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Abstract: Leading-edge regenerative medicine can take advantage of improved knowledge of key
roles played, both in stem cell fate determination and in cell growth/differentiation, by mechano-
transduction and other physicochemical stimuli from the tissue environment. This prompted ad-
vanced nanomaterials research to provide tissue engineers with next-generation scaffolds consisting
of smart nanocomposites and/or hydrogels with nanofillers, where balanced combinations of specific
matrices and nanomaterials can mediate and finely tune such stimuli and cues. In this review,
we focus on graphene-based nanomaterials as, in addition to modulating nanotopography, elastic
modulus and viscoelastic features of the scaffold, they can also regulate its conductivity. This feature
is crucial to the determination and differentiation of some cell lineages and is of special interest to
neural regenerative medicine. Hereafter we depict relevant properties of such nanofillers, illustrate
how problems related to their eventual cytotoxicity are solved via enhanced synthesis, purification
and derivatization protocols, and finally provide examples of successful applications in regenerative
medicine on a number of tissues.

Keywords: graphene; graphene oxide; reduced graphene oxide; tissue regeneration; 2D-scaffolds;
hydrogels; fibers; stem cell differentiation

1. Introduction

Graphene consists of an atomic honeycomb lattice composed of carbon atoms that
can be considered as an indefinite large polycyclic aromatic hydrocarbon with an infinite
number of condensed benzene rings. Graphene family is constituted by several deriva-
tives such as graphene oxide (GO), reduced graphene oxide (RGO), graphene quantum
dots (GQDs), graphene nanosheets, monolayer graphene, and few-layer graphene [1]. A
schematic representation of graphene-based materials (GBMs) taken into account in this
review is shown in Figure 1. Although an accurate description of the state of the art in
GBM synthesis is out of the scope of this review, a brief outline is provided in Section 2.1.
It is vital to stress out that GBMs are highly heterogenous, especially when considering
biological properties and applications. Therefore, careful choice of the synthetic method
is required to obtain a material with the desired properties (i.e., dimensions, conductivity
and eventual functional groups).

Due its high electrical conductivity, mechanical properties and aspect ratio, graphene
has become attractive in many fields. In addition to being a rising star in scientific fields
other than biology and medicine, graphene, GBMs and composites are widely used for
important biotechnological and biomedical applications. Almost all graphene derivatives
and composites are being used and tuned to develop special delivery carriers for thera-
nostics [2], gene therapy and drug delivery, and a huge number of examples have been
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reviewed in recent years [3–6]. Therefore, we can just list here a few examples of applica-
tions in biosensing and bioimaging, before moving to the focus of this review, which is
regenerative medicine.
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Conductivity and high transporter capability of graphene allow for tuning biosen-
sor surface features and outperforming many other biosensor types in terms of speed,
accuracy, specificity, selectivity and sensitivity. In general, proteins (either catalysts or
receptors/ligands) are associated to the graphene-based biosensor surface via electro-
static interaction, covalent bond or by polymer mediated capture. To avoid electrostatic
interaction may alter the protein conformation, GBMs are combined with polymers in
nanocomposites where mild electrostatics combines efficient binding and maintenance
of the original conformation [7]. When instead the conformational dynamics of proteins
has to be studied, multilayer graphene nanopore sensors can be used [8]. Several com-
pounds can be detected electrochemically using graphene and GBMs as electrochemical
sensor, e.g., cancer markers and cells, ATP, DNA, glucose, toxins, or even proteins [6].
Graphene-based field-effect transistor (FET) biosensors, which can be integrated with
electronic chips, easing compatibility with industry standards, are especially applicable
in detection of charged molecules such as DNA. Graphene-based fluorescence resonance
energy transfer (FRET) biosensors are also widely used with small molecules, nucleic acids
and proteins, as reviewed by Zhao et al. [9]. Some biosensors integrate graphene in the
surface plasmon resonance (SPR) technology, showing improved sensitivity and detection
range [10]. Graphene quantum dots (GQDs) are of special interest to bioimaging in vitro
and in vivo because of their biocompatibility, tunable fluorescence with excellent photo-
stability, ultra-small size and hydrophilicity [11]. Stable photoluminescence makes GQDs
suitable for cancer bioimaging and has led to biofunctionalization for specific cancer cell
imaging and real-time imaging in living cells [12]. GO and RGO are used in bioimaging as
well, as their combination with different polymers (e.g. PGA), metal ions or bioimolecules
can modulate emissions in three main fluorescence regions (blue, green and red), making
(R)GO-derived platforms suitable for multiple tracing and bio-imaging purposes [13,14].

GBMs, and especially GO and RGO find plenty of applications in tissue engineering,
where they are employed as scaffolds for tissue regeneration. Tissue engineering is an
interdisciplinary technology that gains insights from material chemistry, engineering, cell
biology, and immunology to develop biomaterials capable of restoring, maintaining, or
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improving tissue function or a whole organ [15]. Scaffolds act as biological substitutes
that enhance cellular interactions and are able to stimulate the differentiation of stem cells
or precursor cells into the desired lineage. The extracellular environment provides bio-
chemical, biophysical, and electrical signals, which all together define tissue-specific niches
for proper tissue function and homeostasis. By recapitulating such features in biomimetic
scaffolds, the goal of tissue engineering is to guide stem cell development and differentia-
tion to resemble cell organization and behavior in the natural, tissue-specific environment.
Such approach offers an interesting translational perspective for tissue repair and regenera-
tion [16,17]. However, successfully reproducing a tissue is extremely challenging since a
number of different aspects must be taken into account. In this scenario, nanocomposite
materials have proven to be effective in mimicking the required characteristics.

Graphene-based scaffolds (GBSs) are a particular class of scaffold made from graphene,
GO and/or RGO nanocomposites. Among the plethora of nanomaterials available, graphene
and its derivatives are attractive candidates for developing tissue engineering scaffolds
thanks to their tuneable electrical conductivity, excellent mechanical properties, biocom-
patibility, chemically modifiable surface, and nanoscale dimension matching cell surface
receptors and extracellular matrix (ECM) nanoroughness/nanotopography. Morover, they
display good capacity to adsorb proteins from the serum (e.g., fibronectin, laminin and
albumin), favoring cell adhesion, proliferation and differentiation.

Graphene structural features and dimensions resemble many components of the extra-
cellular environment such as proteins of the ECM (e.g. collagen), ion channels, signalling
proteins and cytoskeletal elements [18]. Therefore, the introduction of graphene or its
derivatives into polymeric scaffolds endows them with features that can be tailored to
match the ones of the natural tissue of interest. For instance, each tissue has specific
mechanical and electrical properties that should be matched by artificial scaffolds. Intu-
itively, scaffolds for bone regenerative medicine should be stiffer (E > 109 Pa), whereas
nervous tissue requires much softer supports (E < 4·102 Pa) and muscles need substrate
with intermediate stiffness (E > 104 Pa) [19].

Being one of the toughest and strongest nanomaterials discovered so far, graphene
incorporation into polymeric scaffolds enhances their mechanical properties, toughness and
tensile strength [20]. Therefore, graphene percentage within the scaffold can be modulated
in order to better mimic the ECM mechanical properties of the tissue of interest. Moreover,
graphene nanocomposite scaffolds are endowed with nanoroughness, which contributes
to cell anchoring while modulating cell morphology [18]. This property is particularly
important for the differentiation of neuronal cells as graphene establishes tight contact with
the growth cone and guides the spreading of developing neurites [21]. Lastly, empirical
evidence suggests that engineering the electrical conductivity of the scaffold plays a crucial
role in producing a functional electroactive tissue. Since graphene is electrically conductive
and its conductivity is stable in biological environments, its incorporation in polymeric
scaffolds can reduce the polymer electrical resistance. As a result, graphene-based scaffolds
can be used to mimic and regenerate the electroactive tissues like the cardiac and neural
ones, but also to boost the repair of non-excitable cells that are subjected to electrical field
after an injury, like during bone repair and wound healing [22]. However, Burnstine-
Townley and co-workers pointed out that the actual role of scaffold conductivity in cell
differentiation is not completely clear. Specifically, disentangling the effect of a single
scaffold feature on cell fate can be challenging, as varying graphene content has effect
on several properties, such as surface roughness, cellular adhesion and interaction with
nutrients, growth factors and wastes [23].

At a glance, graphene ability to mimic the natural extracellular environment nanoto-
pography, to retain signalling molecules, to be easily incorporated in both natural and
synthetic polymers, and to modulate stiffness and conductivity of the scaffold make it the
ideal nanomaterial to provide cues needed to guide cell behaviour and hence an invalu-
able tool for regenerative medicine applications. Nevertheless, the toxicology profile of
graphene and its derivative has not been completely elucidated yet.
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Several drawbacks of GBMs employment for regenerative medicine approaches have
been reported which might include membrane damage, hydrophobic interaction, oxidative
stress, genotoxicity, mitochondrial disorders and autophagy. However, safety risks should
be evaluated case by case based on the intrinsic properties of GBMs, such as purity, surface
functional groups, lateral size, stiffness, hydrophobicity and structural defects. Moreover,
several reports showed that graphene cytotoxicity is influenced by multiple parameters such
as cell population tested as well as graphene dispersibility and functionalization [24,25].

2. Graphene-Based Scaffolds
2.1. Methods for GBM Synthesis

As thoroughly reviewed by Wu and co-workers graphene synthesis can be performed
through a plethora of bottom-up or top-down approaches [26]. Among the most common,
Chemical Vapor Deposition (CVD), Physical Vapor Deposition (PVD), spin coating, laser
ablation and arch discharge needs to be mentioned. Although a systematic review of
graphene synthetic methods is out of the scope of this review, it needs to be stressed
that the final properties, complexity and cost of a nanomaterial are strictly related to its
procedure of synthesis. Each protocol has its advantages and drawbacks, thus the choice
should be done taking into consideration the final application of the product. For the sake
of clarity, a brief overview of standard approaches is provided in this section.

CVD is often exploited to produce graphene for 2D composites and graphenic foams,
described in the next sections. In CVD, gaseous precursors (typically hydrocarbons)
are flowed at high temperatures over a metal surface, which acts as a catalyst for their
decomposition and leads to the condensation of carbon atoms, forming a graphene sheet.
In a typical process, graphene is grown onto a metal surface, supported with a polymer
(e.g., poly(methyl methacrylate)—PMMA), and the catalyst is etched by acidic treatment.
Subsequently, the graphene foil is transferred on a substrate and the supporting polymer
is appropriately dissolved. The choice of metal or alloy for deposition changes process
thermodynamics and kinetics, and allows to finely tune the number of graphene layers of
the resulting material. The most common metal catalysts for CVD are nickel [27,28] and
copper [29], with a preference for the latter due to its capability to produce single- and
bi-layered graphene.

However, bulk production of graphene is more conveniently achieved starting from
graphite and weakening the van der Waals forces between its stacked monoatomic carbon
layers. Examples for such top-down approaches are liquid-phase exfoliation, surfactant-
assisted liquid-phase exfoliation and chemical functionalization. In the first two meth-
ods [30–34], exfoliation is achieved through different combinations of factors such as (i) the
choice of a solvent with proper surface tension (e.g, γ = 40 mJ m-2) [35]; (ii) the use of sur-
factants, to minimize the interfacial tension between solvent and graphene; (iii) sonication
or other external mechanical driving forces; (iv) centrifugation stages to remove thicker
graphitic flakes. The principal shortcomings of these methods are the generation of defects
and the reduced size attributed to sonication-induced cavitation [36,37].

Among the most common chemical top-down methods, there is the oxidation and
subsequent exfoliation of graphite to GO, followed by either chemical reduction or thermal
cleavage of oxidized groups to obtain RGO. In a typical procedure, graphite is mixed
with sulfuric acid and oxidizing agents in an iterative and synergic action of intercalation
and oxidation [38]. Subsequent exfoliation in water then easily yield GO, which can be
further modified due its large amount of different oxygen functional groups (such as epoxy,
hydroxyl, carbonyl and carboxyl groups). Even if the production of GO induces a large
number of defects in the graphenic sp2 network, the enhanced hydrophilicity that results
from the oxidation can be beneficial for its compatibility in different types of matrixes.

Oxidation is usually carried out at 40–50 ◦C. However, as demonstrated by Eigler and
co-workers, working at lower temperatures could reduce damages to the basal plane. They
demonstrated the possibility to synthesize a minimally damaged GO with an almost intact
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σ framework of C atoms [39] and superior thermal properties [40] while maintaining the
oxidation temperature below 10 ◦C, and effectively controlling kinetics of process.

