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BACKGROUND AND AIMS: There is a high unmet need to
develop noninvasive tools to identify nonalcoholic fatty liver dis-
ease/nonalcoholic steatohepatitis (NAFLD/NASH) patients at risk
of fast progression to end-stage liver disease (ESLD). This study
describes the development of a machine learning (ML) model us-
ing data around the first clinical evidence of NAFLD/NASH to
identify patients at risk of future fast progression. METHODS:
Adult patients with ESLD (cirrhosis or hepatocellular carcinoma)
due to NAFLD/NASH were identified in Optum electronic health
records (2007–2018 period). Patients were stratified into fast (0.5
and 3 years) and standard progressor (6–10 years) cohorts based
on retrospectively established progression time between ESLD and
the earliest observable disease, and characteristics were reported
using descriptive statistics. Two ML models predicting fast pro-
gression were created, performance was compared, and top pre-
dictive features from the final model were compared between
cohorts. RESULTS: Among a total of 4013 NAFLD patients with
cirrhosis or hepatocellular carcinoma (mean age 58.6 � 12.5; 65%
female), 24% were fast (n ¼ 951) and 25% standard (n ¼ 992)
progressors that were used for modeling. The cohorts were com-
parable for gender, body mass index, type 2 diabetes, and arterial
hypertension, but differed significantly for obesity, hyperlipidemia,
and age at index. The final model (NASH FASTmap) is a 44 feature
light gradient boosting model which performed better (area under
the curve [0.77], F1-score [0.74], accuracy [0.71], and precision
[0.71]) than eXtreme gradient boosting model to predict fast
progression. CONCLUSION: Future fast progression to ESLD in
NAFLD/NASH patients can be predicted from clinical data using
ML. Electronic health record implementation of NASH FASTmap
could support clinical assessment for risk stratification and
potentially improve disease management.
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Introduction

Nonalcoholic fatty liver disease (NAFLD) is the most
common chronic liver disease with up to 30%

prevalence worldwide.1–3 Key risk factors associated with
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NAFLD are obesity, type 2 diabetes mellitus (T2DM), hy-
pertension, and metabolic syndrome, all of which are on the
rise worldwide.1,4,5 NAFLD represents a spectrum of pa-
thologies ranging from a benign hepatocellular accumula-
tion of fat to nonalcoholic steatohepatitis (NASH), a
progressive form of NAFLD with lobular inflammation,
ballooning of hepatocytes, and hepatic injury.3,6 Up to 44%
of patients with NAFLD progress to NASH, which can lead to
end-stage liver disease (ESLD) with cirrhosis and/or hepa-
tocellular carcinoma (HCC).7–10 The majority of the lifetime
costs of NASH are associated with ESLD.11–13

Published evidence on progression of disease is typically
based on descriptions of fibrosis stage progression using paired
liver biopsies in small cohorts, and little has been published on
predictors of fast progression. A systematic meta-analysis of
paired liver biopsies found that the median time of liver fibrosis
progression ranges from approximately 14 years/fibrosis stage
for patients in early stages of NAFLD to approximately 7 years/
stage for patients with NASH. The same review suggests that
20% of patients could progress faster than others, suggesting
heterogeneity in NAFLD/NASH progression.14 Consistent with
this heterogeneity in progression, a phase II randomized
controlled study of simtuzumab trials reported that 22% of
patients starting with F3 fibrosis progressed to cirrhosis within
48 weeks.15 While genetic and clinical factors have been shown
to increase a patient’s risk of developing NAFLD and progres-
sion to NASH or have changing values over time consistent with
observed increases in fibrosis,15,16 no factors have been clearly
shown to predict a future rate of faster progression.

