules between the serum and the simulated (local)
space. For the cytokines lactoferrin and TAFC, we assume as a
simplification that the systemic concentration xsystem is zero.
Therefore, these molecules are constantly flowing in the direction
of the serum, increasing their decay rate. The systemic level of
hepcidin and transferrin is dynamically calculated as follows:

y ¼ ðx� xsystemÞ � e�kturn�t � xsystem, ð2:1Þ
where xsystem is the molecule’s systemic concentration (see termi-
nology above), x is the local concentration, kturn is the turnover
rate and t is the time-step length (2 min).

Equations (2.2) and (2.3) compute the systemic levels of
hepcidin and transferrin. Note that the result of the first equation
(2.2) feeds into the second one (2.3). However, the first equation
needs the systemic levels of IL-6 as input. However, in this simu-
lator, we only have the local and global levels of IL-6. According
to Goncalves et al. [21], a reasonable estimate of the systemic level
of IL-6 is one-half of its global level. The equations are

Log10ðHepcidinsystemicÞ ¼ hepint þ hepslope � Log10
IL6global

2

� �
,

ð2:2Þ
and

Transferrinsystemic ¼ Tfint þ Tfslope � Log10ðHepcidinsystemicÞ:
ð2:3Þ

These equations are basedondata fromTabbah et al. [22], correlating
systemic levels of IL-6 to systemic levels of hepcidin, andMoran-Lev
et al. [23] correlating transferrin and hepcidin. To ensure biologically
meaningful values, we only evaluate these equations if IL-6global >
1.37 × 10−10 M and Hepcidinsystemic . 10�8 M.

All these molecules, except iron, diffuse through space,
modelled using the alternating direction implicit method with
periodic boundary conditions [24]. The rationale for periodic
boundary conditions is that the simulation covers a small area
amid a large infected area. Therefore, the concentration of
molecules across all boundaries should be similar.
2.1.3. Host cells
There are three types of host cells: type II pneumocytes, macro-
phages and neutrophils. The host cells can assume several
different states and transition from one to another upon interact-
ing with other agents or molecules. Figure 1 shows the graph of
host cell states. We introduce the states ‘activating’ and ‘inactivat-
ing’ to model the delay between signal and phenotype change.
For a review of macrophage activation/inactivation, see Duque
& Descoteaux [27] and Gordon [28].

For neutrophils, the state change as implemented here is not
entirely realistic. For simplicity, the neutrophils in the model do
change state, but this change has a minimal impact on their
actions within the model (figure 1).

Leucocytes are free to move through the space and can be
recruited as well. Recruitment is done according to equation (2.4):

n ¼ kr � X
kd

� 1�N
K

� �
, ð2:4Þ

where N is the current number of cells in the simulator, K is the
carrying capacity, kr is the global recruitment rate, kd is the dis-
sociation constant of the chemokine, X is the global amount of
the chemokine (i.e. the average concentration of chemokine in
the simulator) and n is the average number of cells to be recruited.
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Figure 1. Figure showing host cell state changes. The paragon host cells in the model are the macrophages. Therefore, this figure represents the whole state space
of a macrophage. The other cells (neutrophils and type II pneumocytes) have a subset of the states that macrophages have (see the area in the ellipse). By default,
host cells are in a resting state. Swelling conidia, hyphae or TNF causes them to transition to an activating (intermediate) state and then to the active state. Active
host cells secrete TNF, IL-6 and IL-10. Extra priming with TNF makes host cells secrete chemokines as well (CCL4 and CXCL2). A macrophage will return to the resting
state after 6 h (180 iterations) in the absence of a continuous stimulus [25,26]. Apoptotic neutrophils, IL-10 or TGF-β1 cause macrophages (including activated
macrophages) to transition to an anti-inflammatory TGF-β-secreting state. Active macrophages (blue and purple) can kill hyphae whereas resting and anti-inflam-
matory ones cannot.
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This number is used by a Poisson random number generator to
decide howmany cells will be recruited.Macrophages and neutro-
phils have half-lives of 24 h and 6 h, respectively [29,30]. The
quantity of cells in the simulator is a balance between the
number of cells recruited according to equation (2.4) and the
number of cells that die. Macrophages are recruited by CCL4
and neutrophils by CXCL2.