RGO is obtained from GO with different synthetic methods, yielding materials with
different properties. Indeed, thermal treatment (often improperly called “thermal reduc-
tion”) and chemical reduction of GO to RGO do not have the same effect on graphene
structure, hence on the properties of the resulting materials. The disproportionation in-
duced by thermal treatment of highly oxidized GO brings defective holes in the plane.

Chemical reduction, on the other hand, can be achieved with different reactants [41]
leading to different results: as an example, hydrazine leads to N-doping in plane, while
reduction with L-ascorbic acid leaves adsorbates on RGO that are not easily removed by
washing procedures [42]. Since complete reduction of GO is not achieved, RGO differs
from graphene due to the presence of residual functional groups; however, O/C ratio of
RGO is much lower than that of GO. Even if the sp2 network is partially restored, the
performances are still lower than those of CVD graphene.

Stability and reactivity of GO are also affected by other parameters such as pH
of the dispersion, which is often neglected or underestimated. Indeed, Hirsch and co-
workers [43] found evidence that the carbon lattice is damaged by treatments with a base
at 40 ◦C while at 10 ◦C the partial cleavage of epoxy groups is observed. According to the
above-mentioned observations, assessing the O/C ratio, which is often the only parameter
considered to assess the successful synthesis of RGO, is clearly not enough to describe
the obtained material. It must also be emphasized that the choice of starting materials,
different methods of synthesis, and purification procedures have a direct impact on the
presence of impurities, that can have a biological effect and can lead to controversial results
when materials are used for bio-applications.

In the next sections, graphene-based nanocomposites will be considered. In these
materials, GBMs act as fillers while the matrix is typically an organic polymer (natural or
synthetic FDA-approved polymer), though bioglasses and ceramics are also used. In the
first part, two-dimensional (2D) scaffolds are discussed, whereas the second part is devoted
to three-dimensional (3D) scaffolds (Figure 2). In particular, three types of 3D scaffolds are
considered: porous foams, fibrous scaffolds, and hydrogels.

2.2. Two-Dimensional Scaffolds

Two-dimensional scaffolds are relatively low cost and easy to fabricate, thus they
are often used in preliminary studies to investigate the effect of a specific substrate on
cell behavior.

The simplest example of a graphenic 2D-scaffold is represented by CVD-grown
graphene (one or more layers) on a PMMA-supported metal catalyst, and then transferred
onto a substrate after etching of the metal catalyst. Jangho et al. used this technique to
transfer the monolayer graphene onto glass to study its effects on the reciprocal interactions
between cells and substrate and to test the possible promotion of human mesenchymal
stem cell (hMSC) neurogenesis and neurite outgrowth [44]. In a similar way Nayak et al.
transferred CVD-grown graphene on different polymeric substrates to verify the effect of
nanotopography induced by interactions between graphene and polymers. Differently
from the glass control, their 2D scaffold exhibited nanoripples due to a weaker adhesion,
and boosted hMSCs differentiation similarly to treatment with bone morphogenic protein
BMP2 [45].
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images of graphene transferred on different polymeric substrates [45]; (b) graphene transferred on nanopatterned substrate
and AFM image [46]; (c) PLLA-RGO film obtained as reported in [47]; (d) graphite oxide paper [48]; (e) GO foams and SEM
images [49]; (f) PLLA-RGO electrospun fibers obtained as reported in [50]; (g) peptide–GO hybrid hydrogels and TEM
images [51].

Another method to obtain a graphene-coated surface is based on the chemical modifi-
cation of a substrate to enable specific interactions with graphene-based materials (GBMs).
Ryoo et al. used (3-aminopropyl)triethoxylane (APTES) to decorate the surface of glass
coverslips with aminic groups. As a result, they obtained a positively charged surface
which could effectively interact with negatively charged GO. Similarly, they exploited
(3-glycidyloxypropyl)trimethoxylane (GPTMS) to promote glass interaction with aminated
carbon nanotubes (CNT). In vitro tests proved carbon nanomaterial-coated glass to be
better at promoting the number and dimensionality of focal adhesions, suggesting good
biocompatibility [52].

Two-dimensional graphene-based scaffolds can also be obtained by vacuum filtration
of material suspensions. For instance, Jasin and co-workers fabricated graphene-based
paper as a substrate for cell growth, air drying vacuum filtrated dispersions of three
different starting materials: (i) graphite oxide and graphene oxide with (ii) small and
(iii) large average lateral dimensions. Although they did not observe any significant
difference on cell adhesion, morphology or proliferation, the smaller release of lactate
dehydrogenase (LDH) enzyme compared to control samples, suggested that their scaffold
can enhance cell viability [48].

A higher degree of versatility is achieved with hybrid or composite scaffolds, where
graphene is used as a filler or coating for polymeric matrices. As an example, Pandele
et al. prepared chitosan/GO composites by solution blending, obtaining films with a rough
surface useful for cell adhesion. The homogeneous dispersion of GO in a polymeric matrix
led to an enhancement of the mechanical properties due to the large aspect ratio of the
nanomaterial and its interaction with the polymer chains [53]. Furthermore, Jin et al. tested
the viability of a free-standing film composed of GO and bacterial cellulose (BC) obtained
from Gluconacetobacter intermedius. GO was added to the growth media and G. intermedius
bio-reduction capabilities were exploited to obtain BC-RGO composites. hMSCs seeded
onto these materials showed higher proliferation compared to ones seeded onto films of
RGO without the fibrous structure of cellulose [54]. Li et al. fabricated RGO-cellulose
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paper by drop-casting GO dispersions on cellulose paper, subsequently reducing it with
L-ascorbic acid (Figure 3).
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These scaffolds showed low resistivity (∼300 Ω/sq), increased mechanical strength
and a specific surface micro-topography induced by RGO, which led to improved stem cell
adhesion and osteogenic induction. Furthermore, their 2D-scaffolds could be employed
with pseudo-3D stacked multilayered constructs that can be configured by rolling or
folding, allowing designing a large number of different setups [55].

To enhance their biological effects, two-dimensional scaffolds can be micro- or nanopat-
terned with specific topographical cues that can direct cell growth and differentiation.
Different methods have been developed to this aim, and a pattern can be drawn with
either the help of a positive photoresists spin-coated on graphene oxide surface [56], or
by transferring CVD graphene on a polymeric nanopatterned substrate [46,57]. This latter
approach was adopted by Jangho and co-workers. They transferred a graphene layer
on a poly(urethane acrylate)-patterned surface featuring regular parallel nanogrooves,
thus obtaining a chemically homogeneous but mechanically heterogeneous substrate. In
fact, graphene has lower mechanical properties in regions where it is suspended between
nanoridges. Indeed, alignment of hMSCs along the nanotopographical cues of the substrate
was observed [46].

Among the plethora of chemical studies presenting new kinds of scaffolds, there is
a modest number of works specifically focused on specific GBM functionalization strate-
gies to improve biocompatibility or differentiation capabilities. As an example, Qi et al.
functionalized GO with L-theanine, an amino acid that promotes neuronal differentiation.
Its presence in a poly(lactic-co-glycolic acid (PLGA) film increased its hydrophilicity and
enhanced neuronal differentiation of neuronal stem cells (NSCs) [58]. In our lab we [47,59]
designed composite poly-L-lactic acid (PLLA) scaffolds with different carbon nanostruc-
tures (CNS) as filler—namely RGO, carbon nanohorns (CNH) and CNT—covalently func-
tionalized with p-methoxyphenyl (PhOMe) groups in order to improve biocompatibility,
and the electrical and mechanical properties of materials. RGO- and CNH-based scaffolds
(RGO-PhOMe and CNH-PhOMe respectively) showed promising activity in enhancing the
expression of myogenic markers during human circulating multipotent stem cell (hCMCs)
differentiation. Moreover, electric percolation was found to take place within the consid-
ered range of RGO concentration, tough with lower performances compared to CNT-based
samples. This difference is likely due to the influence of aspect ratios on electrical behavior.

Despite the aforementioned potentialities, 2D scaffolds have limitations. First of all,
a two-dimensional environment is not suited to reproduce natural ECM. Then, nutrients
are directly available to cells and wastes can diffuse to a limited extent. Lastly, altered
cell–cell interactions may result in unpredictable cell responses. Therefore, in recent years
the focus has shifted towards the study and design of 3D-scaffolds in order to overcome
these limitations.
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2.3. Three-Dimensional Scaffolds

As already mentioned, 3D scaffolds recapitulate tissue biophysical features thus are
better candidates for in vivo applications. Scaffolds with a three-dimensional architecture
should be endowed with a highly interconnected porous network. Recently, Lutzweiler and
co-workers reviewed the effects of porosity, pore size and shape, interconnectivity and cur-
vature in scaffolds used for tissue regeneration: not only these properties directly influence
migration of nutrients and wastes inside the scaffold, but also the permeation and commu-
nication between cells [60]. Recent evidence suggests that scaffolds with pore diameters
between 100 and 750 µm are generally beneficial while larger pores make cells experience
a planar pseudo-2D environment, which differs from their natural environment [61,62].

2.3.1. Foams

The easiest method to fabricate porous scaffolds involve freeze-drying filtrates or
suspensions. For example, Domínguez-Bajo et al. produced RGO foams by drying GO
slurries, obtaining structures with 43% of porosity and 30 µm of pore size after thermal
reduction. In addition, these scaffolds had a relatively low Young’s modulus (~1.3 kPa)
and made a good candidate for nervous tissue engineering. When their applicability on
neural repair after spinal cord injury was tested in vivo, not only scaffolds were populated
by nerve cells, but the authors also observed full vascularization [63]. In another instance,
the same group exploited ice segregation-induced self-assembly, based on unidirectional
freezing of dipped suspensions and lyophilization, to fabricate hierarchically channeled
RGO scaffolds with controlled porosity and pore size (80% and 150 µm respectively) [64].
Liao et al. exploited a freeze-drying approach to produce a porous hybrid scaffold based
on a copolymer composite of methacrylated chondroitin sulfate (CSMA) and poly(ethylene
glycol) methyl ether-ε-caprolactone-acryloyl chloride (PECA) with GO, synthesized by
heat initiated free radical polymerization. Not only scaffolds pore size could be tuned by
CSMA:PECA ratio, but the compressive strength increased with PECA content, with values
consistent with cartilage tissue. The plateau limit of conductivity (1.84 S/m) resulted at 3%
GO content [65].

In a similar way, Hermenean et al. fabricated a porous chitosan/GO scaffold with
improved mechanical performance—i.e., increased compressive strength and tunable
Young’s modulus while keeping scaffold flexibility—observing that the incorporation of
3% of GO significantly enhanced bone regeneration in vivo, compared to pure chitosan
scaffolds, even in the absence of additional differentiating agents, confirming the active
action of GO in facilitating cell infiltration and differentiation [66].

Graphene foams are the first porous structures composed of single layer graphene,
applied in tissue engineering. Besides porosity, these scaffolds are endowed with a wrinkled
topography induced by the synthetic process, which is beneficial for cell adhesion and
proliferation since it better mimics the ECM [67,68]. Li et al. compared NSCs differentiation
performance on 2D CVD graphene scaffolds and 3D graphene foam and observed improved
proliferation and differentiation towards mature phenotypes on the latter substrate [69].

In the techniques described so far, pore size and interconnectivity depended on the
Ni foam features. However, Xiao et al. recently managed to finely tailor these properties,
fabricating an ordered architecture of Ni: they used photolithography to define a mask in
which Ni was deposited by electroplating and aligned. Graphene was then grown through
CVD on the resulting Ni template (Figure 4). Thanks to this procedure, they managed
to design a scaffold with defined features by tuning pore and skeleton size (10–50 µm
range), orientation angles (45◦ or 90◦), electrical conductivity (60–80 S cm−1 range) and
density (around 3–4 mg cm−3). Such a scaffold was able to direct neuronal growth and
align neurons along a defined path to form a network [70].
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Another method to fabricate porous structures has been employed by Rasch et al. [49].
Starting from tetrapod-shaped ZnO, pressed and annealed in a mold, they were able
to synthesize templates with high porosity (50 to 98%). GBM deposition was obtained
by infiltrating a GO suspension in the templates, followed by chemical etching with
hydrochloric acid. Their protocol allowed easy, versatile and cost-effective deposition of
nanomaterials. Moreover, biological evaluations of these scaffolds by Schmitt et al. showed
they could be promising for nervous tissue engineering [71].