Patients with progressive NAFLD are at higher risk of
increased morbidity, mortality, and liver complications.15,17,18

However, available methods for staging NASH and liver
fibrosis focus on the patient’s current status rather than the
future risk.6 An early identification of patients at risk of future
fast progression would allow optimization of disease manage-
ment with earlier intervention opportunities to improve
care.19,20

Machine learning (ML) is increasingly being used in health
care to analyze large medical data sets to detect patterns for
patient diagnoses and insights on outcomes. Recent studies
have demonstrated that ML models perform well to diagnose
disease or fibrosis status in NAFLD patients,21–27 and ML of-
fers an attractive possibility to develop a model predicting fast
progression when a patient is first diagnosed with NAFLD.
Previously, we used ML to predict patients with NASH,22 and
here we complement and extend our previous work to
examine the rate of disease progression. This study describes
the development of an ML model to predict the risk of fast
progression to ESLD among NAFLD/NASH patients using real-
world data from the United States and describes clinical fea-
tures that potentially differentiate fast progressors.

Methods
Study Design and Data Source

This was a retrospective cohort study based on Optum de-
identified electronic health records data set from 2007 to 2018,
comprising about 86 million lives with records collected by
150,000 providers, 2000 hospitals, and 7000 clinics in the
United States in the course of normal clinical care. Patient re-
cords include demographics, diagnoses, procedures, medica-
tions, laboratory findings, and physician notes as well as visits
to the health-care system including outpatient, inpatient, and
emergency room (ER) visits.

Patient Population
The study population was identified based on the presence

and absence of disease diagnoses or procedures using the In-
ternational Classification of Diseases 9th and/or 10th revision
(ICD-9 or ICD-10, respectively) and Current Procedural Ter-
minology (see Supplemental Information for a full medical
coding list). All adult patients with diagnoses of ESLD (liver
cirrhosis and/or HCC) and NAFLD/NASH were included. Pa-
tients with any other causes of liver disease were excluded. For
all included patients, the index date was identified retrospec-
tively from the ESLD diagnosis date (Figure 1). The index date
was the observed start of NAFLD/NASH, which was the earliest
diagnosis of either NAFLD/NASH or one of 4 comorbidities
commonly associated with NASH (T2DM, obesity, hyperlipid-
emia, or hypertension) used as proxies for NAFLD/NASH due to
underdiagnosis in the population. For patients with index date
proxies, all had a subsequent diagnosis code for NAFLD/NASH
in their patient record. A 12-month period free of any relevant
diagnosis codes prior to the index date was required. Time of
disease progression (the dependent variable in our analysis)
was established retrospectively as the time between the first
date of diagnosis of cirrhosis and/or HCC and the index date.
Patients were classified into the following cohorts based on
individual time of progression: fast progressors (0.5–3 years),
intermediate progressors (>3–6 years), and standard pro-
gressors (>6 years–10.5 years [limited by end of data source]).
Patients progressing within 0.5 years were not considered part
of any cohort.

Statistical Analysis
Descriptive statistics were used to compare the fast and

standard progressor cohorts by clinical characteristics at index
(data windows by category described below), comorbidity load
at index, and interactions with the health-care system in 3
timeframes (the year after the index date, the year before
cirrhosis/HCC, and year after cirrhosis/HCC). Charlson comor-
bidity index28 was calculated using ICD codes recorded
within �6 months of the patient’s index date. Outpatient,
inpatient, and ER visits for each patient were identified in the
database for each time frame of interest, regardless of the visit
reason, and the proportion of patients with one or more in-
teractions was reported. Differences in means between the 2
cohorts were assessed by t-tests for continuous variables and
differences in distribution by chi-square tests for categorical
variables; the significance threshold was set at 0.05.

Development of a ML Model
The fast and standard progressor cohorts were used for

model development, and the data set was further split into
training (75%) and test (25%) data sets. Independent variables
(features for modeling) were identified from data available
around the index date and included demographics (at index);



Figure 1. Study period and patient identification. Proxies for index date are 4 comorbidities frequently associated with NASH:
type 2 diabetes, obesity, hyperlipidemia, and hypertension.
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average laboratory test result values ( � 3 months); anthro-
pometric measures values (including height, weight, and body
mass index [BMI]; �3 months); frequency of comorbidities
determined by ICD codes (�6 months); treatments for hyper-
lipidemia, hypertension, and T2D (�6 months); and the rate of
change of laboratory values/anthropometric measurements
calculated as the slope of the best fit line for all measurements
from �2 years to þ1 year (see Supplemental Information for
medical coding details). Time frames were determined by
sensitivity analysis, and any data within 6 months of the
earliest date of ESLD were excluded. Individual features used
for modeling were chosen based on prevalence in the popula-
tion (ie, comorbidities occurring in at least 30% of the popu-
lation) or clinical relevance. Features with no statistical
difference between the 2 cohorts were still considered for
modeling because such features could have predictive power in
a model in combination with another feature.

