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Abstract

Background: Understanding the long-term behavior of intracortically-recorded signals is essential for improving
the performance of Brain Computer Interfaces. However, few studies have systematically investigated chronic neural
recordings from an implanted microelectrode array in the human brain.

Methods: In this study, we show the applicability of wavelet decomposition method to extract and demonstrate
the utility of long-term stable features in neural signals obtained from a microelectrode array implanted in the motor
cortex of a human with tetraplegia. Wavelet decomposition was applied to the raw voltage data to generate mean
wavelet power (MWP) features, which were further divided into three sub-frequency bands, low-frequency MWP
(I-MWP, 0-234 Hz), mid-frequency MWP (mF~MWP, 234 Hz-3.75 kHz) and high-frequency MWP (h-MWP, >3.75 kHz).
We analyzed these features using data collected from two experiments that were repeated over the course of about
3 years and compared their signal stability and decoding performance with the more standard threshold crossings,
local field potentials (LFP), multi-unit activity (MUA) features obtained from the raw voltage recordings.

Results: All neural features could stably track neural information for over 3 years post-implantation and were less
prone to signal degradation compared to threshold crossings. Furthermore, when used as an input to support vector
machine based decoding algorithms, the mMWP and MUA demonstrated significantly better performance, respectively,
in classifying imagined motor tasks than using the =MWP, h-MWP, LFP, or threshold crossings.

Conclusions: Our results suggest that using MWP features in the appropriate frequency bands can provide an effective
neural feature for brain computer interface intended for chronic applications.

Trial registration: This study was approved by the US. Food and Drug Administration (Investigational Device Exemption)
and the Ohio State University Medical Center Institutional Review Board (Columbus, Ohio). The study conformed to
institutional requirements for the conduct of human subjects and was filed on ClinicalTrials.gov (Identifier NCT01997125).
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Background
Brain Computer Interfaces (BCls) provide a window to the
brain and can help to establish a communication port to
nervous system to monitor and record neural activity. Over
the last decade, tremendous progress has been made in the
development of BCI technology for leveraging intracorti-
cally recorded signals for controlling neuroprosthetics. Sev-
eral groups have demonstrated that intracortically-recorded
signals can be decoded to extract information related to
imagined movements, allowing non-human primates and
paralyzed humans to control computers, electronic
wheelchairs, and robotic arms (Kennedy and Bakay 1998;
Chapin et al. 1999; Serruya et al. 2002; Hochberg et al.
2006). In addition, these types of signals have also been
used to drive activation of either chemically paralyzed arm
muscles in non-human primates (Moritz et al. 2008;
Ethier et al. 2012) or, as was recently shown, the paralyzed
muscles of a human with tetraplegia to restore hand or
arm movements (Bouton et al. 2016; Ajiboye et al. 2017).
A typical BCI-controlled neuroprosthetic system con-
sists of recorded neural signals, a decoding method that
translates these signals into control signals, and an
effector such as a computer cursor, virtual keyboard,
robotic arm or a functional electrical stimulation (FES)
system that converts these commands into actions (Kim
et al. 2011; Collinger et al. 2013; Jarosiewicz et al. 2015;
Sussillo et al. 2016; Ajiboye et al. 2017). For intracortical
BClIs, neural signals are recorded directly from within
the motor cortex by a surgically implanted multi elec-
trode array (MEA) (Gilja et al. 2011). However, there is
no consensus on the optimal selection of neural features
extracted from the intracortically-recorded signals.
There are several candidate signals that can be obtained
from MEAs and used for controlling neuroprosthetics,
namely, local field potential (LFP), multi-unit activity
(MUA), single-unit activity (SUA) and threshold cross-
ings (Andersen et al. 2004; Bansal et al. 2012). SUA is
correlated to the activity of spiking neurons and can
provide excellent spatial and temporal resolution, and is
known to have long term stability issues possibly due to
neuronal cell death in the immediate vicinity of the elec-
trode tip as well as biological responses at the electrode
tissue interface and electrode micromotion (Rousche
and Normann 1998; Williams et al. 1999; Freire et al.
2011). In contrast, LFP activity can be more stable over
time as it represents a summation of the synaptic poten-
tials of hundreds to thousands of neurons (Scherberger
et al. 2005; Scheid et al. 2013), but suffers from poor
spatial resolution as multiple electrodes recording from
the same neurons can pick up highly correlated signals
(Stark and Abeles 2007). In contrast, MUA represents an
aggregated spiking activity of a population of neurons on
the order of several hundred microns away from the
electrode tip and can be estimated without explicit spike
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detection (Stark and Abeles 2007). Previous animal studies
have provided strong evidence that MUA, or signals in
similar frequency range, can provide a long-term stable
signal for use in BCI-controlled systems (Chestek et al.
2011; Flint et al. 2013; Sharma et al. 2015). Currently, the
most commonly used method to extract MUA signal from
intracortical recording is to use threshold crossing (TC)
that relies of setting an arbitrary threshold and band-pass
filtering to isolate signal from noise (Ethier et al. 2012;
Collinger et al. 2013; Ajiboye et al. 2017).

