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Abstract

Visual inputs to early visual cortex integrate with semantic, linguistic and memory inputs in higher 

visual cortex, in a manner that is rapid and accurate, and enables complex computations such 

as face recognition and word reading. This implies the existence of fundamental organizational 

principles that enable such efficiency. To elaborate on this, we performed intracranial recordings 

in 82 individuals while they performed tasks of varying visual and cognitive complexity. We 

discovered that visual inputs induce highly organized posterior-to-anterior propagating patterns of 

phase modulation across the ventral occipitotemporal cortex. At individual electrodes there was 

a stereotyped temporal pattern of phase progression following both stimulus onset and offset, 

consistent across trials and tasks. The phase of low frequency activity in anterior regions was 

predicted by the prior phase in posterior cortical regions. This spatiotemporal propagation of phase 

likely serves as a feed-forward organizational influence enabling the integration of information 

across the ventral visual stream. This phase modulation manifests as the early components of the 

event related potential; one of the most commonly used measures in human electrophysiology. 

These findings illuminate fundamental organizational principles of the higher order visual system 

that enable the rapid recognition and characterization of a variety of inputs.
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1. Introduction

Ventral occipitotemporal cortex is organized in a cortical hierarchy from early visual regions 

(e.g. calcarine cortex) to associative areas (e.g. fusiform cortex) (Felleman and Van Essen, 

1991; Morán et al., 1987), that constitutes the ventral visual stream (Mishkin et al., 1983). 

This processing pathway is crucial for the integration of visual processing with language and 

memory (Forseth et al., 2018; Ghuman et al., 2014; Hirshorn et al., 2016; Kadipasaoglu et 

al., 2016; Tang et al., 2014; Woolnough et al., 2021b), but it is unclear how the propagation 

of information between functional components of the human ventral visual pathway is 

coordinated.

Recently, spatial propagation of information has been characterized, in both humans and 

non-human primates, as travelling waves of cortical activation. These occur at both the 

macro and micro scale and represent the structured propagation of information across the 

cortical surface in response to inputs (Lozano-Soldevilla and VanRullen, 2019; Muller 

et al., 2018, 2014; Sato et al., 2012) or may occur spontaneously (Bahramisharif et al., 

2013; Davis et al., 2020; Halgren et al., 2019; Muller et al., 2016; Zhang et al., 2018). 

In the ventral visual stream of macaques this manifests as a rapid feedforward sweep of 

activation following visual stimulation (Lamme and Roelfsema, 2000). This spatiotemporal 

organization, manifest as a travelling wave indexes synchronized long-range cortico-cortical 

connections, enabling the integration of information across multiple cortical areas (Sato et 

al., 2012; Zhang et al., 2018) and perhaps also facilitates predictive coding (Alamia and 

VanRullen, 2019; Arnal and Giraud, 2012). Such travelling waves have commonly been 

characterized as a spatial propagation of phase. Sensory inputs result in the modulation of 

phase of ongoing oscillations (Howard and Poeppel, 2012; Lakatos et al., 2008, 2005; Luo 

et al., 2010) and the timing of inputs relative to the phase of ongoing oscillations impacts 

perception (Bonnefond and Jensen, 2012; Davis et al., 2020; Dugué et al., 2015; Forseth et 

al., 2020; Mercier et al., 2015). Based on this, we hypothesize there is a stimulus-evoked 

modulation of phase that spatiotemporally propagates through the human ventral visual 

pathway.

To probe the spread of visually-evoked phase modulation across the ventral visual stream, 

we utilized high spatiotemporal resolution intracranial recordings in a large human cohort 

(82 patients), with almost ubiquitous coverage of the ventral visual stream (1929 electrodes), 

who performed a language task with a relatively low visual complexity stimulus (word 

reading) or a memory task with a high complexity visual stimulus (face naming).
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2. Materials and methods

Participants:

82 patients (44 male, 18–60 years, 16 left-handed) undergoing implantation with intracranial 

electrodes for seizure localization of pharmaco-resistant epilepsy participated after giving 

written informed consent. Participants with significant additional neurological history (e.g. 

previous resections, MR imaging abnormalities such as malformations or hypoplasia) were 

excluded. All experimental procedures were reviewed and approved by the Committee for 

the Protection of Human Subjects (CPHS) of the University of Texas Health Science Center 

at Houston as Protocol Number HSC-MS-06–0385.