In the absence of chemokines, cells move randomly, while in
their presence, they tend to move to the voxels with higher che-
mokine concentrations. The rate of movement is constant, and
the cells will, on average, traverse a fixed number of voxels per
time step. In the presence of chemokines, each voxel receives a
weight according to equation (2.5):

wi ¼ 1� e�ðxi=kdÞ, ð2:5Þ
where xi is the chemokine concentration in neighbouring voxel i,
wi is the corresponding weight of this voxel and kd is the
chemokine dissociation constant. The cell will then move to a
neighbouring voxel (vi) with probability proportional to the
voxel weight (pi∝wi).
2.1.4. Aspergillus
In the model, Aspergillus fumigatus has three life stages: resting
conidia, swelling conidia and hyphae. The hyphae are more or
less continuous structures divided by septae [31]. Each of these
subdivisions is a multinucleated cell-like structure, referred to
as a hyphal cell for simplicity.

In previous work, a dynamic gene regulatory network of iron
uptake by Aspergillus fumigatus was developed [12], in the form
of a Boolean network, that is used here as a component model,
with minor adjustments, as follows. While the original network
had a TAFC node activating the node LIP, representing the
labile iron pool, comprised of metabolically available iron, we
modified it as follows. Instead, when TAFC is activated, the
cell secretes TAFC. Later on, if the cell is expressing the sidero-
phore receptors, the cell takes up TAFCBI (TAFC bound to
iron) from the environment. The TAFCBI uptake increases the
cell’s total iron pool. The LIP node then becomes a function of
the iron pool. Using equation (2.6), we activate LIP if the iron
pool is high. Resting conidia do not produce or take up TAFC
in our model. We update the Boolean network every 30min
(every 15 iterations of the tissue-scale model) [32]. For simplicity,
we consider only TAFC as extracellular siderophore. However,
note that A. fumigatus also produces fusarinine C and recent
evidence indicates that it may also secrete ferricrocin [33,34].

In simulations, Aspergillus fumigatus starts out as a pool of
resting conidia; after 4 h these start swelling with a half-life of
6 h (see electronic supplementary material, table S1)—that is,
half the conidia swell after 6 h. Beyond that, it takes 2 h until
they become able to grow into hyphal cells. However, growth
is controlled by LIP. That is, if LIP is off, hyphae cannot develop,
consistent with the known importance of iron for hyphal growth.
Hyphal swelling and germination is a complex phenomenon
determined by a cascade of intracellular signalling (see Baltussen
et al. [35] for a review). We represent this cascade in a simplified
manner with first-order probability.

Although hyphal growth is a continuous process, the model
uses a discrete approximation. A tip cell can produce another tip
cell (elongation), while a sub-tip cell can form a 45° branch (sub-
apical branch) [31,36] with a 25% probability. Other cells cannot
originate new cells unless their neighbours are killed, and they
become tip or sub-tip cells again.
2.1.5. Interactions
Electronic supplementary material, table S2, displays the inter-
actions between all cell types and molecular species. Note that
cells/agents may interact with each other in more than one
way, depending on their state. Due to software engineering con-
siderations, we consider the secretion of molecules a kind of
interaction between a cell and a molecule. Therefore, interactions
between molecules and cells can also be of two kinds: receptor
binding (interaction in the biological sense) and secretion. Note
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that, in electronic supplementary material, table S2, macrophages
need to be active in order to kill hyphae, while neutrophils do
not. For agents to interact with each other, they must be in
physical proximity, i.e. in the same voxel.

Interactions between cells andmolecules follow equation (2.6):

p ¼ 1� e�ðx=kdÞ, ð2:6Þ
where x is themolecule concentration, kd is its dissociation constant
and p is the probability of receptor activation. Likewise, inter-
actions between molecules (i.e. reactions) follow the Michaelian
equation (equation 2.7):

v ¼ Kcat � S1� S2
KM þ S1

: ð2:7Þ

In equation (2.7), v is the reaction velocity, KM is the concen-
tration of reactant S1 such that the velocity is one-half of the
maximum velocity, known as Michaelian constant, and Kcat is
the catalytic constant.