Potential independent variables with >70% missing values
were removed. For features missing �70% values, missing
values were not imputed. Variance thresholds were defined as
the point where further reduction of the threshold resulted in
the loss of key clinical features of interest. Thus, continuous
features with variance <0.1 and categorical features with
variance <0.05 were removed from the analysis. Multi-
collinearity was assessed by evaluating the variance inflation
factor and recursive removal of features with the highest
variance inflation factor value until all values were <5.

Two models, a light gradient boosting model (LightGBM)
and eXtreme Gradient Boosting model (XGBoost), were devel-
oped. Recursive feature elimination (RFE) was used to rank and
select the most important features for a LightGBM29 model to
reduce over-fitting. In RFE, all original features are ranked ac-
cording to importance to the model, and each iteration results
in the (backward) elimination of the weakest feature(s).30 To
determine the best model for each iteration, Bayesian hyper-
parameter optimization of the receiver operator characteristic-
area under the curve (AUC) metric was performed at each step
using 5-fold cross-validation. The XGBoost model was also
trained using the RFE-selected features.

Model Evaluation and Selection
The performance of both models was determined using the

25% of patients reserved for testing and evaluated with
multiple metrics. The LightGBM and XGBoost models were
compared based on key performance criteria, including sensi-
tivity, specificity, precision, accuracy, F1 score, and AUC. AUC is
independent of the cutoff value and was therefore considered
the primary criteria for comparing overall model performance
and model selection. Sensitivity-precision thresholds for each
model were determined by optimizing the F1 score, which in-
dicates the ability of the model to identify true positives (recall)
and the rate of false positives (precision). The performance
stability of the model was checked by determining model per-
formance across 50 different train-test splits. The model was
retrained in each training data set and then tested in each test
data set. In the final model, the relative importance of features
was determined by Shapley Additive exPlanations (SHAP).31

The model interpretation was aided by SHAP and partial
dependence plots. Feature relevance was validated with clinical
experts on the study team.

Statistics to describe differences in model feature values be-
tween the fast and standard progressor cohorts were created as
described above. Statistical applications for data analyses and
model development included Python 3.7.3, Redshift, and Excel.
Results
Identification of Fast vs Standard Progressors

Data from 4013 NAFLD/NASH patients with ESLD
(either cirrhosis or HCC due to NAFLD/NASH; 65% female,
mean age 58.6 � 12.5 at index) were included in the study.
Of 4013 patients, 951 (24%) were classified as fast, 2070
(52%) as intermediate, and 992 (25%) as standard pro-
gressors (Figure 2).

Demographic and Clinical Characteristics of the
Fast vs Standard Progressor Cohorts

Statistically significant differences were observed be-
tween cohorts for 76 of the 148 features considered to train
the model (Table 1). For example, a higher proportion of
patients among the fast progressors had obesity at index
(24% vs 18%, P < .01) and a lower proportion had
hyperlipidemia (49% vs 58%, P < .01) than standard pro-
gressors. No significant differences between cohorts were



Figure 2. Cohort classification of patients based on time of progression from index date to the date of cirrhosis or hepato-
cellular carcinoma (HCC).
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observed at the index date with respect to the proportion of
patients with hypertension (58% vs 56%, P ¼ .35) and
T2DM (43% vs 44%, P ¼ .43). Comorbidity load at the index
date tended to be higher in the fast progressor cohort, with
25% of fast progressors having a Charlson comorbidity in-
dex score >2 vs 12% of standard progressors (Figure A1).
Descriptions of additional comorbidities occurring in at
least 20% of the overall study population can be found in
Supplemental Information.