Electrode Implantation and Data Recording:

Data were acquired using either subdural grid electrodes (SDEs; 14 patients) or 

stereotactically placed depth electrodes (sEEGs; 68 patients). SDEs were subdural platinum-

iridium electrodes embedded in a silicone elastomer sheet (PMT Corporation; top-hat 

design; 3 mm diameter cortical contact), surgically implanted via a craniotomy following 

previously described methods (Pieters et al., 2013; Tandon, 2012; Tong et al., 2020). sEEGs 

were implanted using a Robotic Surgical Assistant (ROSA; Medtech, Montpellier, France) 

(Rollo et al., 2020; Tandon et al., 2019). Each sEEG probe (PMT corporation, Chanhassen, 

Minnesota) is 0.8 mm in diameter, with 8–16 electrode contacts, each contact being a 2 

mm long platinum-iridium cylinder separated from the adjacent contact by 1.5–2.43 mm. 

Each patient had 12–20 such probes implanted. Following surgical implantation, electrodes 

were localized by co-registration of pre-operative anatomical 3T MRI and post-operative 

CT scans in AFNI (Cox, 1996). Electrode positions were projected onto a cortical surface 

model generated in FreeSurfer (Dale et al., 1999), and displayed on the cortical surface 

model for visualization (Pieters et al., 2013). Intracranial data were collected during research 

experiments starting on the first day after electrode implantation for sEEGs and two days 

after implantation for SDEs. Data were digitized at 2 kHz using the NeuroPort recording 

system (Blackrock Microsystems, Salt Lake City, Utah), imported into Matlab, and visually 

inspected for line noise, artifacts and epileptic activity. Of a total of 11,164 electrodes, 

3919 electrodes with obvious line noise or localized in proximity to sites of seizure onset 

were excluded. Each electrode was re-referenced to the common average of the remaining 

channels. Trials contaminated by inter-ictal epileptic spikes were discarded.

Signal Analysis:

An ROI encompassing the entire occipital lobe and the ventral temporal surface, but 

excluding parahippocampal and entorhinal regions, was then applied, restricting us to 1929 

electrodes which form the basis of this work. These electrodes were grouped into sub-ROIs 

within 20 mm intervals along the y-axis of Talairach space, from −100 mm to 20 mm (Fig. 

1D–F).

Raw data was notch filtered to remove line noise (zero-phase 2nd order Butterworth band-

stop filters). Phase information was extracted from the down-sampled (200 Hz) and wide 

band-pass filtered data (2 – 30 Hz; zero-phase 8th order Butterworth band-pass filter) using 

the ‘generalized phase’ method (Davis et al., 2020) with a single-sided Fourier transform 
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approach (Marple, 1999). This method captures the phase of the predominant fluctuations in 

the wideband signal and minimizes filter-related distortion of the waveform.

Inter-trial Phase Coherence (ITC) was calculated as the absolute vector length of the mean 

of unit vectors with the instantaneous phase of stimulus-aligned trials (Fig. 1G,H). Phase 

locking value (PLV) was calculated identically to ITC but instead using phase difference 

between two electrodes. ITC and PLV were computed as the median value of 50 iterations 

of a random 60 trials. ITC and PLV were baselined −1000 to −100 ms before each stimulus. 

PLV was calculated between pairs of electrodes in separate ROIs, within patient, within 

hemisphere. PLV statistics were performed using a bootstrapped null distribution, randomly 

re-pairing trials between electrodes, using 5000 repetitions. Phase probability distributions 

were quantified, using 30 equally spaced bins between −π and π, and mutual information 

(MI) was calculated based on these distributions at each time point, baselined −1000 to −100 

ms before each stimulus. Asymmetry index (AI) was calculated based on the lagged PLV 

results at each time point as AI = log2(PLVpa/PLVap), where PLVpa represents the mean PLV 

between electrode p at time t and electrode a between time t and time t + 200 ms.