2.1.6. Scaling from the simulated space to the whole mouse
lung

To scale from the simulated space to thewhole lung,we considered
the volume of a pair of mice lungs and the fraction of the lungs that
Aspergillus infects. We considered a volume of 1ml for a pair of
lungs [37] and that the infection occupies approximately one-
third of this volume based on experiments of inhalation of
particles [38]. Therefore, to scale from the small simulated space
to thewhole lung,wemultiply by 5028. This number is an approxi-
mation and considers only the infected areas of the lung.
Nevertheless, these are fair approximations for the numbers of
leucocytes and Aspergillus.

However, the number of epithelial cells and the initial
number of macrophages are evenly distributed across the lung
and do not depend on the infection. Therefore, to calculate the
number of these cells for initializing the model, we only
considered the lung volume and the simulated area’s volume.

2.2. Experimental methods
2.2.1. Neutrophil depletion and induction of aspergillosis
All experimental animal studies were performed in compliance
with the National Research Council Guide for the Care and
Use of Laboratory Animals, the United States Animal Welfare
Act and the Public Health Service Policy on Humane Care and
Use of Laboratory Animals. Protocols were approved by the
Institutional Animal Care and Use Committees of the University
of Florida.

Invasive aspergillosis was induced using previously pub-
lished protocols [39,40]. Aspergillus fumigatus strain 13073
(ATCC, Manassas, VA, USA) was grown on Sabouraud dextrose
agar plates for 10–14 days, and conidia were harvested in 0.1%
Tween-80 in PBS and filtered through sterile gauze. Conidial
concentration was then determined using a hemocytometer.

Wild-type C57BL/6 mice were purchased from The Jackson
Laboratory (Bar Harbor, ME, USA) and maintained under
pathogen-free conditions in the animal facilities of the University
of Florida. Sex-matched male and female eight-week-old mice
were used in the experiments. Neutrophils were transiently
depleted with an intraperitoneal injection of 400 μg of anti-Ly6G
antibody (clone 1A8, BioXcell) in 0.5ml saline or an equivalent
amount of isotype control antibody (rat IgG2a, Clone 2A3, BioX-
cell) 1 day before the Aspergillus challenge. The following day,
animals were anaesthetized with a cocktail of ketamine and xyla-
zine and intratracheally inoculated with 7 × 106 Aspergillus
conidia in 30 μl saline. At each designated timepoint, six animals
per group were euthanized using heparinized anaesthetic over-
dose. The pulmonary vasculature was perfused with PBS
containing 0.5mM EDTA, bronchoalveolar lavage performed as
previously described [41], or lungs were removed en bloc for
flow cytometry.

2.2.2. Flow cytometry
Mouse lung flow cytometry was performed as described in [41].
Briefly, lungs were digested in a mixture of 200 μg ml−1 DNaseI
and 25 μg ml−1 Liberase TM (Sigma, St Louis, MO, USA) for
30min at 37°C. The digested lungs were serially passed through
70 and 40 μm filters to collect the single-cell suspension. After red
blood cell lysis, cells were counted, and 1.5 × 106 cells were stained
with a fixable APCCy-7 conjugated live dead stain (Thermo Fisher,
Waltham, MA) in PBS for 20min. After washing with FACS buffer,
cells were incubated with anti-CD16/32 (Fc block, clone 93;
eBioscience, San Diego, CA) and stained with PerCP-conjugated
anti-CD45 (30-F11), FITC-conjugated anti-CD11b (M1/70), PE-con-
jugated CD64 (X54-5/7.1), PECy7-conjugated anti-CD11c (N418),
V450-conjugated anti-MHCII (I-A/I-E), APC-conjugated anti-
CD24 (M1/69), BV605-conjugated anti-Ly6g (1A8), BV711-conju-
gated Ly6c (HK 1.4), and Texas Red-conjugated Siglec F (E50-
2440) (all from Thermo Fisher). Flow cytometry datawere acquired
using 14 colour BD Fortessa (BD Biosciences, San Jose, CA). Some
500 000 events/samples were acquired and analysed with FlowJo
software v. 9.0 (Tree Star Inc., Ashland, OR).