In this study, we present details of a semi-automated
feature extraction method that uses wavelet decompos-
ition to generate neural features that we call Mean
Wavelet Power (MWP). Wavelet decomposition is a sig-
nal processing technique that can provide both fre-
quency and temporal information in a data and does not
require any user defined cut-off threshold and/or (Borst
and Theunissen 1999; Shalchyan et al. 2012). We applied
wavelet decomposition on the raw cortical data obtained
over a 3-year period from a MEA implanted in the
motor cortex of a human with tetraplegia. This data pro-
cessing technique helped us reduce the scale of the data
from ~ 3 million voltage recordings from the MEA per
second to 960 MWP features per second (with 96
features each 100 ms as the processing step was 100 ms,
one feature for each channel of the array each 100 ms).
To aid in analysis we further characterized the MWP
features into three frequency bins namely the low fre-
quency (IfFMWP 0-234 Hz), mid-frequency (mf-MWP,
234 Hz-3.75 kHz) and high-frequency (#-MWDP,
>3.75 kHz). We first showed that the mf-MWP and
MUA features are not only more stable over time but
also encode higher information (i.e. correlation with vir-
tual stimulus) compared to other neural features. We also
showed that, when used as inputs to a Support Vector
Machine (SVM)-based decoding algorithm, the mf-MWP
and MUA features can result in high (>90%) classification
accuracy for imagined individual hand movements, re-
spectively. The SVM decoders when retrained with using
mf-MWP and MUA features were also able to maintain
the high overall accuracy over time, respectively. Overall,
our results indicate that wavelet decomposition can be a
viable alternative to MUA, spike or TC based neural
feature extraction methods and that mf-MWP based
neural features can be an optimal signal for BCI decoding
- it provides another robust signal for chronic applications
and contains sufficient motor information to accurately
decode intended movements in a paralyzed human.

Methods

The study participant sustained complete, non-spastic
quadriplegia following a traumatic spinal cord injury
(SCI) occurring 4 years prior to the beginning of the
study. The participant’s International Standards for
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Neurological Classification of SCI neurologic level is
C5 AIS A (motor complete) with zone of partial pres-
ervation to C6. He had full bilateral elbow flexion
(grade 5/5), active wrist extension with radial devi-
ation through an incomplete range of motion against
gravity (grade 2/5), but no motor function below the
level of C6. His sensory level is C5 on the right and C6 on
the left. For more details on the participant’s injury level,
please refer to Bouton et al. where his use of the BCI-FES
system was first reported (Bouton et al. 2016).

Experimental system and design

A Utah MEA with 1.5 mm electrodes (Blackrock Micro-
systems, Inc., Salt Lake City, Utah, United States) was
implanted into the hand region of the participant’s pri-
mary motor cortex in the left hemisphere. After a
1-month recovery period of the surgery for the micro-
electrode array, the participant started involved in the
study and was cued by a virtual hand on a computer
monitor to imagine different hand movements. Intracor-
tical signals recorded by the MEA were then digitized by
a NeuroPort™ (Blackrock Microsystems, Inc). A 0.3 Hz
first-order high-pass and a 7.5 kHz third-order low-pass
Butterworth analogue hardware filter were applied to the
data, and each of the 96 channels of the MEA were sam-
pled at a rate of 30,000 samples per second. The digi-
tized data were then transmitted to a personal computer
where it was processed in 100 ms bins, and subsequently
used to train the neural decoder (see Signal Recording,
Processing and Classification section below.) For daily
impedance testing, the patient cable sends a 10 nA
current at 1 kHz to the electrodes.