Experimental Design and Statistical Analysis:

Patients read single words (n = 40 patients) or identified celebrity faces (n = 57 patients). 

Stimuli were presented on a 2880 × 1800, 15.4″ LCD screen positioned at eye-level, 2–3′ 
from the patient. Additional details of each experiment are below:

Word Reading:

Participants read aloud monosyllabic words (e.g. dream) and pseudowords (e.g. meech) 

presented in lower-case Arial font, 150 pixels high (∼2.2° visual angle) (Fig. 1A) 

(Woolnough et al., 2021a). Stimuli were presented using Psychophysics Toolbox (Kleiner et 

al., 2007) run in Matlab. Each stimulus was displayed for 1500 ms with an inter-stimulus 

interval of 2000 ms. Stimuli were presented in two recording sessions, each with 160 stimuli 

in a pseudorandom order with no repeats.

Face Recognition:

Participants were presented with greyscale photos of famous faces and asked to name them 

aloud (Fig. 1B) (Kadipasaoglu et al., 2017; Woolnough et al., 2020). Stimuli were matched 

for luminance and contrast and presented, using Python 2.7, at a size of 500 × 500 pixels 

(∼7.5° visual angle) for 2000 ms, with an inter-stimulus interval of 6000 ms. Stimuli were 

presented in one recording session, with 60–125 faces presented in pseudorandom order 

with no repeats. Participants who correctly identified less than 20 stimuli were excluded.

Linear regressions were performed using robust regression models (Matlab function fitlm 
using ‘RobustOpts’; iteratively reweighted least squares with bisquare weighting) (Welsch, 

1977), to minimize the effect of outliers and to make fewer assumptions than traditional least 

squares linear regression models. To calculate onset latencies, we determined the first time 

point per electrode, within 600 ms of stimulus onset, where the first derivative of the ITC 

exceeded 3.5 standard deviations (∼p < 0.001) from baseline. We then used a regression 

model, predicting onset latency based on position in the y (anteroposterior) axis, derived 
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from the surface-based co-registration. All temporal analyses were corrected for multiple 

comparisons using a Benjamini-Hochberg false-detection rate (FDR) threshold of q < 0.001.

Data and Code Availability:

The datasets generated from this research are not publicly available due to their containing 

information non-compliant with HIPAA, and the human participants from whom the data 

were collected have not consented to their public release. However, dei-dentified are 

available on request from the corresponding author.

3. Results

82 patients semi-chronically implanted with subdural grid electrodes (SDEs; 14 patients) 

or stereotactically placed depth electrodes (sEEGs; 68 patients) for the localization of 

intractable epilepsy performed word reading (n = 40) and face naming (n = 57) tasks 

(Fig. 1A,B). Phase modulation was quantified by computing the inter-trial phase coherence 

(ITC; Fig. 1E,F) of the broadband low frequency signal (2–30 Hz) at each electrode, across 

multiple trials.

3.1 Phase modulation induced by words and faces

Data from two representative patients, with broad coverage of ventral occipitotemporal 

cortex, are shown in Fig. 2. In both instances, increases in inter-trial phase coherence were 

seen in electrodes from occipital pole to mid-fusiform cortex, for both tasks. Within each 

patient we also observed highly comparable patterns of ITC across both tasks. As expected, 

during the period preceding the onset of visual stimulation, the trial-by-trial distribution 

of phases at any given time was reasonably uniform. However, following presentation of 

a visual stimulus, they tended to a coherent center frequency (Fig. 2C,D). This phase 

coherence persisted for approximately 2 cycles (4π rads, ∼300 ms) (Fig. 2F,H). The 

temporal progression of the coherent center frequency was highly similar across both tasks.

To evaluate the consistency of these effects across the population (n = 82 patients), we 

represented ITC amplitudes on a group normalized cortical surface from occipital pole to 

anterior fusiform cortex (Fig. 3A,B). High ITC (>0.5) values were noted in associative 

cortex as far anterior as mid-fusiform. Stimulus presentation resulted in two distinct peaks 

of the ITC measure – a higher one around stimulus onset and a smaller one at offset. 