2.2.3. Bronchoalveolar lavage fluid cytokine measurement
BAL (bronchoalveolar lavage) IL-6 and CXCL2 levels were
measured using commercial ELISA kits (Invitrogen), as per
manufacturers’ instructions.
3. Results
3.1. Model validation
This model was completely parameterized with data from the
literature (see electronic supplementary material), thereby
ensuring a much broader validity than could be obtained
through parameter fitting to a small collection of experimen-
tal time-course measurements. We have validated the model
in two ways. Firstly, we show that it provides a good qualitat-
ive fit with several time-course datasets in the literature that
were not used in model calibration. We used a collection of
papers that report time series of critical variables present in
the model, such as neutrophils, TNF-α, IL-6 and colony-form-
ing units (CFU). These values are compared with those
predicted by model simulation. These data are used to test
if the model can reproduce the reported levels of the different
variables and, most importantly, their timing (figure 2). None
of the papers selected for validation were used to calibrate the
model.

Figure 2 exhibits the comparison of simulation results with
literature data. One can observe that the simulator correctly
captures the timing of cell counts and cytokine levels. Further-
more, CFU dynamics (figure 2b) is also accurately captured by
the model. Concerning the exact levels of these cells and cyto-
kines, the mismatches between our simulator and the data in
figure 2 are within the range of variation between the different
experiments reported in the literature (table 1).

Next, we compared model simulations with a published
experiment of mice injected with anti-TNF-α. This cytokine is
one of the critical drivers of the immune response and one of
the key molecules inducing the secretion of chemokines. In
Mehrad et al. [50], the level of chemokines fell 24 h post-infec-
tion upon injection with an anti-TNF antibody. To reproduce
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Table 1. Extended literature measurements of Aspergillus fumigatus outcome parameters. All the papers in this table report data in BAL upon 24 h post-
infection and inoculated mice with ≈107 conidia. Column 1 shows the reference; column 2 reported measurements of neutrophils; column 3 log10 of CFU;
column 4 IL-6; and column 5 TNF.

reference neutrophils log10 (CFU) IL-6 (pg ml−1) TNF (pg ml−1)

Bhatia et al. [42] 9.60 ± 0.14 × 105

Brieland et al. [43] 5.56 ± 0.10 3027 ± 194

Cenci et al. [45] 348 ± 52 1602 ± 297

Dubourdeau et al. [46] 64 ± 18 923 ± 174

Doung et al. [44] 6.24 ± 0.16 460 ± 8

Gresnigt et al. [47] 5.42 ± 1.64 × 105 364 ± 47

Hohl et al. [48] 2.30 ± 0.92 × 106

Teschner et al. [49] 4.04 ± 1.25 × 105 4.38 ± 0.38 1964 ± 313 592 ± 48

average ± s.d. 1.05 ± 0.87 × 106 5.39 ± 0.94 676 ± 748 1536 ± 1079
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this experiment, we estimated the affinity of an antibody for a
protein antigen with data from the literature [51]. Note that
those estimates are for a generic protein antigen and not for
TNFspecifically. Figure 3 showsthat ourmodel correctlypredicts
the fall in CXCL2 upon injection of anti-TNF-α.

We performed an extensive literature search for data con-
cerning Aspergillus fumigatus infection in mice. We compiled
these data in table 1, representing BAL measurements of
IL-6, TNF, CFU and neutrophils 24 h post-infection with 107

conidia. One can observe that these data have significant
variability. Table 1 does not take into account the volume
of lavage, which could be a possible source of variability in
the literature data. However, when we divided the IL-6 and
TNF-α concentrations by the lavage volume reported by
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Brieland et al. [43], Cenci et al. [45], Gresnigt et al. [47] and
Teschner et al. [49] (Dubourdeau et al. [46] did not report
the volume of lavage and Doung et al. [44] reports only
that for cells), we found that neither the average nor the
variance changed significantly.

To understand how our simulated data compare to these
measurements, we sampled parameters with latin hypercube
sampling (LHS) and ran 1200 simulations. Figure 4 displays
the comparison between several literature measurements,
the simulator with the default parameters (electronic sup-
plementary material, table S1), and the simulator with LHS
parameters. The predictions made by our simulator are
within the range of variation between data reported in the
literature. Note that the simulator can also reproduce the
variability in biological data. This variability is due to differ-
ences in hosts, different fungal strains and experimental
conditions. These conditions sometimes generate different
but qualitatively equivalent outcomes. Our simulator is
robust to a wide range of parameters, with variability similar
to that observed in the literature (figure 4 and table 1).