Of 19 laboratory values, 11 showed statistically signifi-
cant differences between the 2 cohorts at the index date
(Table A2). Four out of 18 laboratory values for which the
rate of change could be calculated showed statistically sig-
nificant differences in the rate of their change between the 2
cohorts in the 2 years before the index date: alkaline
phosphatase total (3.5 u/L/y vs �0.6; P ¼ .01); cholesterol
high-density lipoprotein (�0.5 mg/dL/y vs 0.9; P ¼ .01);
cholesterol total (�6.5 mg/dL/y vs �2.1; P ¼ .04); and
hematocrit (�0.3%/y vs 0.1; P ¼ .04).
Interaction of Fast vs Standard Progressors With
the Health-Care System

We examined the number of patients in each cohort with
annual visits to the health-care system in different settings
and time frames to investigate if both fast and standard
progressors were receiving regular health care. All patients
had at least one health care visit or filled prescription in the
year prior to the index date, as required by the patient se-
lection criteria. Most of the patients from each cohort had at
least one outpatient visit per year in the year after index
([fast vs standard progressors] 95% vs 95%), the year
before cirrhosis (97% vs 99%), and the year after cirrhosis
(97% vs 98%) (Figure A2). Consistent with their higher
comorbidity load, the fast progressor cohort had a higher
percentage of patients with emergency (31% vs 18%) and
inpatient (19% vs 14%) visits compared to standard pro-
gressors in the year after index (Figure A2). In the year
before cirrhosis, fast and standard progressors had similar
ER (39% vs 39%) and inpatient (26% vs 22%) visits
(Figure A2).
Development of a Model to Predict Risk of Fast
Progression to ESLD

LightGBM and XGBoost models were developed as
described (see Methods), with 44 features selected for the
final model (Table 2) from a total of 148 considered
(Supplemental Information). The LightGBM model per-
formed better across a range of metrics (Table 3 and
Figure A3). The LightGBM model resulted in a slightly
higher receiver operator characteristic AUC (LightGBM 0.77
vs XGBoost 0.76) and a higher F1-score (LightGBM 0.74 vs
XGBoost 0.73). The XGBoost model had higher recall than
LightGBM, indicating fewer false negatives, but it also had
more false positives as indicated by the lower precision.
Based on the higher AUC and lower number of false-positive
predictions, the LightGBM model was chosen for subsequent
use and named the NASH FASTmap model. The NASH
FASTmap model correctly predicted 77% (138/180) of fast
progressor cohort patients as fast progressors and correctly
predicted 66% (109/166) of standard progressor cohort
patients as standard progressors (Table 4).

Top model predictors of fast progression included al-
bumin values, BMI, platelet values, rate of change of
alkaline phosphatase, and rate of change of BMI. Statistical
testing indicated that 5 out of the top 10 predictors were
also independent predictors of fast progression: albumin
values (P < .01); platelet values (P < .01); rate of change
of alkaline phosphatase (P ¼ .01); age at index (P < .01)
(Table 5). Amongst these top 10 predictors, SHAP and
partial dependence plots showed that fast progression
prediction increases as the value for platelets, rate of
change of alkaline phosphatase, and age increase and as
the value for albumin value decreases. The other top 10
features had more complex relationships with fast pro-
gression prediction and did not display simple
associations.
Discussion
This retrospective study used a real-world electronic

health record US database to develop and validate the NASH



Table 1. Demographic and Baseline Characteristics of the Study Cohort

Characteristics
Total

(n ¼ 4013)
Fast progressors
(n ¼ 951) [A]

Standard progressors
(n ¼ 992) [B]

P value
[A vs B]

Age, mean (SD)
At index date 58.6 (12.5) 59.5 (13.6) 57.2 (11.6) <.01
At cirrhosis/HCC date 63.1 (12.5) 61.4 (13.6) 64.5 (11.6) <.01

Gender
Female 65% 67% 64% .22
Male 35% 33% 36%

Race
African American 4% 3% 4% .01
Asian 1% 1% 1%
Caucasian 90% 89% 92%
Other/Unknown 5% 7% 4%

Ethnicity .41
Not Hispanic 91% 90% 92%
Hispanic 6% 7% 6%
Unknown 3% 3% 2%

Measurements, mean (SD)
BMI, kg/m2 35.0 (7.3) 34.6 (7.3) 35.0 (7.3) .29
Height, cm 167.6 (9.4) 167.5 (9.1) 168.3 (9.8) .15
Weight, kg 98.3 (22.3) 96.5 (21.8) 99.1 (22.1) .02