Task conditions

The participant performed two distinct motor imaginary
tasks at regularly spaced intervals, designated Taskl and
Task2, throughout the study. In both tasks, the partici-
pant was cued by different hand-wrist movements from
a virtual hand on a monitor (Fig. 1a). For Taskl, a single
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trial of the experiment, referred to as a block, consisted
of cues directing the participant to imagine hand open
and hand close. There were five random repetitions of
each individual movement per block and an entire block
lasted about 98 s. Task2 was similar, except the partici-
pant was cued to imagine four movements: wrist flexion,
wrist extension, index finger flexion and index finger
extension. There were four random repetitions of each
individual movement per block and each block lasted
about 140 s. The participant completed two blocks per
task per session. For both tasks, there was a rest period
at the beginning of each block (6.5 s for Taskl and 4.5 s
for Task2), followed by movement cues (duration 2.5 s)
presented in a random order and separated by rest
periods (6.5 s for Taskl and 4 s for Task2) (Fig. 1b). The
participant was not given any feedback (visual or elec-
trical stimulation feedback) as he attempted these move-
ments. Not like our previous study showing online
control using collected brain data (Bouton et al. 2016),
the data collected in this study was from a different set
of experiments in which the data was only used for
off-line analysis to train a decoder and then evaluate
decoding performance. During off-line analysis, the first
block data within each task in each session was used to
train a decoder, and the second block of data was used
for testing the decoder prediction.

Each imaginary movement in Taskl was conducted
900 times in a total of 180 blocks over 90 different days
throughout the course of 720 days post-implantation.
Similarly, each imaginary movement in Task2 was con-
ducted 1040 times in a total of 260 blocks over 130
different days over 3 years post-implantation.

Signal recoding, processing and classification

Neural signals were obtained via the Utah MEA and the
Neuroport™ data acquisition system. Neural data were
recorded and sampled at 30 kHz. All signal processing
and decoding algorithms were run on a PC using

Task2 Task 1

Fig. 1 a System setup. The participant was seated in front of a computer monitor, where imaginary movements provided to him via a virtual
hand at rest condition at the lower left corner on the screen. b Experimental timeline for a single block. Here, it shows a block for Task 1 and 2,
respectively. In Task1, there was only two hand movements, hand opening and hand closing. While in Task2 there were four cued hand movements
within each block. In between the blocks within each task, there was usually a 2-3 min break
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MATLAB (Release 2014a, The MathWorks, Inc., Natick,
Massachusetts, United States).

Impedance, signal-to-noise ratio and threshold crossings
measurements

At the beginning of a session, the impedance of each elec-
trode was measured at 1 kHz using Blackrock’s Impedance
Tester. To compute the signal-to-noise (SNR), raw voltage
recordings were first passed through a 250 Hz high pass
filter. The root-mean-square (RMS) value of the noise
(defined by the Blackrock Microsystems, Inc.) was then
calculated from the filtered voltage traces. Next, a thresh-
old of - 4.5 times the RMS of the noise was set to detect
TCs in the voltage recording (see method b in Fig. 2)
(Hochberg et al. 2012; Jin et al. 2015). The SNR for a sin-

gle channel was then calculated every 2 s according to the
Signal

equation, SNR = 20 x log,,=*= Noise, where signal was
the average peak-to-peak value (Hochberg et al. 2006) of
the detected TCs within each two-second time window,
and noise was the average RMS noise value of all 20-ms
time windows within each two-second interval. The SNR,
peak to peak value of TCs and RMS noise value for a day,
were the mean of SNRs, peak to peak values, RMS noise
values across all channels for all 2-s time windows re-

corded that day, respectively.
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To generate TCs features for decoding, the total num-
ber of TCs were detected every 100 ms from the raw
data to generate a TCs time series (Step 3 in Fig. 2). The
TCs time series was then smoothed by applying a 1-s
moving average, a 15-s baseline subtraction throughout
the entire length of the time, and then standardized to
generate TCs features (Step 4 in Fig. 2).

Wavelet decomposition and mean wavelet power
Mean wavelet power (MWP) features were computed as
follows:

1) For each channel, every 100 ms of the raw voltage
recording was first decomposed into 11 wavelet
scales (Table 1) using the ‘db4’ mother wavelet
(Farina et al. 2007). Wavelet processing was
performed as described in previous study to obtain
a set of wavelet coefficients (also see method a in
Fig. 2) (Friedenberg et al. 2016).