Differences in offset time between the two tasks, based on experimental design, confirmed 

that this was an offset response (Fig. 3D,E). Results calculated using the raw signal (0.3–100 

Hz) showed highly correlated peak ITC with the broadband low frequency (2–30 Hz) signal 

(Spearman correlation; words, r(1059) = 0.86, p < 0.001; faces, r(1246) = 0.82, p < 0.001; 

Supplementary Fig. 1E,F) but with the raw signal displaying a longer duration of significant 

ITC (Supplementary Fig. 1 G,H).

The results thus far demonstrate that within each task there is phase coherence between trials 

and the magnitude and duration of this coherence is reasonably conserved across different 

tasks. But, how consistent is this pattern of evoked phase across tasks? To quantify this, 

we measured mutual information (MI) in patients who performed both tasks (n = 15). We 

observed an increase in MI following the visual onsets, representing an increase in the 
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similarity of phase distributions between tasks. This inter-task coherence peaked at ∼200 ms 

following visual onset, highly concordant with the within-trial ITC (Fig. 3F). 9 out of the 

15 patients had at least one electrode peaking at >5 bits (48/354 electrodes; Supplementary 

Fig. 2A). Peak MI correlated well with peak ITC, measured across both tasks (Spearman 

correlation, r(354) = 0.76, p < 0.001; Supplementary Fig. 2C).

Next, we sought to characterize the spatiotemporal properties of this response, by dividing 

the ventral cortical surface into 20 mm bins along the y axis of the normalized surface 

in Talairach space, and used this to compare grouped ITC profiles from each bin (Fig. 

4). We noted a pronounced posterior-to-anterior gradient of both amplitude and onset 

latency of ITC with the largest responses in early visual cortex and progressive diminution 

anteriorly in both hemispheres, for both tasks. A 4D, cortical surface-based representation 

of the propagation of this phase coherence across the cortical surface revealed a posterior-to-

anterior wave, highly conserved across both tasks (Movie 1).

To quantify this posterior-to-anterior latency gradient, we calculated the time point at which 

the first derivative of the ITC first significantly deviated from baseline at each electrode 

(Fig. 4E). In both tasks there was a clear gradient from calcarine to anterior fusiform. Onset 

latency showed a significant association with position in the anteroposterior axis for both 

words (t(781) = 12.5, β = 1.0 ± 0.08, p < 0.001, r2 = 0.30) and faces (t(779) = 9.7, β = 1.3 

± 0.13, p < 0.001, r2 = 0.21) tasks. This reflects a posterior-to-anterior progression of the 

timing of ITC across the cortical surface from early sensory cortex to associative regions and 

a consistent propagation rate of approximately 0.8–1 m/s in Euclidean space.

To further investigate the spatiotemporal consistency of this effect between tasks, we 

analyzed just the subset of patients who performed both tasks (n = 15). There was no 

significant difference in ITC onset latency between the two tasks (t(462) = −1.6, β = −0.03 

± 0.02, p = 0.12) or any significant effect of task on the propagation rate (t(462) = −1.3, β = 

−0.35 ± 0.27, p = 0.20).

To further characterize this posterior-to-anterior spread and to identify the degree of 

propagation of phase information across the cortical surface, we calculated the lagged phase 

locking value (PLV) between pairs of electrodes. By lagging the time courses of phase 

progression between pairs of electrodes we sought to determine to what degree the future 

phase of anterior sites could be predicted by the current phase of posterior sites (Fig. 5A). 

This analysis demonstrated a strong bias toward a posterior-to-anterior spread of phase 

information, with the phase of anterior sites being driven by more posterior regions (Fig. 5B, 

Supplementary Fig. 3).