An alternative approach to induce porosity in scaffolds is supercritical foaming which
allows to control scaffold morphology through a careful choice of experimental parameters,
such as chamber pressure, temperature and decompression rate. Evlashin et al. exploited
this process to manufacture RGO-reinforced polycaprolactone (PCL/RGO) and PCL/GO
foams in a carbon dioxide atmosphere. Although the presence of RGO in the polymer
matrix led to an increase of pore size, those foams showed poor cell adhesion properties.
Conversely, they found PCL/GO scaffolds to enhance cell adhesion. However, both
composites displayed lack of interconnected porosity, resulting in cells attaching only on
scaffold surface [72]. Polymer-enriched hybrids can also be obtained starting from CVD
graphene foams, by depositing the polymer from a solution through spin or dip coating.
Resulting scaffolds show improved mechanical performances and cellular responses. In
order to retain porosity, it is crucial to avoid pore saturation through fine optimization
of dip coating time and by choosing a polymer with a favorable, near zero contact angle.
Nieto et al. exploited this technique with a copolymer of polylactic acid (PLA) and poly-ε-
caprolactone (PCL) and achieved improved tensile strength due to filling of the pre-existing
microcracks in pristine G foams. In vitro tests demonstrated these materials are able to
support hMSCs viability and differentiation, making them suitable for musculoskeletal
tissue engineering [73].

A layer-by-layer (LBL) technique was followed by Song and co-workers who deposited
a positively charged polymer, poly(diallyl dimethylammonium) chloride (PDDA) on a
negatively charged Ni template and subsequently placed negatively charged GO onto
its surface, which was then thermally converted to RGO. Electrochemical deposition of
polypyrrole (PPY) and hydroxyapatite (HA) on top, increased scaffold roughness and
surface area, favoring cell adhesion and proliferation as confirmed by in vitro tests on the
pre-osteoblast cell line MC3T3-E1 [74].

Besides metallic templates, polymeric organic foams are used for polymer replication
technique, especially in the inorganic scaffold field. Deliormanlı et al. used polyurethane
foam to fabricate HA scaffolds, eliminating the template and sintering HA by heat treat-
ment. PCL/GO was added by dip coating, leading to a scaffold with improved mechanical
performance and higher bioactivity [75].
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The same procedure can be applied to bioactive glass, another important class of use-
ful scaffolds in tissue engineering. As an example, Turk et al. incorporated 10% graphene
directly in the glass matrix before sintering borate-based porous scaffolds, doubling the
compressive strength and obtaining an electrical conductivity (0.060 S/cm) which could
be exploited to electrically stimulate cell growth [76]. Moreover, Deliormanlı et al. fab-
ricated more chemically stable and biocompatible silicate-based scaffolds coated with
PCL/graphene with pore size between 100–500 µm, without detrimental effects of polymer
coating on pore structure [77].

An alternative approach to porous structure design is 3D printing, which allows to
accurately control scaffold geometrical features without the limitation of using a tem-
plate. Jakus et al. exploited a PLGA-based ink where they incorporated graphene with
the use of surfactants and plasticizers. The mechanical properties of composites are af-
fected by graphenic particles, with an increase of elastic modulus to a value of 16 MPa at
20 vol% loading of graphene, but with detrimental effects at higher loadings (40–60 vol%
of graphene). In addition, they observed an anisotropic alignment of graphene flakes,
enhancing electrical conductivity due to shear forces produced during the 3D printing
extrusion process, which increased with the decrease of the nozzle diameter [78].

Cabral et al. used extrusion 3D printing to produce multicomponent scaffolds, based
on tricalcium phosphate chitosan and gelatin, which mimicked the inorganic and organic
components of bones, respectively. GO was added to this blend and reduced to RGO
in situ by L-ascorbic acid treatment. When comparing mechanical properties of scaffolds
incorporating GO or RGO they found the latter to better mimic bone Young modulus, thus
their scaffold might be useful as a temporary support for bone regeneration [79].

2.3.2. Electrospun Fibers

Fiber-based scaffolds are largely employed in tissue engineering because they in-
trinsically resemble the microstructure of natural tissues. Fiber diameter, porosity, and
orientation are the main features that influence cell growth and tissue regeneration [80].
One of the most common techniques to produce continuous fibers is electrospinning. Elec-
trospinning offers several advantages, including (i) ease of processing, (ii) possibility of
large-scale production (iii) availability of advanced modes [81]. Moreover, it is highly versa-
tile and electrospun fibers can be deposited in a random orientation or in an aligned fashion
which enhances cell alignment and elongation along the contacted fiber direction [82]. Most
thermoplastic materials can be electrospun by fine-tuning the properties of the polymeric
solution and the electrospinning parameters such as voltage, electrodes distance and flow
rate. The American Food and Drug Administration (FDA) approved several thermoplastic
biomaterials for in vivo implantation. Nevertheless, their applications are restricted by
the high hydrophobicity, low mechanical properties, lack of specific interactions with
cells and sometimes relative slow in vivo degradation rate. Luckily, these limits can be
easily overcome by introducing proper nanofillers, and several examples of electrospun
thermoplastic materials reinforced with GBMs have been reported [83–85]. As highlighted
by Song et al., the solubility of the filler strongly influences the mechanical properties of
the final material: a poor dispersibility or a too-high loading leads to aggregation, which
results in fractures and disconnections along the nanofibers. It has been observed that
electrospinning graphene-based composites yields thinner fibers (Figure 5), but on the
other hand, even a small amount of GO or RGO inside the electrospun fibers reinforces
their structure and overcomes the detrimental effect of a reduced diameter on mechanical
properties. Therefore, it is crucial to finely tune the CNS content in order to find the right
balance between a uniform CNS dispersion, nanofiber diameter and reinforcement effect.
Besides, it has been widely demonstrated that incorporation of CNS in fibrous scaffolds
results in an improved biomimetic microenvironment that enhances cell adhesion and
proliferation on different cell types [84].
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Generally, the smaller thickness induced by graphene-based nanofillers on electrospun
fibers allows mimicking the structure of ECM even better. It is believed that the effect of
GBMs on fiber diameter is due to the electrical conductivity of the feeder solution, which
is a key factor in determining the diameter and size distribution of the electrospun fibers.
Moreover, it is reported that fiber diameter is highly correlated to the viscosity of the
feeder solution. Scaffaro and colleagues pointed out that the decrease of viscosity of a PCL
solution by addition of GO induces electrospinning of thinner fibers. On the other hand,
they observed an opposite effect on viscosity (and fiber diameter) with GO-grafted-PEG
(GO-g-PEG). Functionalization of the filler not only increased fiber diameter, but also
improved dispersion of the filler and maximized the filler/matrix interfaced area, making
GO-g-PEG more effective than GO in reinforcing composite fibers, in particular at low
concentration [86].

In 2019, Basar and co-workers developed a PCL/GO composite scaffold [87] by func-
tionalizing GO with either an RGD-peptide (GRGDSP), thiophene (Th) or both. Besides
having the aforementioned effect on fiber diameter, GO functionalization yielded an en-
hanced electrical behavior to the scaffold, with conductivities reaching 15.06 µS cm−1 in
PCL/GO-GRGDSP-Th (2% of GO), a 15-fold increase compared to neat PCL (0.95 µS cm−1).
However, while scaffolds with higher content of GO (2%) showed higher electrical perfor-
mances, the elastic modulus and tensile strength of 0.5% GO-scaffolds were found to be
higher. Once again, this result was associated with the uniform dispersion of GO in the
polymer matrix. Interestingly, this modification resulted in an increment of both electric
conductivity and mechanical stability due to the ability of sulfur moieties to enable the
crosslink between GO and PCL [87].

Scaffold properties can also be altered by combining different organic or inorganic
fillers. Lui et al. developed electrospun PLA scaffolds reinforced with GO (1–3 wt %)
and/or nano-HA (15 wt %). Interestingly, addition of 15 wt % nano-HA improved both
elastic modulus and tensile strength, whereas concentrations of GO above 2% diminished
them due to filler aggregation. Nanofiller addition slightly increased scaffold glass transi-
tion temperature and modified the hydrophobicity of PLA, enhancing the polymer water
uptake, which in turn assisted cell adhesion and proliferation [88].

Different strategies have been developed to obtain polymeric nanofiber scaffolds based
on graphene and its derivatives. However, nanocomposites fail to provide a pure graphene
interface. An alternative approach aims to immobilize nanostructures on the surface of
polymeric nanofibers. The surface of aliphatic polyesters such as PCL and PLA can easily
be functionalized with hydroxyl and amino groups by treating the polymeric scaffold
with a diamine solution. In tissue engineering, aminolysis of polyesters improves their
interactions with cells and allows them to form a stable graphenic coating [89]. Recently,
Jalili-Firoozinezhad et al. reported an easy method to generate electrically conductive
nanofibers by coating a PCL nanofibrous mat with GO liquid crystals, which were then
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reduced to RGO to form PCL-templated graphene nanofibers [90]. Proper electrical con-
ductivity and nanofibrous topography of these constructs make them an ideal platform
for cell culture, tissue engineering, drug delivery, and biosensor applications. Prelimi-
nary in vitro analyses using hMSCs revealed no induced cytotoxicity and confirmed an
enhanced cellular metabolism and proliferation rate compared to standard culture plates
and PCL nanofibers.

Indeed, coated fibers can be obtained without any surface treatment. Wang et al.
developed a conductive graphene-based fibrous scaffold by coating RGO via an in situ
redox reaction of GO on the surface of silk fibroin/poly(L-lactic acid-co-caprolactone)
(ApF/PLCL) composite nanofibers [91]. The authors highlighted that the coating did not
affect the nanoscale topography of the scaffold and enhanced its mechanical properties,
electroactivity and biocompatibility. They then investigated how these conductive scaffolds
regulated in vitro and in vivo cell behavior and differentiation under electrical stimulation.
RGO-coated ApF/PLCL scaffolds boosted cell migration, proliferation and myelin gene
expression of Schwann cells (SCs), whereas pheochromocytoma-derived PC12 cells cul-
tured on these scaffolds exhibited enhanced differentiation. In vivo implantation of the
constructs promoted peripheral nerve regeneration in rats.

Polymer core-CNS shell fibers can be obtained by electrospinning the polymer into a
solution of graphene or one of its derivatives. Subsequently, it is possible to further func-
tionalize or reduce the shell. Jin et al. exploited this principle to develop an RGO core-shell
nanofiber (RGO-CSNFM) [92]. The RGO core-shell structure displayed high mechanical,
electrical conductivity (10.0 S cm−1) and a charge carrying capacity. This property is likely
due to both RGO-CSNFM large surface areas and the extended π–π conjugated bond
network generated over the surface of the RGO shell layer. Wu et al. developed an LBL
method to coat electrospun nanofibers that mimic vascular ECM and enhance proliferation
of endothelial cells. PLLA surface modification was achieved via electrostatic LBL self-
assembly by alternately immersing PLLA fibers in a positively charged solution of 0.1 wt%
chitosan and a negatively charged solution of 0.1 wt% heparin (PLLA-CS/Hep) or 0.1 wt%
heparin/graphite oxide (PLLA-CS/Hep/GO). After the LBL coating, the hydrophilic-
ity and mechanical properties of the modified PLLA nanofibers were greatly enhanced.
Moreover, the CS/Hep/GO coating positively influenced cell attachment, viability, and
proliferation of endothelial cells [93].

The versatility of electrospinning allows to obtain complex and ordered structures.
A compelling example has been reported by Shao and co-workers [94] who used elec-
trospinning to develop a 3D scaffold with multiple orthogonal aligned fibers. This pe-
culiar architecture improved mechanical properties and decreased issues that may arise
when working with parallel fibers or random networks. Moreover, a 3D structure better
mimics the natural cellular environment. They developed an electrospun PLGA/silk fi-
broin/GO/hydroxyapatite (PLGA/TSF/GO/HA) 3D scaffold. hMSCs seeded onto these
scaffolds showed enhanced proliferation and elongated morphology along the long axis
of the nanofibers. Lastly, biological assays indicated that composite scaffolds enhanced
osteogenesis and alkaline phosphatase activity.

In another work, Zhang and co-workers combined GO nanosheets and aligned
aminolyzed PLLA nanofibers which favored nerve regeneration. The aminolysis of PLLA
nanofibers allowed to form a stable GO coating. Schwann cells (SCs) cultured on these
nanocomposite scaffolds displayed improved proliferation and elongation along the fiber
direction compared to those grown on the aligned PLLA and aminolyzed-PLLA. The coated
structure was also able to improve differentiation and neurite outgrowth of pheochromo-
cytoma derived PC12 cell line. The authors suggest that these results may arise from the
modification of surface chemistry and roughness induced by the GO coating [95].