2) In every 100 ms bin for each channel, the mean of
the absolute coefficients for each wavelet scale was
calculated to generate a mean coefficients time
series for that particular channel (Step 3 in Fig. 2).

3) The mean coefficient series for each scale was then
smoothed over time by applying a 1-s moving
average and casual filter (average given data points

Step 1 Step 2 Step 3 Step 4
. . s . . Average the signal over
Signal processing within every 100-ms time window / 10025 tiffie Windowe
Wavelet signals Absolute coefficients ‘_\esfo( Average across MWP
of 11 scales of 11 scales Lroe 58 selected scales features
JIPTaL
<O i W"i‘ — (,oe«‘c\e“:c\'\ (A For each scale
o i [Wavelet e ) 1s 155
a@e‘e > dpmmpositionwm ulil moving |y baseline minus mean
\10\‘ into 11 scales v ol average| subtraction and divide
| Mm it by STD of
5 o block 1 data
¥ Standardization
b :Iitgh‘-pass Threshold > > - fTCi
5, |Nlitering crossin eatures
7| (cut-off at ™ at ,4_59 > o
Y 100 ms 250 Hz) RMS
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Fig. 2 Processing of raw signal into different neural features. Step 1: A 100 ms section of neural signal was selected from a larger raw voltage
recording. Step 2: Conduct signal processing for this 100 ms raw signal. In method a), raw signal was decomposed into 11 wavelet scales to get
the rectified wavelet coefficients of each scale; In method b), a high-pass filter and threshold of - 4.5 times of the RMS value was applied to
detect the TCs within this 100 ms section of raw signal; In method c), a low pass filter was applied to get LFP of the raw signal; In method d),
band pass filter and customized RMS values were calculated to get MUA of the raw signal. Step 3: The processed signal within this time window
were then averaged over this 100 ms, respectively, to compose the related one data point in the averaged larger time series of an entire block.
Step 4: Signal smoothing and standardization. To generate MWP feature time series, a 1-s moving average and a 15-s wide mean subtraction
were applied to this averaged time series of the entire block. Afterwards, the processed time series were standardized and averaged accordingly
across selected scales to produce a new time series for each channel. To generate other feature time series, the processed signal after Step 3 was
applied 1-s moving average, a 15-s mean subtraction and standardization, sequentially (Please refer to the Methods section for more details)
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Table 1 Wavelet scales and frequency bands for neural features

Wavelet Frequency Neural Frequency range
scale sub-bands (Hz) features

1 7500-15,000 hf-MWP (Scales 1-2)

2 3750-7500 > 375 Kz

3 1875-3750 TCs N/A (see Methods)
4 938-1875

5 469-938 mF-MWP (Scales 3-6)

5 934469 234 Hz - 3.75 KHz
7 117-234 MUA 300 Hz-6 KHz

8 59-117

9 29-59 IF-MWP (Scales 7-11)

10 1529 0-234 Hz

11 0-15 LFP 0to 100 Hz

before and including the current timestamp),
throughout the entire time series.

4) Baseline drift was removed from the processed
series within each scale by subtracting the mean
value of the processed data in every 15-s time
window, throughout the entire length of the time
series. This procedure generated the processed
mean coefficients time series of each wavelet scale
for each channel.

5) a. At the end of block 1, the processed mean
coefficients time series (obtained from above) for
each wavelet scale were standardized by subtracting
the mean and dividing by the standard deviation of
each scale of block 1, respectively (Step 4 in Fig. 2).
The selected scales were then averaged over each
channel to generate 96 MWP features that were
used as inputs to train an SVM decoder.

b. During block 2 of the experiment the processed
mean coefficients time series obtained from 4) were
then standardized per channel by subtracting the
mean and dividing by the standard deviation of the
block 1 data (the training data) within each scale.
Then, the selected scales were averaged over each
channel to generate 96 MWP features (testing data)
as input to the decoder.

The 11 resulting scales of the standardized MWP
coefficients were further classified into three sub-bands
(Table 1) based on the selected power spectrum frequency
ranges: high-frequency #f-MWP band (>3.75 kHz, scales:
1-2), with frequency range which overlaps the
higher-frequency part of MUA and other high frequency
signals (Stark and Abeles 2007; Perel et al. 2015);
mid-frequency mf~-MWP band (234 Hz — 3.75 kHz, scales:
3-6), with frequency range which overlaps the frequency
range of MUA (Stark and Abeles 2007; Perel et al. 2015);
low-frequency I[fFMWP band (0-234 Hz, scales: 7-11),
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with frequency range that overlaps the LFP signals
mentioned in other studies (Bansal et al. 2011; Perel
et al. 2015).