4. Discussion

We have identified a visually-induced, macroscale, spatiotemporal propagation of phase 

modulation from posterior-to-anterior across human ventral occipitotemporal cortex. Strong 

phase modulation is seen almost ubiquitously across ventral occipitotemporal cortex in 

both hemispheres; from occipital pole to anterior fusiform. Following a visual event each 

region within the visual pathway displays a predictable, stereotyped phase progression. 
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These findings were highly repeatable across a diverse range of visual stimuli with 

varying task demands and in only partially overlapping patient populations. We observed 

an approximate Euclidean propagation velocity of 0.8–1.0 m/s. This is comparable to the 

conduction velocities of unmyelinated horizontal projection axons in macaques (0.1–0.6 

m/s) (Davis et al., 2020) and is much slower than would be expected from monosynaptic 

white matter transmission (>15 m/s) (Ferraina et al., 2002). This further implies that this 

phase propagation likely occurs via sequential cortico-cortical connections (Muller et al., 

2014).

It is hypothesized that low frequency oscillatory phase in visual cortex relates to periods 

of modulating attentional states (Fiebelkorn and Kastner, 2019), shifts between dominant 

excitatory and inhibitory processes (Davis et al., 2020) and regulation of perceptual 

sensitivity (Bonnefond and Jensen, 2012; Davis et al., 2020; Dugué et al., 2015; Mercier 

et al., 2015). This propagation of phase modulation may represent the dynamic coordination 

of neural processing across spatially disparate regions throughout the ventral visual stream, 

modulating excitability of local neural populations. As this phenomenon showed little 

modulation between the language and memory tasks, it is likely this is a low-level visual 

process that is not strongly affected by high-level task demands.

Previous work has shown the organization of spontaneous oscillations as large scale 

travelling waves (Bahramisharif et al., 2013; Muller et al., 2016; Zhang et al., 2018) 

and small scale evoked travelling waves within early visual cortex (Muller et al., 2014; 

Sato et al., 2012). We expand on this work, characterizing a visually-evoked, macroscale 

phase propagation across the entire ventral visual pathway that likely indexes feedforward 

communication (Bastos et al., 2015), long-range cortico-cortical connections (Muller et al., 

2014) and integration of information over broad cortical areas (Sato et al., 2012; Zhang 

et al., 2018). As the majority of the patients investigated here were implanted with sEEG 

electrodes, providing sparse coverage across the ventral surface within individuals, we 

cannot directly show the propagation of travelling waves. However, we believe the presence 

of induced travelling waves is the most parsimonious explanation for the macroscopic 

properties observed here.

A phase reset following visual input has been demonstrated in human (Mormann et al., 

2005; Rizzuto et al., 2003; Tesche and Karhu, 2000) and macaque (Jutras et al., 2013) 

hippocampi. It is possible that this is also initiated as part of this sequence of ventral 

phase modulations. During visual exploration this hippocampal phase reset consistently 

occurs following saccadic eye movements (Jutras et al., 2013) suggesting that ventral phase 

modulation may occur following each saccade during naturalistic viewing. It is possible 

the phase modulations observed here may be affected as we are recording in patients with 

epilepsy, however, this is a large population with heterogenous seizure onset zones and 

previous studies of hippocampal phase reset in humans have been in epileptic patients, 

showing this phenomenon still occurs with likely pathological hippocampi (Mormann et al., 

2005; Rizzuto et al., 2003).

Extracranial recordings of study phase modulation are an aggregate of many sources, 

limiting insight into underlying generators. Further, the relative inaccessibility of electrical 
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fields generated by the ventral temporal surface (Goldenholz et al., 2009) has limited studies 

of visual phase modulation to early visual cortex. This has precluded insight into the 

spatiotemporal topography of visually-induced phase modulation in the human ventral visual 

pathway. Our results are supportive of the phase reset model of event related potential 

(ERP) generation (Klimesch et al., 2007; Makeig et al., 2002; Sauseng et al., 2007; Yeung 

et al., 2004). According to the phase reset model, the reset of instantaneous phase of 

ongoing oscillations, tending toward a fixed value upon presentation of a stimulus, results 

in the ERP by creating a coherent superposition of phase components (Iemi et al., 2019). 

Simulations of the underlying generators of the ERP suggest that early components (<200 

ms), corresponding to the time course of ITC seen here, primarily represent feed-forward 

influences, with later ERP components being influenced by top-down modulation (Garrido 

et al., 2007). This is consistent with the idea of an initial feedforward sweep of activity 

through the visual system, prior to the engagement of recurrent mechanisms (Lamme and 

Roelfsema, 2000).