2.3.3. Hydrogels

Hydrogels are three-dimensional entangled networks able to retain large amounts
of water. Despite being mostly liquid, they display a solid-like rheological behavior and
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recently they have been employed as scaffolds for tissue engineering [96,97]. Hydrogels
can be categorized into two main classes based on the forces involved in building the
network: (i) chemical and (ii) physical gels. The network of chemical hydrogels is obtained
through covalent cross-linking of its components, which generates a permanent structure.
On the other hand, the structure of physical hydrogel is characterized by reversible non-
covalent interactions which make these gels suitable for cell encapsulation but highly
susceptible to environmental conditions (i.e., ionic strength, pH, temperature), such that
even minor changes can cause the network to collapse. Indeed, physical hydrogels exhibit
lower mechanical properties than their chemical counterpart. However, even chemical gels
generally cannot withstand high mechanical stress despite the covalent cross-links [98].

Graphene and graphene derivatives in hydrogels may play the role of (i) self-assembling
gelator molecule or (ii) filler in order to prepare multi-functional nanocomposite hydrogels.
Self-assembly has been recognized as one of the most effective “bottom-up” strategies for
building structured networks. Driven by non-covalent π-π interactions that arise from
their 2D structure, graphene and graphene derivatives spontaneously re-organize into a
3D structure. Self-assembled hydrogels can be prepared through a one-step hydrothermal
method starting from a graphene-based solution [99]. For example, Yang and colleagues
have demonstrated the jellification of GO at the solution–filter membrane interface, creating
highly conductive and anisotropic films [100].

The employment of pure graphene and/or graphene derivatives hydrogels is quite re-
stricted, thus they are mainly used as high-quality nanofillers for composite hydrogels [101].
Different synthetic and natural polymers able to form hydrogels are suitable for tissue
engineering scaffolds. Among synthetic polymers we may mention polyethylene glycol
(PEG), poly(acrylamide), poly(lactic acid) or synthetic peptides. Natural-derived poly-
mers such as alginate, chitosan, collagen, silk or gelatin are also widely used to fabricate
hydrogel scaffolds for tissue engineering. Polymeric scaffolds display good biocompa-
bility and biodegradability but lack, for example, the ability tolerate strong mechanical
forces [102,103].

Alginate is a natural polysaccharide composed of β-D-mannuroic acid (M) and α-L-
guluronic acid (G) typically obtained from brown seaweed. In the presence of various
divalent cation (Ca2+, Mg2+), alginate polymers form gels via non-covalent cross-linking of
the carboxylate groups of the G blocks on the polymer backbone. Even if the concentration
of crosslinker, percentage of G content and jellification time allows to tune the properties
of alginate hydrogels, other limitations cannot be overcome without the use of specific
fillers. Particularly, alginate-based hydrogels do not permit good control over their internal
architecture, they lack cell receptors adhesion sites and suffer from low protein adsorption
capability [104]. As independently highlighted by Losic et al. and Chen et al. [105,106],
the introduction of GO and RGO in an alginate matrix allows to modify and control
the porosity of the gel (ca. 99%±0.3%), making the pores size uniform from surface to
its inner core and fostering cellular activity. GO and RGO composite gels also allow
to reach the optimal swelling index required for an efficient scaffold. Investigation of
mechanical and electrical properties revealed an optimum GO content of 0.1 wt%. Above
this concentration a detrimental effect was observed due to an imperfect dispersion of GO
within the alginate matrix.

Chitosan, as well its derivatives, is a widely available natural polymer characterized by
excellent biological properties (i.e., biocompatibility, coagulation activity, biodegradability).
Agarose (AG), on the other hand, is a polysaccharide obtained from red algae, displays a
thermo-sensitive behavior and exhibits mechanical properties similar to that of soft tissues.
However, its employment is limited by the lack of cell recognition sites.

Sivashankari and Prabaharan used GO as a nanofiller for the fabrication of agarose/
chitosan (AG/CS)-based scaffold [107]. Through a freeze-drying method, they prepared
3D AG/CS/GO scaffolds with different concentrations of GO (0–1.5 wt %). GO introduced
changes in the scaffold morphology, in their swelling behavior and in their water retention
ability. In particular, AG/CS/GO scaffolds with 1 and 1.5 wt % of GO exhibited the highest
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porosity (Figure 6), with an average pore size (237–274 µm) matching the demands for bone
tissue regeneration [108,109]. Even with the increase in porosity, GO likewise enhanced
the mechanical properties due to interactions established between fillers and polymer
matrix and favored cell attachment and proliferation. Freeze-drying techniques are widely
employed for scaffold generation and also allows to obtain anisotropic scaffolds. Liu et al.
developed a highly oriented hydrogel through directional freezing of CS/GO suspension
on a copper plate cooled with liquid nitrogen [110]. This method produced micro-sized ice
rods within the suspension, which act as template for a honeycomb-like structure resem-
bling a bone lamellae structure. The resulting hydrogel displayed anisotropic mechanical
behavior improved by the incorporation of GO and were able to guide the growth of mouse
osteoblastic MC3T3-E1 cells along the longitudinal direction of the honeycomb structure.
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Self-assembling peptide-based hydrogels (SAPHs) have been widely employed as
vehicle for drug delivery, but they can also be employed in tissue engineering due to their
biocompatibility and non-immunogenic nature [104,111,112]. Ligorio et al. used GO as
nanofiller in a peptide (FEFKFEFK) hydrogel for tissue engineering [51]. After conditioning
with cell culture media (i.e., pH 7.4), all gels displayed an enhanced storage modulus.
Bovine nucleus polposus (NP) cells were cultured on these hydrogels to assess cell viability
and GO-hydrogels with shear modulus similar to the native NP showed higher viability
and constant metabolic activity throughout the culture period.

Wang et al. prepared a silk fibroin scaffold incorporating exfoliated graphene [113].
An aligned silk fibroin hybrid hydrogel was obtained by application of an electric field.
Even if aligned silk nanofiber gels were previously proven to be able to influence behavior
such as cell orientation and migration [114], they failed to actively induce neural differen-
tiation. The nanocomposite hydrogels displayed anisotropic mechanical properties, and
the one with the highest content of graphene showed doubled parallel and orthogonal
compressive moduli compared to graphene-free samples, making them suitable for nerve
tissue engineering. After the addition of graphene, cell proliferation was further enhanced,
indicating that graphene sheets effectively induced neurite differentiation.

In recent years, injectable hydrogels have drawn major attention since they need
minimal invasive procedure to be administered and have reduced therapeutic costs. The
hydrogel precursor should be injected as a controllable liquid (i.e., characterized by low
viscosity) and must jellify into a robust hydrogel as quickly as possible in situ [115]. Finally,
it is uttermost important that gelation occurs after injection and at physiological condi-
tions (temperature and pH). Recently, Lee et al. developed an injectable GO-incorporated
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glycolchitosan-oxidized hyaluronic acid (gCS/oHA) hydrogel [116]. Gelation of gCS/oHA
was obtained through the cross-link between the aldehyde group on oHA and the amine
groups of gCS (Schiff-base reaction). Frequency sweep experiments were used to investi-
gate the mechanical properties in a plate–plate geometry. The results showed that when
the GO content increased, the G’ value gradually increased too, suggesting a more robust
hydrogel formation. GO may enhance polymer cross-linking through hydrogen bonding
interactions [117,118]. GO-incorporated hydrogels displayed lower cytotoxicity and higher
osteogenic activity compared to control both in vitro and in vivo. High levels of COL1
expression observed in cultures hinted that these injectable gels could be suitable for treat-
ing bone injuries. Saravanan et al. explored chitosan-glycerophosphate-based injectable
hydrogels for treatment of bone defects [119]. Due to newly introduced non-covalent
interactions, GO (0.5% w/v) composite hydrogels significantly increased swelling, protein
adsorption and cell interaction compared to their GO-free counterparts. Moreover, GO
introduction reduced gelation times and controlled degradation rates.

Poor dispersion of GBMs within the polymer matrix causes aggregation [105], which
may be detrimental for scaffold properties. To achieve homogeneous and stable dispersions
of GBMs, covalent and/or non-covalent functionalization may be required. Díez-Pascual
et al. [120] fabricated poly(propylene fumarate) (PPF)-based nanocomposites reinforced
with GO, non-covalently functionalized with PEG (PEG-GO). PEG functionalization re-
duces the aggregation tendency and cytotoxicity of GO without impairing its unique
features. The presence of PEG-GO leads to a threefold increase of Young’s modulus at 3%
loading of filler and improved cell adhesion and growth. The results have been ascribed
to the roughness of the scaffold, the hydrogen-bonded network established between GO
and the polymer and the good GO dispersion inside the matrix. Polymers may be also
covalently bonded to GO, for example by esterification. Noh et al. designed a graphene ox-
ide GO covalently functionalized with acrylated polyethylene glycol (PEGA-GO) through
ester formation [121]. The PEGA-GO was photopolymerized with polyethylene glycol
diacrylate (PEGDA) leading to gel formation. GO-doped hydrogels boosted cell adhe-
sion and osteogenic differentiation, though no changes were observable in swelling and
mechanical properties.

Wu et al. took advantage of the abundant functional groups on the surface of nano-
sized GO to link starch chains via esterification [122]. Starch is a widely available and
cost-effective polysaccharide, which does not release degradation products that induce
inflammations in vivo. Nanosized GO was synthesized from starch through microwave-
assisted degradation and then covalently bonded to the polysaccharide itself to improve
its mechanical features and bioactivity. In another example, Ruan et al. crosslinked car-
boxymethyl chitosan (CMC) to GO by amide bond formation [123]. The obtained GO-CMC
scaffolds appeared rougher than their GO-free counterparts and showed better retention
properties and slower degradation rates thanks to the higher cross-linking degree compared
to the GO-free and CS/GO-CS samples. Water uptake and retention rates are important
parameters, since the scaffold is the vessel for nutrients and metabolites for cell activity.
The authors highlighted that GO introduction also deals with the poor mechanical strength
typical of bare CMC [124].

3. Stem Cell Differentiation and Mechano-Transduction
3.1. Tissue Engineering and Stem Cells

Stem cells are non-specialized cells with self-renewal potential and the ability to
differentiate into various cell types if directed with appropriate stimuli, making them a
powerful tool for the regeneration of injured tissues [125]. Embryonic Stem Cells (ESC) are
pluripotent stem cells able to originate all the cell types of the body [126]. Despite their
ideal self-renewing capabilities and differentiation potential, they are not widely used for
tissue engineering studies due to the ethical restrictions of human embryo use in research.
As a valid alternative, tissue engineering switched the focus to adult stem cells, which are
stem cells residing throughout the body whose role is to maintain and repair the tissue
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in which there are found. Such cells have a limited differentiation potential compared to
ESCs but offer the advantage of being isolated directly from the patient for autologous
regenerative therapies. Good examples of adult stem cells are the Mesenchymal Stem Cells
(MSC) and Hematopoietic Stem Cells (HSC). They both can be isolated from patient bone
marrow and can regenerate bone, cartilage, and adipose tissue (MSCs), as well as the entire
immune system (HSCs) [127,128]. However, some adult stem cells, like neuronal stem cells
(NSCs), can be isolated only with very invasive procedures and in small quantities [129].
As of now, the most promising stem cell type for regenerative applications are the induced
Pluripotent Stem Cells (iPSCs). iPSCs are generated from the “reprogramming” of somatic
cells back to the pluripotent “embryonic” state [130]. Therefore, they show the same
“unlimited” self-renewal and differentiation capabilities of the ESCs, with the advantage of
being free from ethical issues as reprogrammed from patient or donor-matched somatic
cells [131]. Challenges associated with the iPSC clinical use are (i) the difficulties in
finding HLA-matched donors (especially for mixed-race patients) and (ii) the time and
costs for the development of patient-derived iPSCs, particularly considering the extensive
validation and stringent regulatory processes that would require each patient-derived cell
line [132,133]. However, recent works proposed new strategies to engineer such iPSCs to
make them “invisible” to the recipient immune system, showing that we are very close to
the generation of off-the-shelf, universally compatible iPSCs for the allogenic treatment of
a myriad of diseases [134–136]. The interaction between stem cells and the extracellular
microenvironment is critical in controlling stem cell differentiation, as depicted Figure 7.
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3.2. Cues Controlling Stem Cell Behavior

Biochemical cues are provided by reciprocal interactions between the cell, soluble
bioactive agents, and the ECM. Soluble molecules, such as growth factors, chemokines,
and cytokines, diffuse to bind the cell surface receptors and have potent effects on cell
growth, proliferation, and differentiation. Insoluble ECM macromolecules (e.g., collagens,
elastin, and laminin), glycoproteins (e.g., fibronectin and vitronectin), and polysaccharides
(e.g., heparan sulfate and hyaluronic acid) form a meshwork of fibers or fibrils with ECM
glycoproteins incorporated into them. The resulting matrix is tissue-specific and functions
as both a structural and signaling scaffold to cells [137].