Comorbidities
Hyperlipidemia 55% 49% 58% <.01
Hypertension 59% 58% 56% .35
Obesity 22% 24% 18% <.01
Type 2 diabetes 43% 43% 44% .43

Data are presented as mean (SD) or n/N (%).
SD, standard deviation.
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FASTmap ML model, which can predict the risk of fast
progression in NAFLD/NASH patients. NASH FASTmap
comprises 44 features (demographics, laboratory, and
clinical characteristics commonly captured in clinical
Table 2. Summary of Features in the Final Model

Categorya
Numbe

fin

Demographics

Results of laboratory tests at index datea

Body size measurements at index date

Frequency of comorbid diagnosesa

Treatment at index date

Frequency of health care

Rate of change of laboratory test results before
the index date8 (magnitude of change in a year)

Rate of change in body size before the index date
(magnitude of change in a year)

Index date diagnosis

HDL, high-density lipoprotein; NA, not applicable.
aOnly the main features having high predictive importance are
practice) at the time of the earliest evidence of NAFLD to
predict the future course of the disease. A gene-based ML
model to predict the risk of fast fibrosis progression in
liver disease has been previously reported,25 but to our
r of features in
al model

Features in top 10 of predictive
importance

1 Age at index date

15 Albumin at index date
Platelet count at index date
HDL cholesterol at index date

3 BMI at index date
Height at index date
Weight at index date

6 Frequency of anxiety diagnoses

1 NA

1 NA

14 Rate of change of alkaline phosphatase
total (�2 to þ1 y relative to index)

2 Rate of change of BMI (�2 to þ1 y
relative to index)

1 NA

listed in the table.



Table 3. Comparison of Performance Metrics for LightGBM
and XGBoost Models

Variable LightGBM XGBoost

AUC 0.77 0.76

F1-score 0.74 0.73

Accuracy 0.71 0.67

Precision 0.71 0.63

Recall 0.77 0.88

Thresholds for each model were chosen to maximize F1-
score.

Table 4. Confusion Matrix for Modeling Cohort Test Data
With LightGBM Model

Progression class
by clinical data

Progression class by model prediction

Fast Standard Total

Fast 138 (77) 42 (23) 180 (100)

Standard 57 (34) 109 (66) 166 (100)

Total 195 151 346

Data presented as n (%).
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knowledge, NASH FASTmap is the first ML model devel-
oped to predict the risk of fast progression in NAFLD
patients using variables collected in standard clinical
care. Potential use cases for NASH FASTmap include
support for clinical decision-making by providers and
patients as well as intensified monitoring for those at
highest risk.

The effectiveness of ML-based prediction is always
impacted by the quality of data used for training and
testing. NAFLD and NASH are underdiagnosed, and some
patients in our fast progressor cohort may have been
diagnosed late in the course of the disease rather than
progressing rapidly. To minimize this possibility, proxy
comorbid conditions were used to help identify the
earliest evidence of disease. All patients had regular
health-care interactions in the year prior to the
index date, and the only clear difference in health-care
system interactions between the fast and standard pro-
gressor cohorts was a higher percentage of fast pro-
gressor patients with ER and inpatient visits. This
suggests that patients in both cohorts had similar access
to the health-care system and that the fast progressor
cohort was not simply patients failing to receive adequate
health care. The NASH FASTmap model was trained and
tested using patient health records from the same data
set. Future validation on other data sets is needed to
support the use of the model, including data on patients
in a range of geographic regions and different ethnicities,
since this study used a single US patient health record
database to both train and test the NASH FASTmap
model.