5. Conclusion

We demonstrate the existence of visually-induced macroscale posterior-to-anterior 

propagation of phase modulation across the human ventral occipitotemporal cortex. We 

propose this represents a feed-forward spread of information via horizontal cortico-cortical 

connections throughout the ventral visual pathway.

Data availability

The datasets generated from this research are not publicly available due to their containing 

information non-compliant with HIPAA, and the human participants from whom the data 

were collected have not consented to their public release. However, they are available on 

request from the corresponding author.
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Fig. 1. Tasks, Patients and ITC Analysis.
(A,B) Schematic representation of the words (A) and faces (B) tasks. (C,D) Individual 

electrode locations, within the ventral ROI, for patients reading words (C; 1059 electrodes, 

40 patients) and recognizing faces (D; 1246 electrodes, 57 patients) plotted on a 

standardized N27 brain. Electrode colors represent the assigned bins based on the y-axis 

coordinate in Talairach space, with individual electrodes clustered into 20 mm bins. Smaller 

white spheres represent electrodes outside the ventral ROI. (E,F) Schematic representation 

with artificial data to illustrate low (E; ITC = 0.25) and high (F; ITC = 0.95) phase 

alignment along with a representation of the vector mean.
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Fig. 2. Spatial Propagation of Phase Coherence in Exemplar Patients.
(A,B) ITC distributions, in native patient space, for TS106 (A) and TS093 (B). Results are 

shown for words (left) and faces (right). (C) Broadband low frequency (2–30 Hz) signals of 

60 trials from TS106 from the words (left) and faces (right) tasks. Traces colored based on 

instantaneous generalized phase. (D) Phase distribution for a representative electrode at two 

time points during the faces task. (E-H) ITC (E,G) and phase distributions (F,H), with words 

(left) and faces (right) shown for three electrodes each from TS106 (E,F) and TS097 (G,H). 

Electrodes are highlighted in yellow in the brain plots and electrode numbers increase from 

posterior to anterior.
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Fig. 3. Population Phase Coherence.
(A,B) Peak ITC at individual electrodes for words (A; 1059 electrodes) and faces (B; 1246 

electrodes) tasks represented on a standardized surface. (C) Peak mutual information (MI) 

between the phase distributions in response to word or face presentation in patients who 

performed both tasks (354 electrodes, 15 patients). (D,E) Time course of ITC (mean ± SE) 

at electrodes with the top 20% peak amplitude ITC responses to words (D) and faces (E). 

Vertical lines denote the onset and offset times of each stimulus. Colored bars represent 

regions of significant increase over baseline (q < 0.001). (F) MI and ITC for the electrodes 

with the top 20% highest peak MI. See also Supplementary Figs. 1, 2.
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Fig. 4. ITC – Positional Analysis.
(A–D) ITC in response to words (A,C) or faces (B,D) as a function of anteroposterior 

position in the left (A,B) and right (C,D) hemisphere. Presented as mean ± SE. Number 

of electrodes in each ROI is highlighted. Vertical lines denote stimulus onset and offset 

times. (E) ITC demonstrates a posterior-to-anterior gradient of first onset latency (ITC 

first-derivative >3.5SD deviation from baseline).
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Fig. 5. Propagation of Phase.
(A) Exemplar electrode pair demonstrating the lagged phase locking value (PLV) analysis. 

PLV was calculated between the instantaneous phase of the posterior electrode (p) and 

the time lagged phase of the anterior electrode (a; −200 to 200 ms). Greater PLV above 

the center diagonal (dashed line) represents a greater ability to predict future phase of the 

anterior electrode based on the current phase of the posterior electrode. (B) Calculated 

asymmetry index (AI) of PLV above and below the center diagonal for high ITC (>0.5) 

electrode pairs across ROIs. AI > 0 represents a bias toward posterior-to-anterior phase 

propagation. Colored bars represent regions of significant difference from baseline (q < 

0.001). Number of electrode pairs in each ROI pair shown. See also Supplementary Fig. 3.
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