One point to observe in figure 4 is that the simulations
with default values have a narrow scatter with an average
near one quartile of the literature data. That is expected
since this model was not fitted to data, but was parameter-
ized a priori with information from the literature (see
electronic supplementary material, table S1) and then com-
pared with novel literature data, that is, papers we did not
use to extract parameters. The biggest discrepancy in
figure 4 is with CFU (figure 4b); however, as we can see in
figure 2b, when we look at the whole time series, we see
that there is strong agreement between simulated CFU and
CFU reported in the literature.

3.1.1. In vivo validation of simulation results
As discussed above, due to the high variability in experimen-
tal design (fungal dose, techniques of infection, etc.) and in
the measurements summarized in table 1, we decided to
further validate the model results, in particular the ability
of the simulator to reproduce temporal dynamics, with an
in vivo experimental design that most closely resembles the
simulator setup. We infected immunocompetent mice with
7 × 106 conidia intratracheally and measured cytokines and
leucocytes from 0 to 72 h post-infection (see description in
§2). Figure 5 shows that our simulator can correctly predict
the timing of the immune response, as indicated by levels
of IL-6, neutrophils, macrophages and CXCL2.

Figure 5 shows remarkable agreement between the timing
of cytokines and cells measured by our own experiments and
the dynamics produced by the simulator. To recall, agent-
based models are not continuous-time models, since they
advance in discrete time steps. The actual time these steps cor-
respond to is estimated by considering the events that take
place from one time step to the next. In our case, we estimated
that our time steps correspond to 2 min of simulated time.
Thus, the agreement in timing is a key step in validating
model predictions, since the timing of events in the immune
response to this infection is crucial for infection outcome and
determination of interventions.

One point to observe in figure 5 is that the neutrophil
curve follows the CXCL2 curve. CXCL2 is the molecule
responsible for neutrophil recruitment in the simulator and
one of the key chemoattractants for neutrophils in vivo
[50,52]. The spike in figure 5c (12 h), is a discrepancy found
in this experiment and disagrees with previous experiments
in the literature (see [42,44] and figure 2).
3.2. Identification of drivers of fungal burden
We carried out a classification of parameters and their influ-
ence on fungal growth rate, encoded by a collection of
classification trees in figures S2 and S3 in the electronic sup-
plementary material. The results are summarized in table 2.
Our analysis shows that eight model parameters are most
strongly correlated to fungal burden. As would be expected,
the most critical parameter is the intrinsic growth propensity
of a given fungal strain to grow (GR_RT) that remains fixed
for a given fungal strain [53]. Fixing this parameter, we
then asked which other parameters were associated with
high, respectively low, fungal burden over a 24 h period. To
do this, we measured the variation of the square of the corre-
lation r2 between the model parameters and fungal burden as
the growth rate increases. Figure 6 and electronic supplemen-
tary material, S4, show the variation of r2 for the seven most
important parameters (not including intrinsic growth rate)
indicated by our analysis in table 2.

Figure 6 and electronic supplementary material, S4, show
that, as the intrinsic growth rate of the fungus increases, the
relative importance of the seven other parameters changes.
As an example, figure 6d shows that when the fungal
growth rate is very high or very low, the leucocyte movement
rate is weakly correlated with fungal burden. However, this
parameter is critical in determining the actual fungal
burden in strains with an intrinsic growth rate near the
default 29 μm h−1 (electronic supplementary material, table
S1). The leucocyte movement rate is an intrinsic feature of
the immune system. However, according to figure 6d, this fea-
ture is more or less critical, depending on the virulence of the
strain, being most important for a moderately virulent strain
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(21–28 μm h−1). This might explain some of the variance in
the course of the infection between hosts.

Figure 6 shows that overall the seven parameters tend to be
more criticalwhen the intrinsic growth rate is close to its default
value. That is, their importance wanes as the growth rate
becomes very high or very low. However, the importance of
the swelling rate, measured as the average number of time
steps needed for conidia to germinate, and the average time to
immune cell activation have a bias towards a high growth rate
(figure 6a,b,d). On the other hand, the TAFC secretion rate has
a bias towards a low growth rate (figure 6c). Finally, the mono-
cyte recruitment rate is not sensitive to intrinsic growth rate
variation (electronic supplementary material, figure S4C).