Many works showed that some of the aforementioned molecules—if administrated
both in vitro and in vivo—are able to elicit specific cell responses [138]; moreover, different
strategies have been developed to link such proteins to biomaterial scaffolds in order to help
delivery at the injured sites [139]. However, coating surfaces with recombinant proteins
or native matrix macromolecules extracted from animal tissues encounters the problem
of eliciting immune responses, in particular when using proteins from different species.
Furthermore, their isolation and purification from native tissues or their production as
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recombinant proteins at a larger scale for tissue engineering purposes is expensive and sub-
ject to batch-to-batch variability [140]. For these reasons, the production of specific motifs
known to mediate regulatory signals as synthetic peptides presents significant advantages
compared to using entire recombinant/native tissue proteins: (i) low immunogenic activ-
ity; (ii) increased stability; (iii) low production costs; and (iv) simplified preparation and
immobilization onto substrates. Moreover, peptides can be: (v) presented to cells at surface
densities significantly higher than those possibly achieved with entire proteins or domains;
and (vi) tailored in composition for each tissue-specific application [141]. The biomimetic
peptides most used for scaffold functionalization are the ones representing the ECM protein
epitopes for integrin binding and therefore promoting cell adhesion [142]. In addition,
tissue-specific peptides, resembling active motifs of growth factors and transmembrane
proteins, have also been used to tune the cell differentiation [143,144].

Cells are capable of sensing and responding to biophysical cues, over a wide range
of length scales. Many of these cues are provided by the ECM, which acts as a cellu-
lar scaffold and is the primary extracellular component in tissues. In vivo, the ECM,
through its structure and molecular composition, presents a variety of geometrically de-
fined, three-dimensional (3D) physical cues in the submicron to micron scale, referred
to as topographies. Cell response to topographies is mediated by a phenomenon called
contact guidance, which is known to affect cell adhesion, morphology, migration, and
differentiation [145]. Another physical cue displayed by the ECM is mechanical stiffness
through which, similar to topography, a diverse set of cellular functions can be modulated.
Matrix sensing requires the ability of cells to pull against the matrix and cellular mechano-
transducers to generate signals based on the force that the cell must generate to deform
the matrix. Mechano-sensitive pathways subsequently convert these biophysical cues into
biochemical signals that commit the cells to a specific lineage [145]. For example, MSC
differentiation can be modulated by substrate stiffness [146], while developing neurons
are able to transduce topographical stimuli through the interaction of the growth cone
with the immediate environment. Such mechanical cues direct neurite extension, ensuring
appropriate and regulated connectivity within the overall neural circuitry [147].

ECM mimicry can be achieved using either natural or synthetic polymers intercon-
nected by physical and ionic interactions and even covalent linkages [148]. Electrospun
polymer fibrous substrates with controlled fiber architectures and diameter provide topo-
graphical cues to cells by presenting geometries mimetic of the scale and 3D arrangement of
the collagen and laminin fibrils of the ECM. Such polymer fibers present a high surface-to-
volume ratio and porosity and are hence well-suited for promoting cell adhesion, growth,
and differentiation and enable growth factor/drug loading; such properties are inher-
ent to bioactive matrix microniches [50,149]. Recent advances in 3D bioprinting strongly
improved our ability to imitate natural features of ECM. As an additive manufacture tech-
nology, the 3D bioprinting allows deposition of polymers, hydrogels, cells, growth factors,
and peptide active motifs by using a layer-by-layer approach to build up arrangements fa-
vorable to tissue-like structure formation, which are endowed with superior differentiating
properties compared to the conventional 2D culture vessels [148].

Endogenous electrical signals are present in many developing systems and influence
crucial cellular behaviors—such as cell division, cell migration, and cell differentiation [150].
Some cell types, like osteoblasts, neurons, and cardiomyocytes, are especially sensitive to
electrical signals as they activate membrane receptors and downstream intracellular signal-
ing elements leading to specific cell responses [151]. Not only cells, but also extracellular
matrix proteins, such as collagen, fibrin, and keratin, can generate electrical currents upon
mechanical stress, a phenomenon known as piezoelectricity [152].

Electrically conductive scaffolds not only enhance path finding of growing axons [153],
but also improve cell survival and functional integration after transplantation in vivo by
providing structural support for transplanted cells and facilitating synaptogenesis with
host cells by restoring the neuronal network activity [154,155].
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Since electroactive myocytes are responsible for heart and muscle contraction, electri-
cally conductive materials found applications in cardiac and muscle tissue engineering as
they support and maintain cell electrophysiology [22].

Even though bone cells are non-excitable cells, stress-generated piezoelectricity has
been shown to stimulate bone precursor cell proliferation and differentiation to restore the
injured site, making electroactive materials and electrical stimulation a valid tool for bone
regeneration strategies [156].

Stem cells are also sensitive to electrical cues and their differentiation can be mod-
ulated by electrical stimulation and culture on electroactive materials. NSC ability to
undergo neuronal and glial differentiation is boosted by electroactive material and exoge-
nous electrical field [157,158]. The use of electrically conductive material have also been
shown to promote the neuronal differentiation of adult stem cells derived from non-neural
tissue without the addition of neuron-specific growth factors and cytokines [159,160]. Car-
diomyocyte differentiation of iPSCs, ESCs, and MSCs is possible with the use of chemically
defined media, but it dramatically increases if coupled with electroactive materials, show-
ing protein expression, cell morphology, and contractility of the natural tissue [161,162].
Similarly, MSC differentiation into osteoblasts can be achieved with specific osteogenic
media; but it is further supported by the aid of electroactive scaffolds [163].

3.3. The Importance of the “Nanoscale”

Cells have micro and nanoscale sensitivity because the extracellular environment
presents a variety of spatially defined cues in the sub-micron to micron scale (Figure 8).
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At the nanometer level, the extracellular environment affects sub-cellular behaviors
such as the organization of cell adhesion molecule receptors. At the micron level, the
extracellular environment affects cellular and supracellular characteristics such as cell
morphology and [163]. The nanoscale physical features of the scaffolds can affect cell
behavior. Natural tissues have indeed a hierarchical structure ranging from the macroscale
(>1 mm) to the microscale (1 µm–1 mm), and the nanoscale (<1 µm). As a result, individual
cells (typically in the size range 10–50 µm) respond in different ways to structures at
different length scales. It has been shown that integrin receptors possess characteristic
dimensions on the order of 10 nm [164]. The basement membrane of organs consists of
nanoscale fibers (line topography) and pores (holes) that range in diameter from a few
nanometers to several hundred nanometers [165]. The tubular fibers of collagen also have
nanoscale dimensions [166] and laminin shows a nanoscale texture as well [167]. Given
that cell ECM is patterned down to the nanoscale, cell-biomaterial interactions in scaffolds
can be optimized by incorporating features of nanoscale dimensions. Indeed, surfaces
topographically structured at the submicron scale can affect a wide variety of growth
parameters, such as cell adhesion, morphology, viability, genic regulation, apoptosis,
motility, and differentiation [168]. Evidence from nanoscale topography analysis suggests
that nanoscale features eliciting a cell response are in the same size range (50–70 nm) that
is associated with integrin cluster formation [169]. Further studies showed that scaffold
nanotopography can control cell fate by altering cell and nucleus shapes, hence activating



Nanomaterials 2021, 11, 404 19 of 41

intracellular signal transduction and silent gene expression [125,170]. This is particularly
true for neurons that, thanks to their growth cones, sense and actively respond to the surface
nanotopography with a surprising sensitivity to variations of few nanometers [171].

Molecular deposition and lithographic techniques allow the patterning of tissue-
specific molecules with nanometer resolutions. For example, the deposition of molecules
that promote and support neuronal adhesion, growth, and differentiation on regenerating
scaffolds enables the selective adhesion and growth of neural cells and a controlled neurite
extension along the geometric pattern [172]. Apart from peptide/protein nanopatterns,
nanomaterials and nanotechnology tools can also be used to develop special scaffolds
able to recapitulate the architecture of structural proteins within ECM and the nanoscale
features that model native ECM nanotopography [142]. Nanomaterials take advantage of
their unique molecular features to induce, with high specificity, a number of desired physi-
ological responses in target cells and tissues, while minimizing undesirable effects [173].
The peculiar mechanical and chemical properties of nanomaterials can be exploited for
integration with native tissue in long-term implants; moreover, their nanoscale features
have the potential to interact with the biological system at the molecular scale, while
offering elevated levels of control [174].

Combinations of stimulatory cues may be used to incorporate nanoscale topographical,
biochemical, and electrical cues in the same scaffold to provide an environment for tissue
regeneration that is superior to inert scaffolds. This approach—able to precisely regulate
cell differentiation, morphology, and polarization—is fundamental for the development of
next-generation scaffolds suitable for clinical applications.

3.4. Role of the Biomolecular Corona

Interactions between the surface chemistry of nanomaterials and surfaces of biological
components (proteins, phospholipids, organelles, DNA etc.) are crucial to determine the
effects on cells and tissues. As soon as a nanomaterial comes in contact with a biological
fluid (i.e., cell culture media, blood or interstitial fluid) it is coated with ions and proteins
and develop a new interface which is often referred to as the protein corona or biomolecular
corona (BC). This layer at the nanobio interface defines the biological identity of the
nanomaterial, determining cell interactions, uptake and clearance [175]. Protein adsorption
by GBMs has been reported in numerous studies. Umadevi and Sastry [176] analyzed
non-covalent interactions on the surface of carbon nanostructures and highlighted that the
graphitic lattice of graphene allowed hydrophobic interactions and strong π-π stacking with
aromatic amino acids (Phe, Tyr, Trp) with binding energies between 15 and 20 kcal mol−1.
Surface chemistry is key in tuning the strength and type of interactions. Epoxide, hydroxyl
and carboxyl groups on the surfaces favor hydrogen and electrostatic bonding with proteins,
facilitating adsorption on GO compared to pristine graphene or RGO. GBMs have been
shown to strongly bind to different serum proteins such as albumin, fibronectin (Fn),
collagen, and laminin [177]. Therefore, when cells grow onto a graphene-based scaffold,
they show an enhanced capacity to form focal adhesions by clustering integrin molecules
and favoring cell adhesion [125]. In addition, GBMs capacity to adsorb proteins results in
trapping growth factors produced by the cells during their differentiation. Such growth
factors can progressively be released during cell maturation, allowing a continuous supply,
which is suitable for long-term cell differentiation [177].

Not only graphene physical properties favor the adsorption of proteins, but they
also offer tremendous opportunities for the covalent functionalization of protein active
motifs and chemical groups [178]. Such approach allows the stable attachment of signalling
molecules to the graphene structure to influence cell behaviour, but it also simplifies
combination of graphene with both natural and synthetic polymers for the development of
superior scaffolds combining multiple cues for cell growth and differentiation.
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4. Nanotoxicology and Functionalization
4.1. In Vitro Cytotoxicity

The use of graphene-based nanomaterials (GBMs) does not come without possi-
ble concerns about in vitro cytotoxicity and in vivo biocompatibility. As anticipated
in Section 3.4, the biomolecular corona (BC) plays an important role in regulating the
fate and toxicity of nanomaterials that interface with a biological environment. Due to the
unique and distinct physico-chemical properties of graphene and its derivatives, there is
an enormous variability at the nano-bio interface which leads to different intrinsic toxi-
cological effects. Moreover, nanomaterials are often pre-bound to chemical moieties that
originate from the manufacturing process, from stabilizers used in their preparation or from
exposure to gasses or buffers, all of which might further impact biocompatibility. Therefore,
any generalization would be inaccurate, possibly misleading and must be avoided [25,179].

Pristine GBMs have been shown to have a dose- and time-dependent in vitro toxicity
in both procaryotic [180–183] and eucaryotic cells [184–187]. Graphene has a hydrophobic
nature that often causes irreversible aggregation in cell culture media and it has been
reported to agglomerate on cell membranes causing physical damage [188]. Conversely,
oxidized derivatives of graphene, such as graphene oxide (GO) and reduced graphene oxide
(RGO), are more hydrophilic and show little aggregation in biological buffers resulting in
lesser cytotoxicity [179]. According to Chatterjee and co-workers [189], who performed a
comprehensive study about biological interaction of oxidized graphene derivatives, GO and
RGO had similar toxic responses with different dose-dependency and distinct molecular
mechanisms which were attributed to their peculiar surface oxidation status. However,
the presence of oxidative functional groups on the surface can lead to the generation of
reactive oxygen species (ROS). In addition, if they are not correctly washed, graphene
nanomaterials might retain residual chemicals applied to separate the graphitic layers or
during the fabrication of oxidized derivatives.