Signal processing steps for MUA, LFP features, and tracking
signal quality

To generate LFP features for decoding, in every 100 ms
from the raw data, a 3rd order Butterworth low pass filter
with cut off frequency at 100 Hz was applied (method ¢ in
Fig. 2). Then, the low-pass filtered signal was averaged
over every 100 ms time window to generate the LFP time
series. The time series was later processed by a 1-s moving
average, a 15-s baseline subtraction and then standardized
to generate the LFP features (Fig. 2). To generate MUA
features, the raw signal was first bandpass filtered from
300 to 6000 Hz, then the customized RMS values were
calculated to generate MUA signal within each 100 ms
(Stark and Abeles 2007). Then, the 100-ms MUA signal
was averaged across the time window and processed using
the same processing steps listed above to generate MUA
features (method d in Fig. 2).

To track the chronic neural signal stability over time,
the neural signals were processed as follows: After get-
ting the time series in Step 3 shown in Fig. 2, the abso-
lute value of each neural signal time series is averaged
over the entire recording time for a block of data to esti-
mate mean strength of the signal for each channel. The
mean strength of the signal is then averaged within a
block for all channels, and then averaged over two
blocks of data for a task to get an estimated strength of
a signal for that experimental day. This calculation is re-
peated for all the experimental days for each signal type
to generate a time series to indicate the signal strength
over the course of the study. The values in the time
series was then normalized relative to the first experi-
mental day, first data point in its series, and is therefore
scaled between 0 and 1 (as data shown in Fig. 5).

Neural signal classification

We used a nonlinear SVM with a Gaussian radial basis
function, based on the open source library LIBSVM
(Chang and Lin 2011), to train and classify intended
movements when using the neural features as input. SVM
based decoder have been shown to be one of the best per-
forming and robust machine learning algorithms across a
wide variety of datasets and fields (Fernandez-Delgado et
al. 2014). In the study presented here, an individual de-
coder was retrained on every session day for each tested
movement. These decoders were trained using features
obtained from block 1 data of each task. The output of
each decoder was scaled to be between - 1 and 1. The de-
coder with the highest output score above zero was
treated as the output to indicate the predicted movement
for that time point. Once trained, the performance of the
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decoder (s) was assessed using the data from the second
experimental block. Individual movement accuracy and
overall accuracy was calculated by dividing the total num-
ber of correct predictions by the total number of predic-
tions for each movement and all movements in a task,
respectively. Sensitivity for each individual movement was
calculated as the ratio of correct positive predictions di-
vided by the total number of cues for each movement.
Specificity for each individual movement was calculated as
the ratio of correct positive predictions for rest while the
movement is not cued.

Calculation for spatial and temporal correlation
To investigate the effect of interelectrode distance on sig-
nal correlation, we calculated the correlation values be-
tween two possible selected channels. For a given neural
feature, any two possible recording channels were selected
spatially within the recording array as shown in previous
study (Sharma et al. 2015). The correlation values between
these paired channels were calculated using Pearson cor-
relation, and then the absolute Pearson correlation values
were arranged based on the inter-electrode distances.
To calculate the temporal correlation between neural
features, absolute Pearson correlation values of any two
given types of neural features from the same channel
was calculated to get inter-signal correlation. Then, this
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process was repeated for all 96 channels to get an aver-
age correlation value of a day. The same calculation was
repeated across all the investigation days to generate a
temporal correlation time series for the two selected
neural features (Additional file 1: Figure S1). To generate
the average inter-signal correlation matrix as shown in
Fig. 7, the temporal inter-signal correlation time series
were averaged for each paired signal.

All statistical analysis in this manuscript were con-
ducted using one-way analysis of variance (ANOVA) to
determine whether there is any statistically significant
difference between given groups of time series.