The results in figure 6 also show that activation, germination
and recruitment rates have a bigger influence in immunocom-
petent hosts (figure 6b,d; electronic supplementary material,
figure S4C). Meanwhile, swelling rate, TAFC secretion rate
and branching probability are more crucial in neutropenic
hosts (figure 6a,c; electronic supplementary material, figure
S4A). Finally, the leucocyte movement rate is approximately
equally important in neutropenic and immunocompetent
hosts (figure 6d).
4. Discussion
Understanding the innate immune response to pathogens is
of the utmost importance for designing effective therapeutic
interventions. With the increasing resistance of pathogens to
anti-microbial drugs, it is imperative to explore host-centric
therapeutics. This is the motivation for the work presented
here. An essential application of this model is to understand
critical features of respiratory fungal infections. The model
predicts that certain fungal characteristics, such as the sidero-
phore secretion rate, and immune system characteristics take
on different significance in controlling fungal burden,
depending on the virulence of the fungal strain in question.

It was pointed out in Schrettl et al. [54] that TAFC is a criti-
cal virulence factor. Likewise, in subsequent work, Schrettl
et al. [55] show that an Aspergillus knockout strain without
intracellular and extracellular siderophores has completely
attenuated virulence. Figure 6c shows that the TAFC secretion
rate is more important when the growth rate is low. In this
case, fewer cells are secreting this siderophore. Consequently,
the TAFC concentration becomes a bottleneck. In fact, our
analysis shows that the concentration of TAFC bound to
iron in neutropenic hosts with a high growth rate is 60%
higher than in simulations with a low growth rate (simulated
result not shown). For immunocompetent hosts, a smaller
and less significant difference was observed. However, it is
important to observe that both computational and exper-
imental approaches are amenable to false negatives. If there
is heme available at the site of inflammation, the fungus
might have an alternative source of iron, and there might
be little need for the siderophore secretion system.

Interestingly, the classification trees (electronic supplemen-
tary material, figure S3; and table 2) show that a high TAFC
secretion rate is also necessary for achieving a high fungal
burden. That seems to be in accordance with the spike in
figure 6c (38–49 μm h−1). That may indicate a double role for
TAFC, where it is crucial when the growth rate is high or low
but not intermediate. Note, however, that in electronic sup-
plementary material, figure S3, TAFC acts in synergy with
other parameters.



3.5

500

400

300

200

100

0

700

6

5

4

3

2

1

0

140 100

80

60

40

20

no
. l

eu
ko

cy
te

s 
(l

un
g 

ho
m

og
en

at
e)

(×
10

5 )

120

100

80

60

40

20

0

200

150

100

50

m
ea

su
re

d 
IL

-6
 (

pg
 m

l–1
)

0

measured CXCL2
simulated CXCL2 measured IL-6

measured neutrophils
simulated neutrophils

measured macrophages

simulated macrophages

simulated IL-6

600

500

400

300

250

200

150

100

50

0

3.0

2.5

2.0

1.5

1.0

0.5

0

0 12 24 36 48 60 72

si
m

ul
at

ed
 c

yt
ok

in
e 

(A
U

)
no

. l
eu

ko
cy

te
s 

(s
im

ul
at

ed
 s

pa
ce

)

hours post infection

0 12 24 36 48 60 72
hours post infection

0 12 24 36 48 60 72
hours post infection

0 12 24 36 48 60 72
hours post infection

(a) (b)

(c) (d)

Figure 5. Comparison of our experimental data on immunocompetent mice with simulation results. For this purpose, 36 simulations were performed, starting with
an average of 1920 conidia, 15 macrophages and 640 epithelial cells. (a) Comparison of simulated time series of CXCL2 with experimental data measured in BAL. (b)
Comparison of simulated time series of IL-6 with experimental data measured in BAL. (c) Comparison of the number of neutrophils in the simulated space with the
number of neutrophils in lung homogenate. (d ) Comparison of the number of macrophages/monocytes in simulated space with the number of monocytes in lung
homogenate. Experimental data refer to mice infected with 7 × 106 conidia.