In an ML model such as NASH FASTmap, the combi-
nation of a large number of features as well as potential
interactions among features are considered by the model,
giving it an advantage over simple clinical comparisons.
Clinical characteristics including BMI, comorbid condi-
tions commonly linked to the pathophysiology of NAFLD/
NASH, and laboratory test values for liver function have
previously been demonstrated to be individually associ-
ated with progression to later stages of NAFLD/NASH
although not the rate of progression.18,32,33 All were
among the features with the highest predictive impor-
tance for the risk of fast progression in the NASH FAST-
map model. Consistent with the ability of ML models to
consider features in combination, not all NASH FASTmap
features with predictive importance displayed statisti-
cally significant differences in individual comparisons
between the fast and standard progression cohorts.
Lower platelet counts, lower serum albumin, and higher
aspartate aminotransferase levels had high predictive
power in NASH FASTmap and statistically significant
differences for the fast and standard progressor cohorts
(Table 5). In contrast, BMI and glycated hemoglobin
lacked a significant difference between the fast and
standard progressor cohorts at the time of risk prediction
despite their high predictive value (Table 5). Fast pro-
gressors also did not have higher rates of T2D or common
comorbid conditions such as hypertension and hyperlip-
idemia (Table 1).

NAFLD/NASH is among the leading indications for
liver transplantation34 and currently accounts for about
USD 15.4 billion in health care spending annually in the
United States.35 As the prevalence of NASH is rising,36

predicting the subset of patients at high risk of fast
progression to cirrhosis/HCC can have important eco-
nomic and clinical implications. NASH FASTmap has the
potential to support clinicians and health-care organiza-
tions to identify at-risk patients using commonly avail-
able clinical data without costly advanced diagnostics
tools, particularly in the setting of remote geographic
locations or resource-poor economies. Health-care pro-
viders would be able to refer their at-risk patients for
early clinical decisions and optimization of treatment,
enrollment in clinical trials, and determination of an
appropriate follow-up schedule to mitigate disease
progression.37
Conclusion
This study reported the development of an ML model

that can identify NAFLD/NASH patients at risk of future
fast progression to cirrhosis/HCC based on commonly
available medical records. Early identification of fast
progressors can support clinicians and health-care sys-
tems for optimal disease management in this patient
population. Future research to support the use of the
model should include validation in other data sets,
including patients in a range of geographic regions and
different ethnicities.



Table 5. Differences Between Fast and Standard Progressors Based on Top Model Features

Predictive importance Feature (at index date)

Fast progressor,
mean (SD)
n ¼ 951

Standard progressor,
mean (SD)
n ¼ 992 P value

1 Albumin (g/dL) 3.9 (0.5) 4.1 (0.4) <.01

2 BMI 34.6 (7.3) 35.0 (7.3) .29

3 Platelets (�103/mL) 198.5 (78.3) 222.2 (68) <.01

4 Rate of changea of alkaline phosphatase total 3.5 (31.7) �0.644 (19.5) .01

5 Rate of changea of BMI �0.018 (2.6) 0.103 (0.16) .39

6 HDL (mg/dL) 44.4 (14.3) 43 (12.2) .15

7 Height (cm) 167.5 (9.1) 168.3 (9.8) .15

8 No. of anxiety diagnoses 0.8 (3.3) 0.2 (0.8) <.01

9 Weight (kg) 96.5 (21.8) 99.1 (22.1) .02

10 Age 59.5 (13.6) 57.2 (11.6) <.01

11 Triglycerides (mg/dL) 161.4 (91.0) 179.1 (91.5) .01

15 AST (U/L) 46.5 (29.8) 39.9 (23.5) <.01

16 AST/ALT 1.1 (0.4) 1 (0.4) <.01

20 HbA1C (%) 7.0 (1.5) 7.0 (1.3) .96

23 ALP (U/L) 100.4 (45.8) 87.6 (36.7) <.01

24 LDL (mg/dL) 96.3 (33.8) 102.1 (33.8) .02

38 Rate of change of AST 0.999 (23.1) �0.022 (20.6) .46

42 Rate of change of ALT �0.207 (23.8) �1.808 (24.1) .28

ALP, alkaline phosphatase; ALT, alanine aminotransferase; AST, aspartate aminotransferase; HbA1C, glycated hemoglobin;
HDL, high-density lipoprotein; LDL, low-density lipoprotein.
aRate of change measurements collected between �2 and þ1 y relative to the index date.
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Supplementary Materials
Material associated with this article can be found in the

online version at https://doi.org/10.1016/j.gastha.2023.09.
004.
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