To solve these problems, novel green approaches for nanoparticle synthesis and
modification have been developed, involving the use of biocompatible surfactants and
reducing agents. According to Askari et al. [190], graphene nanosheets can be synthetized
in the presence of Herceptin, a natural antibody, using an ultrasonic-assisted exfoliation
method. The toxicity of graphene was tested in 3D spheroid cultures of human breast
adenocarcinoma cell line (SKBR-3) to better mimic the natural tissue micro-environment.
The authors concluded that that presence of Herceptin and its residues on graphene
nanoparticles created a biocompatible platform suitable for cell growth. In another study,
Narayanan et al. [191] described a facile and green synthesis of reduced graphene oxide
by the deoxygenation of GO under aqueous alkaline conditions in the presence of soluble
starch as a reducing agent (SRGO). The cytotoxicity of SRGO on skin fibroblasts was
evaluated using a Wst-1 assay and showed that SRGO showed a substantial increase in
cell viability at high concentrations (200 µg mL−1) compared to non-reduced GO. The
authors also investigated the hemocompatibility profiles of the nanomaterials and revealed
that both caused a hemolysis effects compared to negative controls. However, SRGO did
not exhibit a direct proportionality between hemolytic activity and concentration, with
hemolysis staying as low as ~4.9% in maximum concentration samples.

4.2. Hemocompatibility and Interaction with Immune System Cells

Understanding interactions between nanomaterials and blood is key to determining
in vivo biocompatibility due to the unavoidable contact between the two. Thanks to the
protein corona effect, nanoparticles that touch blood or enter the bloodstream are coated by
a milieu of proteins that may undergo conformational changes, exposing new epitopes and
promoting phagocytosis or elimination from the circulation [192]. Nanomaterials can cause
hemolysis and activate or interfere with clotting and coagulation cascades [193], seriously
hindering the health of the organism.

The hemolytic property of nanoparticles is influenced by their distribution size, shape,
surface charge and chemical composition [194]. Jaworski et al. [195] studied pristine
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graphene, RGO and GO effects on chicken embryo red blood cells (RBCs) and reported
altered RBC morphology with loss of biconcavity. All of the nanomaterials exhibited
dose-dependent hemolytic activity towards RBCs, with highest hemolysis rates observed
at 5 mg mL−1. Pristine graphene showed the highest hemolysis (73%), followed by RGO
(42%) and GO (27%), correlating with the degree of surface oxidation. Lower hemolytic
concentrations and activity have been reported by other groups [193]. However, according
to Duan et al. [196] the hemolytic potential of GO can be largely reduced by pre-incubating it
with BSA or FBS, exploiting their extremely high protein adsorption ability. In another work,
Sasidharan et al. [197] provided evidence that pristine graphene and GO have excellent
hemocompatibility showing no hemolysis, platelet activation or plasma coagulation up to
a relatively high concentration (75 µg mL−1) and under in vitro conditions. The authors
also highlighted that pristine graphene had the potential to upregulate the production
under sterile conditions of pro-inflammatory cytokines, such as IL-6 and IL-8. Cytokines
are soluble glycoproteins released during an inflammatory response that recruit immune
cells in order to tackle foreign bodies that have entered the organism.

Understanding interactions of GBMs with the immune system is of considerable
relevance both from a toxicological and biomedical perspective. The BC of carbon-based
nanomaterials is abundant in complement proteins. These proteins play a central role in
modulating the immune and inflammatory responses towards intruders and may be a
key factor in generating chronic ailments (such as allergy and sterile inflammation) by
recruiting neutrophils and macrophages [198,199]. In addition, complement activation can
promote cell-mediated immunity by enhancing generation of antigen-specific immunoglob-
ulins by B-cells, activation of T-cells and uptake by dendritic cells [200]. Neutrophils and
macrophages are part of the reticuloendothelial system (RES) which is responsible for
the uptake and clearance of foreign bodies that have entered the organisms: the former
are normally the first to intervene in an inflammation reaction, whereas the latter arrive
later and promote tissue healing. It has been reported that macrophages better uptake
hydrophilic systems compared to hydrophobic graphene since it is poorly dispersible in
water and remains blocked on the cell surface [197]. Similarly, neutrophils are involved
in nanoparticle clearance and it has been shown that exposure to carbon-based nanoma-
terials may upregulate neutrophils infiltration in tissues [201]. Carbon nanomaterials are
also known to trigger apoptosis and/or cell death in macrophages, causing significant
impairment in the immune resistance of subjects if used in vivo. However, Lin et al. [202]
reported in a recent study that macrophage viability and activation are found to be mainly
unaffected by few-layered graphene (FLG) at doses up to 50 µg mL−1 and therefore it is of
little toxicity for M1 and M2 human macrophages, even though it triggers cell stress, ROS
and inflammatory cytokines. Notably, neutrophils and macrophages are cleared from the
circulation via the liver, spleen and kidneys and there is evidence that bone marrow may
also play a major role in their clearance [203]. Therefore, nanomaterials carried by these
cells can accumulate in those districts, causing unexpected issues and altering their fate.

4.3. In Vivo Biocompatibility

In vivo biodistribution and pharmacokinetics of GBMs have been studied in small
and large animal models [204–209] in order to investigate the adsorption, distribution,
metabolism and excretion (ADME). The fate of nanomaterials in organisms is influenced
not only by their properties, but also from the pathway of exposure. Thanks to the wide
range of potential applications of GBMs in biomedicine, exposure can occur in a number of
ways including inhalation, intratracheal instillation, oral gauge, injection (intraperitoneal,
intravenous or subcutaneous) or through debris generated from worn or biodegraded
implants [204,210]. Once inside the organism, nanomaterials can make their way into
the bloodstream even if not directly injected there and spread throughout the body. In
addition, there is evidence that GBMs can diffuse across biological barriers such as the
blood-air, blood–brain, blood-testis or blood-placental barrier, and accumulate in organs
causing acute and chronic inflammation, tissue lesions and necrosis [211,212]. Krajnak and
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coworkers [213] examined graphene nanoparticles of different sizes and different forms
(carbon black, graphene, GO and RGO) to determine if pulmonary exposure resulted in
changes in vascular function and expression of acute response markers in mice. It was
observed that while graphene altered gene expression in cardiovascular system, no changes
were produced in the peripheral vascular function. On the other hand, pulmonary exposure
to the oxidized forms of graphene had a more acute effect on heart and kidneys and
repeated exposure might lead to injury or dysfunctions. Another study reported that GO
provokes severe and persistent injury in mice lungs including granulomas persisting for up
to 90 days [214]. Biodistribution experiments on intratracheally instilled carbon-14 labeled
FLG showed that even if it was mainly retained in lungs, it was also redistributed to the
liver and spleen passing through the air-blood barrier. However, no detectable absorption
of FLG was observed when administered orally [212]. Conversely, radioactive-labelled
RGO given through an oral gauge was rapidly absorbed in the intestine, metabolized
by the kidneys and then excreted via urine [215]. Intravenous injection of GO in mice
elicited blood platelets aggregation and extensive pulmonary thromboembolism, while low
uptake was observed in the RES [216]. Surprisingly, a recent study by Newman et al. [217]
highlighted that GO sheets accumulate preferentially in the spleen and progressively
biodegrade over nine months. They evaluated the potential consequences of this prolonged
accumulation and found limited effects on spleen histopathology and splenic function.
Cell-mediated immune response was measured by determining the populations of T
lymphocytes, specifically CD4+ and CD8+ cells as the major immune component of the
splenic white pulp. Moderate changes were seen in both cell populations in mice injected
with GO (2.5, 5, and 10 mg/kg) at both 24 h and one month after administration and no
significant differences in the levels of the proinflammatory cytokines IL-6 and TNF-α were
detected at any time point compared to control. However, they registered a significant
drop in anti-inflammatory cytokines expression at 24 h and at the one-month time point
for all tested GO doses. The authors concluded that reduction in cytokine expression after
GO treatment may indicate the involvement of the innate immune system in regulating the
effects of GO.

4.4. Minimizing GBM Toxicity

Although the inherent toxicity of graphene and its derivatives is a major drawback
for their biomedical applications, it is a well-known problem, and different strategies
have been developed to overcome it. In an attempt to enhance their overall safety and
minimize the risks for adverse reactions in humans from exposure, Bussy et al. [218] of-
fered a set of rules for the development of graphene and its derivatives: (1) use small,
individual graphene sheets which are more efficiently internalized by macrophages in the
body and removed from the site of deposition; (2) minimize aggregation using hydrophilic,
stable, colloidal dispersions of graphene sheets; (3) use excretable graphene material or
chemically-modified graphene that can be degraded effectively. Biological responses to
these nanomaterials depend on various properties and it has been reported that smaller
particles and higher oxidation improve biocompatibility [219]. Most importantly, variations
in surface chemistry play a major role determining their toxicity and pharmacokinetic
profile [220]. Highly hydrophobic graphene tends to aggregate in aqueous solvents thanks
to intermolecular attractive Van der Waals forces, π-π stacking, hydrogen bonds and electro-
static interactions [221]. This tendency makes it hard to manipulate and characterize their
biocompatibility and it has been suggested that the high percentage of controversial results
in toxicity statistics could be owing to the dissimilarities in GBMs solubility [222]. There-
fore, improving the dispersion of graphene-based nanomaterials in various solvents is a
prerequisite for their further applications. Recent strategies include sonication, stabilization
with surfactant and surface functionalization.

Wojtoniszak et al. [223] showed that GO and RGO exhibit a surfactant-dependent
toxicity by comparing the homogeneity of GO and RGO dispersions in phosphate buffered
saline (PBS) and cell viability on mice fibroblasts L929 cells. Three different dispersants were
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used, namely PEG, poly(ethylene glycol)-block-poly(propylene glycol-block-poly(ethylene
glycol) (Pluronic P123), and sodium deoxycholate (DOC). The authors concluded that both
materials had relatively good cytocompatibility in the 3.125–12.5 µg mL−1 range, with
lowest toxicity detected in PEG-stabilized GO.

The BC can be tuned and modified by exploiting the ability of GBMs to adsorb moieties
from the culture medium. As previously discussed, biological and bioactive species (DNA,
carbohydrates and proteins) can be used as surfactants to stabilize graphene nanomaterials
in aqueous solution, paving the way for different biomedical applications [191,224,225].
Pre-incubation in protein solutions was shown to form a thin coating on nanomaterials in
suspension, minimizing cytotoxicity by limiting their direct interaction with cells. It has
been reported that GO and RGO coated with BSA [226], FBS [227] or serum proteins [228]
showed attenuate cytotoxicity and could improve biocompatibility. In addition, another
interesting method of surface modification is functionalization through exposure to a
specific enzyme, peptide or antibody [190,229]. Bussy et al. [230] exposed human lung
carcinoma (A549) and bronchial epithelial (BEAS-2B) cell lines to GO and analyzed its effect
in serum-free HEPES-buffered salt solution (BSS), Dulbecco’s phosphate-buffered saline
(PBS), and the normal media recommended for these cell lines (F12 for A549 and RPMI
for BEAS-2B). Surprisingly, they reported more pronounced cellular responses in both BSS
and PBS, but not in F12 or RPMI, and concluded that the interaction between GO and
cells may differ depending on the concentration of salts and ions present in the aqueous
environment. These charged moieties could influence nanofiller aggregation, bundling,
stacking, or other colloidal properties of the negative surface-charged nanoparticles. In
summary, the presence of proteins and other moieties in the cell culture medium influences
the results on cytotoxicity and we could consider that GO and RGO might not be hemolytic
in vivo where an abundant BC forms on their surfaces and protects the nanomaterial. These
types of non-covalent surface functionalization are not stable in prolonged circulation and
it is important to consider the dynamic changes of the BC as the nanoparticles translocate
from one biological compartment to another or from the ECM intracellular locations [231].