Results

Chronic intracortical recording quality

To assess the quality of raw neural signals obtained from
the implanted MEA, we first evaluated change in imped-
ance and SNR values over the course of the data collec-
tion period. Average impedance of the electrodes in the
MEA declined to approximately 20% of its initial value
by day 1220 post-implantation (from 681.48 +292.8 kQ)
to 140.30 + 42.19 kQ). Much of this decrease in imped-
ance was during the first 400 days of the study, and the
decrease was relatively small thereafter (Fig. 3a). As a
quantitative measure of the reliability of the neural signals,
we also analyzed the SNR of the recordings over the
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course of the study. SNR value dropped about 4% from an
initial average of 1858 +0.17 dB to 16.94+0.75 dB.
Opverall, the SNR was 18.28 + 0.25 dB over the course of
the study (Fig. 3). This drop was also observed in the
peak-to-peak value of the detected TCs and RMS noise of
the raw recordings.

The mf-MWP and MUA features have the clearest
modulation by the virtual stimulus

The heatmap in Fig. 4 shows the modulation of each
type of the processed neural feature with respect to the
cue (virtual stimulus). It is clear that all neural features
show some degree of time-locked modulation with the
cue. For the MWP-based features the mf~-MWP feature
appears to have a strong time-locked modulation com-
pared to other MWP features.

Using normalized signal strength as a measure of neural
signal stability

To further investigate whether neural signal quality
changed over time, we calculated the signal strength for
all the types of neural features for each MEA channel
over the course of the study (See Methods). All the fea-
tures were calculated from the data collected during the
time when the participant performed these two tasks.
We observed an initial decline in the mf-MWP, hf-MWP,
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and MUA signal strength over the first 300 to 400 days
post-implantation, after which the neural features were
relatively stable throughout the rest of the study (Fig. 5).
The [fFMWP and LFP signal strength decreased slightly
over the first 200 days post-implantation and remained
relatively stable thereafter. Among these signals, the
[FMWP and LFP tend to have higher average normalized
signal strength for both tasks, while TCs signal has the
lowest average signal strength and also biggest change in
signal stability over time (Fig. 5, also see Table 2).

Inter-channel distance affects the level of correlation
between two channels of signals

We also calculated the signal correlation between two
given channels for each type of neural features and investi-
gated how the correlation changes with inter-channel dis-
tance. Our results show that, in general, there was a clear
trend of decreasing correlation values as the inter-channel
distance increases across all types of neural features
(Fig. 6). For example, on day 87 post-implantation,
IFMWP features has average overall correlation values of
0.59 £0.01 and 0.13 £0.031 at inter-channel distance of
0.4 and 4.56 mm, respectively. Overall, the TCs features
showed has the lowest inter-channel correlation, with
values from 0.13 £ 0.01 to 0.05 + 0.015 at 0.4 and 4.56 mm
respectively, while the LFP feature showed the highest

Standardized MWP

||
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Channel Number

Standardized LFP
I
: -3 0 3

Standardized MUA
i-25 0 2.5

Fig. 4 Brain signal modulated by the presentation of cues during Task 2. A representative snapshot of neural modulation as the participant imagined
the cued hand movements during Task 2. Heat maps show IFMWP, m-MWP, h-MWP, LFP and MUA features, and raster plot of TCs from raw recordings,
respectively. Each time point is 100 ms. For TCs, each data point represents the total number of detected TCs within 100 ms
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with most of their confidence interval ranges overlap with each other. In a longer study in Task 2, similar signal stability was observed overall,
while TCs signal showed a more gradual decline after 800 days post-implantation. The band in each time series shows the range of its 95%

overall inter-channel correlation where the correlation
values decreased from 091+0.00 to 0.67+0.02 at
inter-channel distance of 0.4 and 4.56 mm, respectively
(Fig. 6).

The mf-MWP and MUA features showed a high level of
temporal correlation

We next investigated how different types of features corre-
lated with each other over the course of the entire study.
Any two possible combination among the six types of
neural features were selected and computed to get average
inter-signal correlation for each session day (see Methods).
Among all the paired neural features, mf-MWP and MUA
has the highest level of inter-signal correlation, with an
average value of 0.83 +0.19 over the course of the study
(Fig. 7, also Additional file 1: Figure S1).