Table 2. Table summarizing the classification results from figures S2 and S3. The table shows qualitatively the groups of parameters that lead to the extremes of high and
low germination and hyphal proliferation over 24 h of simulated time. Intermediate conditions are not presented here. The plus and minus signs represent, qualitatively, the
classifications. For example, in column 4 (immunocompetent, high burden), the three plus signs and one minus sign indicate that the corresponding partition tree (figure
S2 in electronic supplementary material) partitioned the dataset by the fungal growth rate, activation rate, swelling rate, and recruitment rate, and selected the upper part
of the first three partitions (plus sign) and the lower part of the last (minus sign). In a qualitative sense, this means that class (immunocompetent, high burden) is
associated with high growth rate, activation rate, and swelling rate, and with low recruitment rate. The partitioning hierarchy is not represented in this table, as it is meant
to be simply a general summary. Some of the parameters shown in the table do not contribute to the extreme cases reported here; they are kept for completeness. These
parameters, however, play a role in differentiating intermediate cases of fungal burden (electronic supplementary material, figures S2 and S3).

parameters parameter description

immunocompetent neutropenic

low
burden

high
burden

low
burden

high
burden

GR_RT growth rate − + − +

ITER_CH_ST iterations needed to host cells chance state + +

MV_RT leucocytes movement rate

REC_RT leucocytes recruitment rate − −
PR_SW probability of conidia swelling + +

TAFC_QTTY TAFC secretion rate +

ITER_GER iterations swelling conidia takes to starts germinating

PR_BR probability of hyphae branching

max. no. hyphae 28 1609 133 5203

max. no. hyphae/initial inoculum 1.5% 83.79% 6.9% 271%
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Conidial swelling is the first step to germination and sub-
sequent hyphal growth. However, this is also the time when
the fungus become visible to the immune system. Therefore,
there are two competing forces upon swelling. The fact that
swelling is a necessary step before growth is advantageous
for the fungus. This is evidenced by the positive correlation
between the swelling rate and fungal burden (results not
shown). However, the fact that swelling makes the conidia vis-
ible to the immune system and that conidia are easier to kill
than hyphae creates a disadvantage for the fungus. This is evi-
denced by the bias towards a high growth rate (figure 6a) in this
case. That means that swelling is more advantageous if, upon
swelling, hyphae develop quickly. A recent model published
by Ewald et al. [56] came to similar conclusions.

However, note that in the case of neutropenic simulations,
the correlation between swelling and fungal burden peaks at
a growth rate of 29−37 μm h−1. This indicates an optimal
growth/swelling rate relation. The reason is not very clear,
but it may be the result of other parameter constraints, such
as the TAFC secretion rate. Interestingly, the parameter
ITER_GER that controls the time conidia take to germinate
after swelling—with 2 h being the default value [55]—has a
negative correlation with growth rate (result not shown).
This negative correlation reinforces that conidia become sus-
ceptible to the immune system and need to germinate rapidly
upon swelling.

The ability of leucocytes to locate fungal cells is crucial for
controlling the infection [9,11]. The factors that affect it are
chemotaxis and movement rate. Figure 6d shows that the
leucocyte movement rate is one of the most prominent par-
ameters to control fungal burden with r2 around 0.2 when
the growth rate is in the range 21–28 μm h−1. However, our
analysis also indicates saturation. When the growth rate is
too high, the immune system is overwhelmed by fungal
growth. Conversely, if the growth rate is too low, the
immune system quickly gains the upper hand.

Figure 6 and electronic supplementary material, S4, show
the difference between the more relevant parameters for each
kind of simulation. One can see that for the immunocompe-
tent simulations, the model is dominated by the immune
system parameters: the time host cells take to change status
and recruitment rate, as well as the fungal germination rate.
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In immunocompetent hosts, both in simulations (figure 2b;
electronic supplementary material, figure S2) and reported
in the literature [43,44], the infection tends to be quickly con-
trolled. Therefore, fungal parameters tend to be less critical
because the immune system will kill the fungus before it
has a chance to grow. Meanwhile, in neutropenic hosts,
both simulated (electronic supplementary material, figure
S3) and reported [52], the infection progresses and par-
ameters related to the fungus become critical (swelling rate,
TAFC secretion rate and branching probability; see figure
6a,c; electronic supplementary material, figure S4A).
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