Covalent functionalization is another strategy for enhancing solubility in different
matrices and is frequently used to obtain nanocomposites, as previously discussed in
Section 2. However, covalently bonding molecules to the surface leads to the disruption of
the graphitic lattice changing its electronic and transport properties [232]. A number of
surface modifications allow to obtain more hydrophilic GBMs with remarkably reduced
toxicity. According to Kiew and coworkers [233], graphene-based nanomaterials with
hydrophilic surfaces weaken the opsonin–protein interaction and could avoid being recog-
nized by macrophage, thus an inflammatory response. Among the different strategies, the
combination with polymeric materials represents a commonly used approach to overcome
the limitations of graphene-based nanomaterials in biomedicine [234]. Several studies
have reported that covalent modification with polyethilenglycole (PEGylation) can re-
duce cytotoxicity resulting in increased biocompatibility and stability in physiological
buffers [235]. PEG is known to prolong particle circulation in the blood due to its ability
to camouflage particle surfaces, sterically shielding against opsonization and uptake by
the RES cells [192]. Other approaches involve the covalent attachment of conductive poly-
mers (such as poly(pyrrole), poly(aniline), poly(allylamine)) or biodegradable synthetic
polymers (e.g. poly(lactic) acid, poly(glycolic) acid, poly(lactide-co-glycolide)) or natural
polysaccharides such as chitosan [236], alginate, hyaluronic acid and dextran (DEX). Like
PEGylation, dextran coating reduces the adsorption of proteins the surface and improves
biocompatibility. Compared with non-functionalized GO, GO–DEX conjugates showed
improved stability in physiological solutions, accumulation in liver and spleen after in-
travenous injection, and most importantly clearance from body within a week without
causing noticeable short-term toxicity [237].

Finally, graphene and its derivatives have been used in combination with biocompati-
ble polymeric matrices to obtain conductive nanocomposites with enhanced cell adhesion,
differentiation and biocompatibility [238]. These materials trigger reduced biological re-
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sponses without the impairment of the GBMs capability to cross cell membranes and deliver
therapeutic species [239]. As our lab has recently shown, organic-functionalized carbon
nanofillers dispersed in a polymeric poly(L-lactic) acid exhibited enhanced cell viability
(~90%) and supported cell growth [59], while having interest effects on the differentiation
of neuronal precursors [50] and human circulating multipotent stem cells [47,159].

5. Examples of Tissue Regeneration
5.1. Bone Regeneration

Bones possess a remarkable regenerative capacity, as they maintain the ability to re-
model themselves throughout adult life and they can repair fractures spontaneously [240].
After bone damage, soluble factors accumulate at the injury site and recruit mesenchymal
stem cells, which, in turn, proliferate and differentiate toward osteoblasts. Subsequent
calcification of the region results in a woven bone, which is finally remodeled by the renew-
ing and resorptive actions of osteoblasts and osteoclasts [241]. Despite this regenerative
process, there are instances where injuries may require clinical intervention to be com-
pletely healed. Autologous bone graft is a standard medical procedure for the treatment of
bone-related diseases. Unfortunately, it is mostly limited by the availability of appropriate
donor tissue [242]. Several scaffolds have been developed to enhance bone regeneration to
overcome this issue and some representative examples are reviewed in this section.

For instance, graphene was used to coat three-dimensional hydroxyapatite scaffolds
to support the growth and osteogenic differentiation of hMSCs. Scaffolds were found to be
self-standing, as hMSCs differentiation did not require common differentiative molecules
(i.e., dexamethasone or the bone morphogenetic protein 2) [160]. Moreover, graphene
oxide was covalently linked to chitosan (CS), an animal-derived polymer already known to
support cell adhesion and proliferation. The resulting polymer had better elastic modulus
and hardness, which resulted in an increase in cell adhesion, spreading, proliferation,
and formation of the extracellular matrix. Most importantly, cells grown onto GO-CS
scaffolds showed an enhancement in calcium and phosphate deposition levels, a hallmark
for osteoblastic differentiation [243].

Arnold and co-workers managed to enhance hMSCs osteogenic differentiation by di-
rectly functionalizing GO. Expressly, they set up an elegant universal synthetic procedure to
covalently tether polyphosphates onto GO, generating a new phosphate-graphene material
(CaPG) [244]. Their approach allowed them to obtain scaffolds with hydroxyapatite-like
functionality at the interface, loaded with osteoinductive ions. They developed a 3D scaf-
fold and assessed that its mechanical properties were comparable with bones (Young’s
modulus up to 1.8 GPa, compressive storage modulus up to 291 MPa, shear storage mod-
ulus up to 545 MPa, and ultimate compressive strengths up to 300 MPa). When hMSCs
were seeded onto those scaffolds, a significant increase in the osteogenic marker alkaline
phosphatase (ALP) and increased calcium deposits were observed, even when cells were
cultured in growth medium (designed to maintain multipotency). Histological analyses of
mice tissue after scaffold implantation showed no apparent damage, toxicological effects,
or inflammation up to 8 weeks after treatment. More importantly, CaPG scaffolds enhanced
donor cells’ retention and provided differentiative signals favoring bone regeneration
without using growth factors to direct osteogenesis.

Li and co-workers employed graphene oxide and lysozyme films to favor bone regen-
eration while minimizing the possibility of infection. Precisely by depositing overlapping
layers of GO and lysozyme onto a chitosan base they obtained a construct not only able to
support dental pulp stem cell growth and differentiation but also with improved antimi-
crobial activity. While GO is responsible for scaffolds stiffness and roughness, lysozyme
improves the antimicrobial activity of GO by degrading the bacterial cell wall [245].

Among 3D scaffolds, Li and co-workers [246] provided an interesting proof of concept
of the usage of 3D-printed alginate hydrogels as scaffolds for bone engineering. They
used 3D-bioprinting to obtain gelatin-alginate scaffolds with defined porosity, then coated
them with RGO. Although hydrogels are much less stiff than other composites, the authors
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observed a significant increase in adipose-derived stem cell (ADSC) differentiation toward
the osteogenic lineage, as proven by the increase in ALP expression and calcification of
the substrate.

Graphene oxide osteogenic potential was further investigated by Wu and co-workers,
which grafted it with a peptide derived from the bone morphogenetic protein 2 [247]. GO-
BMP2 was then bonded to silk-fibroin electrospun fibers to obtain biocompatible scaffolds
that favor MSC adhesion and differentiation in vitro and in vivo and is are able to repair
mice bone defects in less than 14 days.

5.2. Muscle Regeneration

Skeletal muscles made up most of the mass of the human body and are essential for
motion and support. They are composed of multinucleated myofibers, which developed
from mononucleated stem cell precursors during embryonic development. Satellite cells
are unipotent stem cells that remain associated with adult myofibers and are responsible for
muscle growth and regeneration [248,249]. Because of them, muscle tissue is endowed with
a remarkable regenerative capacity, and most injuries sustained during everyday life fully
recover via well-characterized processes [250]. However, severe injuries such as volumetric
muscle loss and neuromuscular degenerative diseases, or aging, can result in significant
muscular impairment, severely dampening life quality. In recent years, the possibility to
produce scaffold recapitulating features of adult muscle tissue to enhance regeneration
has drawn much attention, and several features that can enhance muscle regeneration
have been identified. Among those, Gilbert and co-workers found substrate elasticity
to be pivotal for muscle regeneration, as substrates mimicking tissue elasticity (~12 kPa)
were able to sustain muscle stem cell self-renewal in vitro and differentiation in vivo [251].
Moreover, it was found that electroconductive scaffolds can enhance myoblasts fusion into
myotubes in vitro, possibly by mimicking neuromuscular activity [252,253]. Starting from
the observation that scaffold elastic properties are pivotal to resist the dynamic condition of
the muscle tissue environment, Jo and co-workers [254] developed polyurethane/graphene
oxide nanocomposite fibrous scaffolds to form a flexible and myogenic stimulating ma-
trix for tissue engineering. They found nanocomposite to have better tensile strength,
hydrophilicity, and biocompatibility than pristine materials. When they seeded mouse
skeletal muscle cells C2C12 (a standard model for muscle differentiation studies) onto their
scaffolds, they found an enhancement in cell adhesion and spreading, as demonstrated by
the increase in the expression of actin and vinculin. Scaffolds were also capable of inducing
muscle differentiation, as immunocytochemistry against myosin heavy chain (MHC, a
marker for mature muscle cells) and RT-PCR against MyoG, α-actinin, and MyoD (markers
for differentiating muscle cells) showed an increase directly proportional to GO concen-
tration. Most importantly, they also found that scaffolds were able to sustain dynamic
tensional stimuli, which, in turn, further increased the expression of differentiative markers.

As muscle cells are aligned along the fiber axis, materials patterned with surface fea-
tures resembling native extracellular environment can influence mechanotransduction and
favor cell differentiation. Park and co-workers [255] employed femtosecond laser ablation
(FLA) to produce GO and RGO-based micropatterned conductive PAAm-hydrogels, which
can support muscle differentiation in vitro and proved to have good stability in vivo. All
scaffolds resembled muscle tissue Young’s modulus, but only rGO-based ones possessed
enough conductivity to deliver signals to cells. FLA allowed them to pattern scaffolds with
20 µm wide, 10 µm deep canals, and only scaffolds with a pattern distance comparable to
cell dimension (50–80 µm) proved to affect differentiation. Specifically, when fusion index
(i.e., the ratio of nuclei inside myotubes to all nuclei) and nuclear shape (which becomes
less rounded during differentiation) were considered, it was found they could be improved
by 50 and 80 µm patterned scaffolds independently on their conductivity. Morphological
analyses were confirmed by immunocytochemical and qRT-PCR analyses, which demon-
strated an increase in the expression of differentiative and mature myoblast markers (i.e.,
MHC, MyoG, and MyoD). In spite of this, conductivity proved to be pivotal to enhance
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cell aspect ratio, and electrical stimulation (2V, 10ms duration, 1 Hz) enhanced myotube
formation with respect to untreated control. Hydrogels were also found to be suitable for
implantation, as they remained intact for 4 weeks after subcutaneous implantation in mice,
proving they can be a good platform for tissue implantation.

Besides skeletal muscle, cardiac muscle regeneration has drawn much attention be-
cause of the severity of heart diseases. Cardiomyocytes are specialized muscle cells which
have a crucial role in the propagation of electric signal throughout the heart. Unlike
skeletal muscle cells, cardiomyocytes have a reduced regenerative potential, and, after
damage, are often replaced by scar tissue, which may lead to pathological heart failure. In
an elegant comparative study, Lee and co-workers [256] compared the effects of gelatin
methacrylic (GelMA) functionalized with either CNTs, GO, or RGO on the structural or-
ganization and functionality of rat primary cardiomyocytes. Even though all scaffolds
resembled the elastic modulus of the heart, GO functionalized scaffolds exhibited low
conductivity. Moreover, GO and RGO functionalized scaffolds displayed higher surface
roughness compared to the GelMA and CNT-GelMA ones. Despite those differences, all
scaffolds proved to support cell attachment and proliferation; however, they had different
effects on cell differentiation. Specifically, when cells were stained against Cx43 (indicating
electrical and metabolic coupling between cells), troponin-I and sarcomeric α-actin (both
involved in muscle contraction), where enhanced only on RGO and CNT-GelMA but not
in GO-GelMa. Moreover, even RGO failed to enhance the expression of troponin-I. Cells
were further analyzed by patch-clamp to determine the extent and shape of the membrane
action potential. Based on results, they found that CNT-GelMA led to the formation of
ventricular like cardiomyocytes, whereas GO-GelMA resulted in an atrial-like phenotype.
Instead, RGO-GelMA led to cells with a mixed phenotype. This finding suggests that
different properties of the graphene derivative in the scaffold can be exploited to fine-tune
cardiomyocyte phenotype.

In the context of injectable gels, Choe et al. developed an RGO-modified alginate gel
and studied its antioxidant activity for cardiac tissue repair post myocardial infarction
(MI) [257]. One of the hallmarks of MI is the high oxidative stress of heart tissues due to the
formation of reactive oxygen species. Mesenchymal stem cell transplantation is a promising
treatment for repairing heart tissues post MI, but after transplantation, their survival is
compromise by the oxidative stress of the tissue. In their study, Choe et al. encapsulated
hMSC in alginate microgels with a spherical shape (235 ± 11 µm diameter) suitable for easy
injection. Nanocomposite microgels displayed higher cell viability than GO- and RGO-free
beads. To further improve survival, hMSCs were first enclosed in GO/alginate hydrogels
and then GO was reduced. Nanocomposite microgels showed greater scavenging activity
in all assays, while the graphene-free counterpart had a negligible antioxidant activity.
These injectable anti-oxidizing nanomaterial-embedded microgels were able to scavenge
radicals and lower the oxidative stress post MI, support MSC viability and maturation,
thus increasing therapeutic activities and regeneration of infarcted tissues.

5.3. Nerve Regeneration

The nervous system represents the most intricate and vulnerable system in the human
body, as, despite its pivotal importance, it is substantially unable to regenerate itself after
injury. Because of its vital role, its organization is extraordinarily complex. Briefly, the
nervous system comprises two main classes of cells: the glial cells and neurons. Neurons
act as functional units, as they are characterized by peculiar electrophysiological features
which allow them to rapidly transmit information between each other. Connections are es-
tablished during neuritogenesis by the sprouting of dendrites and axons from the cell body.
Specifically, each growing axon is tipped by the growth cone, a complex molecular machin-
ery that senses environmental stimuli to guide growth toward the proper target [258]. On
the other hand, glial cells consist of various specialized cell types (including Schwann cells,
oligodendrocytes, and astrocytes) that regulate homeostasis, form myelin sheets around
axons, and provide support and protection for neurons by maintaining a proper microenvi-
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ronment [259]. Anatomically, the nervous system has been divided into the central (CNS)
and peripheral (PNS) nervous system. Besides their different physiological role, they also
respond differently to damages. Central nervous system regeneration is made more chal-
lenging, mainly because adult CNS is naturally resilient to cell repair and differentiation.
For instance, after axotomy, glial cells of the CNS secrete inhibitory cues and form a physical
and chemical barrier, the glial scar, which prevents regenerating axons to cross the injury
site and reach their new target. Moreover, the basal expression of anti-regenerative cues
such as chondroitin sulfate proteoglycans, Nogo-A, and myelin-associated glycoproteins,
semaphorin 4D, and ephrin, is upregulated, further suppressing the capacity of the axonal
growth cone to elongate [260–262]. Conversely, PNS neurons are endowed with a higher
regenerative capacity due to the lack of CNS inhibitory factors [263].

Because of the inability of central neurons to regenerate, traumatic brain injury, and
spinal cord injury have profound adverse effects on life quality and are a significant cause
of mortality [264]. Efforts from the scientific community to address this issue resulted in
several pharmacological and surgical therapeutic strategies [265]. However, in recent years
graphene and its derivatives emerged as intriguing tools to design biomaterials mimicking
tissue properties, encapsulate biomolecules and favor stem cell differentiation or tissue
regeneration [266–269]. Recently, Quian and co-workers [266] used 3D printing and layer-
by-layer casting methods to produce graphene and polycaprolactone scaffolds, which
improved axonal regrowth and remyelination. Their technique allowed them to optimize
quality control, mechanical strength, drug delivery distribution, and achieve the ideal
electric conductivity for nerve growth. To increase scaffold biocompatibility, they coated it
with polydopamine (PDA) and arginylglycylaspartic acid (RGD), which can encapsulate
small molecules and favor cell adhesion, respectively. When tested with rat-immortalized
Schwann cells, they found the optimal proliferation and viability rates on scaffolds at 1%
graphene in PCL and that those scaffolds were able to support cell proliferation or up
to seven days. Moreover, they found a higher expression of vinculin and N-cadherin on
PDA/RGD-G/PCL scaffolds rather than on control scaffolds, indicating that graphene can
have a role in promoting cell adhesion. Western blotting and qRT-PCR analyses indicated
that not only scaffolds were able to induce expression of neural markers (such as glial
fibrillary acidic protein, Class III ß-tubulin, and S100) but also they increase the expression
of neurotrophic factors (NGF, BDNF, GDNF, and CNTF), which are vital to establishing
a permissive environment for nerve regeneration. Moreover, when Schwann cell-loaded
PDA/RGD-G/PCL scaffolds were grafted onto Sprague Dawley rats, histological and
immunohistochemical observations 18 weeks after surgery suggested that regenerated
nerves were well organized, lacked scar tissue and, most importantly, functional recovery
was comparable to autograft implants.

As neurons require network formation to acquire proper function, tools to build
3D neuronal networks are required to enhance their function. An elegant method to
encapsulate neurons onto a self-assembled micro-roll made of a bilayer of graphene and
parylene-C [268], provided a proof of concept for designing a 3D neuronal network, which
might also serve as a platform for modeling neurodegenerative diseases or producing cells
suitable for transplantation. Their approach allowed them to create a support that allows
neurons to interact with their surroundings without mixing with the external population,
thus keeping a precisely controlled cell distribution. They exploited a sacrificial layer of
calcium alginate to support a graphene layer, which was then coated with a parylene-C
layer. Finally, the bilayer was patterned with an array of microscale pores to allow axons,
but not cell bodies, to contact surrounding cells. Self-assembly into a tubular structure
was induced by treating the sandwich with ethylenediaminetetraacetic acid (EDTA) to
de-polymerize the alginate layer. Accessibility of reagents to the internal of the micro-roll
was assessed by Ca2+ imaging in response to the addition of glutamate: encapsulated
hippocampal neurons showed a coherent and coordinated response, and no delay with
the response of external neurons was observed. Moreover, the formation of functional
synapses between neurons was demonstrated both by immunocytochemistry against
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synapsin I, which is expressed by neurons at the synapse puncta, and by monitoring
the synchronization of spontaneous Ca2+ waves. Besides serving as support for cell
growth, the authors claim the graphene in their scaffold might serve as an electrode for
electrophysiological recording and neuronal activity stimulation.

In order to study the role of substrate conductivity in neuronal network formation
and alignment, Wang and colleagues developed a 3D conductive GO-coated scaffold
based on printed PLCL microfibers using a near-field electrostatic printing (NFEP) [270].
NFEP is a technique that combines electrostatic spinning and 3D printing that allows to
obtain fiber sizes of a few micrometers and complex architectures [271]. By manipulating
the motion of the collection surface along X-Y-Z axes, NEFP easily generates arbitrary
patterns (2D or 3D). PLCL scaffolds with different fiber overlay angles, diameters, and
spatial organization were coated with GO, which was then reduced to RGO in situ without
damaging the architecture. Depending on the layer thickness, RGO coating improved
electrical conductivity while increasing surface roughness. The scaffolds were then used
to assess the correlation between electrical stimulation (ES) and neurite outgrowth of the
pheochromocytoma-derived PC12 cell line and primary neurons from hippocampal tissue
of embryonic mice. ES enhanced neurite outgrowth and alignment with respect to control
without ES stimulation. Strikingly, while neurite outgrowth resulted in being strictly
correlated with the strength of the electric field, its directionality did not seem to influence
neurite alignment. However, it was found that neurite outgrowth tightly followed the
orientation of the smaller microfiber pattern and a more dispersive distribution of neurites
was observed on fibers with higher diameters, where neurites had a higher tendency to
branch out and lose their directional orientation (Figure 9).
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Glial cells are as necessary as neurons to ensure proper nervous system function-
ality, therefore their regeneration after injury is as crucial as neuronal restoration [272].
Specifically, oligodendrocytes are responsible for myelination of central neurons and must
be restored to ensure proper neuronal connectivity. The most common way to obtain
oligodendrocytes is to differentiate multipotent NSCs or induced pluripotent stem cells
(iPSCs). However, the process has proven to be challenging, as it requires long culture
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periods (up to 150 days) and has a limited yield [273]. Shah and co-workers [267] de-
veloped a nanocomposite PCL-GO scaffold, which allowed for NSCs differentiation into
oligodendrocytes in just 6 days of culture. They treated electrospun PCL nanofibers of
200–300 nm diameter with oxygen plasma to render their surface hydrophilic, then GO
was deposited on their surface at either 0.1, 0.5, or 1 mg/mL. Finally, laminin, an ECM
protein essential for adhesion, growth, and differentiation of NSCs, was used to coat scaf-
folds. Rat hippocampal NSCs displayed significant differences in cell morphology after
just 6 days of culture. Moreover, concentrations of GO as low as 0.1 mg/mL were able to
strongly enhance the expression of the myelin basic protein (MBP), a marker specific for
oligodendrocyte differentiation. The absence of an effect on the expression of the neuronal
marker Tubβ3 and the astrocytic marker GFAP further suggested those scaffolds were
able to selectively direct differentiation toward the oligodendrocytic lineage. When they
treated cells grown on PCL-GO with integrin signaling inhibitors, they observed a steep
decrease in oligodendrocyte markers. This observation suggested that the GO-coating of
the nanofiber scaffolds might promote differentiation through specific microenvironmental
interactions that activate integrin-related intracellular signaling.

Besides rigid scaffolds, biocompatible conductive hydrogels have attracted much at-
tention because of their ability to better reproduce the mechanical properties of host tissues.
Javadi and co-workers [269] developed a biocompatible hydrogel, based on polyurethane
(PU), poly(3,4-ethylenedioxythiophene) (PEDOT) doped with poly(4-styrenesulfonate)
(PSS) and liquid crystal graphene oxide (LCGO). They obtained a formulation with ex-
cellent conductivity, tensile modulus, and yield strength to support neuronal stem cells
differentiation toward neurons and glial cells (as proven by the increase of the neuronal
marker Tubβ-3 and the astrocyte marker GFAP). The authors claim LCGO liquid crystal
nature synergistically combined with the properties of PEDOT:PSS to increase hydrogel
mechanical and electrical properties.

Starting from evidence that the cholinergic system is involved in several neuron
protective processes, cortical plasticity, and functional recovery after brain injury, Pradhan
and co-workers developed a choline-graphene oxide functionalized (CFGO) injectable
hydrogel based on poly(acrylic acid). Not only their hydrogels were able to support
neuronal cell growth and differentiation, but they also stabilized the actin cytoskeleton.
As choline is involved in enhancing neural recovery in TBI treatment, they injected their
hydrogels in mice with parietal cortex brain injuries. They found scaffolds were able to
restore cortical loss in just 7 days of treatment [274].

5.4. Wound Healing

GBMs have also been employed as fillers for wound healing hydrogels. Rehman
and co-workers [275] developed RGO-GelMA hydrogels which enhance migration of
fibroblasts, keratinocytes and endothelial cells in vitro and favor angiogenesis, in vivo, in
chicken embryos. The authors speculate that this property could be due to an increase
in intracellular ROS levels caused by RGO. In another study, Li and co-workers [276]
developed N-acetyl cysteine (NAC) loaded GO-collagen membranes. In this formulation,
GO has been reported to enhance mechanical properties and water retention of the collagen
scaffolds, whereas NAC is used to lower ROS levels in the damaged tissue. The membrane
accelerated cell migration, maturation and angiogenesis, leading to rapid skin regeneration.
Moreover, the expression of profibrotic factors was found to be downregulated, indicating
those scaffolds could promote scarless wound healing. A common problem of wound
healing hydrogel is their vulnerability to bacterial infection [277]. To solve this problem,
Yan and co-workers [278] developed an Ag reduced GO sodium alginate film which not
only is able to inhibit bacterial growth but also to stimulate rapid wound healing in vivo.

6. Conclusions

Graphene-based scaffolds have been proven to be versatile tools in mediating tissue
regeneration, as highlighted by the examples of in vitro and in vivo applications that have
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been discussed in this review. However, much more effort is required from the scientific
community to clarify and rationalize their mechanism of action. It is clear that different
composites can be employed to obtain similar results and yet subtle changes in scaffold
formulation may result in completely different results. Therefore, a systematic analysis of
the effects of scaffold composition on differentiation is required in order to disentangle
the role of each scaffold component on cell fate. This would allow for a direct comparison
between different scaffolds and a finer rational design. Moreover, it needs to be stressed that
most applications rely on qRT-PCR data to prove successful differentiation. However, this
approach reveals only an average trend in cell differentiation, without detecting potentially
significant and biologically important differences between cells seeded onto different spots
of the scaffold. Even when immunocytochemical data are provided, most authors fail to
mention whether or not those data are representative of the whole sample or are just isolate
cases. Coupling scaffold engineering with single cell RNA sequencing would overcome
those limitations, allowing both a better understanding of scaffold effects on cell physiology
and comparisons between the in vitro culture and the in vivo reference.

To date, scaffold engineering has focused on regeneration of a single tissue. However,
clinical applications often require grafting of whole organs. Obtaining a scaffold that
is able to efficiently reproduce a whole organ, or even multiple tissues (e.g., innervate
muscles), has proven challenging and further studies are required before any viable clinical
usage. In our opinion, finding the rationale behind graphene regulation of cell fates will
allow us to obtain scaffolds that can reliably support and differentiate cells in a number of
pre-determined types at the same time.

Although a molecular rationale for graphene-mediated effects is still lacking, it is
remarkable that graphene-based scaffolds are able to determine cell fate more rapidly and
efficiently than any other differentiation protocol, even without the addition of exogenous
pro-differentiation factors. Indeed, in recent years research on mechanotransduction has
unveiled several details on how nanotopography and stiffness stimuli are perceived and
transduced by cells, whereas further efforts are needed to elucidate the contribution of other
chemical and physical stimuli from the tissue environment. In particular, conductivity is of
special interest to neuronal cell fate and differentiation, as it is specific to the nervous system.
In addition to the aforementioned nanotopographic features, graphene and GBMs are
endowed with tunable conductivity. Therefore, graphene-based nanomaterials represent a
useful and cost-effective tool to enhance neuronal differentiation and tissue repair.
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