Classification performance is highest when using mf~-MWP
and MUA as input to the decoders

We next investigated which neural feature has the rich-
est information about the cue by looking at which neural
feature could result in the most accurate decoding

Table 2 Signal strength decline in normalized features at the
end of investigation (compared to their initial values)

Task 1 (% in decline) Task 2 (% in decline)

m-MWP 40.16% 32.93%
hf-MWP 47.26% 38.82%
IFMWP 11.25% =7.17%
MUA 41.02% 32.01%
TCs 44.11% 74.75%
LFP 6.81% —2.00%

Negative value in decline means the signal strength increased

performance. We calculated the accuracy, sensitivity and
specificity of decoding discrete imagined hand move-
ments in Tasks 1 and 2 when each neural feature was
used as inputs to the decoders. Overall, using mf-MWP
or MUA as the decoder input resulted in consistently
highest accuracy. For mf-MWP the average decoder ac-
curacy was 91.05+2.79% and 83.97 £3.99% for Taskl
and Task2, respectively, while for MUA the average
overall accuracy was 91.06 + 6.14% and 89.44 + 4.96% for
Task 1 and Task 2, respectively (Fig. 8a, b and Table 3).
Statistical analysis indicates that there is no difference
between the two groups of overall accuracy in each task.
Our further analysis also indicates that using MWP fea-
tures with frequency ranges covering 234 Hz — 3.75 KHz
(from scales 3 to 6) enables the best overall decoding ac-
curacy with average value around 85% in Task2, while
using MWP features more outside this frequency range
could induce significant decrease in decoding perform-
ance (Additional file 2: Figure S2).

The individual accuracy for each discrete hand move-
ment, when using mf-MWP and MUA as input, was al-
ways >93% within each task (Table 4). The overall
accuracy metric is lower than the individual accuracy
metrics because the overall accuracy accumulates errors
across all the individual movements. The difference in
decoding accuracy between mf-MWP, MUA and other
neural features was even more pronounced when the
participant performed Task2, which included four differ-
ent discrete hand movements (compared to two move-
ments in Taskl).

Similarly, using mf-MWP or MUA as decoder input
also resulted in higher sensitivity when compared to
when [-MWP, if-MWP, TCs or LEP features were used
as decoder inputs. (Table 5). Finally, using mf-MWP and
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correlation from 0 to 1 and x-axis shows the inter-elelctrode distance in mm. A data point represents the correlation value of two selected channels for
a particular type of neural features time series. The solid line represents a 3rd polynomial fit of the data and dashed lines indicate its 95% confidence
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Fig. 7 Averaged inter-signal correlation matrix. Inter-signal temporal
correlation time series were averaged to give an overall correlation
value for a given paired signal over the course of the study for Task 2
(For more details, please refer to Methods section and also Additional
file 1: Figure S1). In general, MUA and m~MWP features showed a very
high level of correlation, with an average correlation value of 0.87 +0.19,
compared to other paired neural features

MUA, respectively as decoder input resulted in higher
specificity than the other neural features were used
(Table 6). Overall, using mf~-MWP or MUA feature as in-
put to this SVM based decoder resulted in better decod-
ing performance in classifying discrete imagined hand
movements compared to other neural features.

Discussion

In this study, we analyzed the chronic signal stability
and decoding accuracy of different types of neural fea-
tures extracted from a 96-channel MEA implanted in
the motor cortex of a paralyzed human. The main find-
ings of this paper are: 1) Electrophysiological signals are
detectable from the MEA and remain highly useful for
more than 3 years post-implantation; 2) Neural feature
engineering using wavelet decomposition to extract
MWP can provide a reliable method to analyze the spec-
tral and temporal evolution of the brain signals, and, 3)
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decoders, compared to those using I-MWP, h--MWP, LFP or TCs features as decoder input. Each error bar shows the standard deviation of the

Among the MWP-based neural features, mf-MWP ap-
pears to be the optimal signal for decoding imagined
hand movements — it not only was robust over time but
also resulted in the best decoding performance that was
comparable to the performance of the other commonly
used MUA feature.

During the study, there was a decline in electrode im-
pedance, primarily occurring during the first 400 days of
study, and on day 416 the average impedance dropped
from 681.48 +292.8 kQ) to 327.29 + 103.31 kQ (Fig. 3a).
The observed trend is consistent with previous reports
where a gradual decrease in electrode impedance over
time (Barrese et al. 2013; Perge et al. 2014). TCs based
SNR was also measured over the course of the study to
gain insights into the quality of neural signals and elec-
trode reliability. The average SNR was 18.28 + 0.25 dB
over the course of the study (Fig. 3b). Overall, SNR value
was relatively stable with a slightly decline, and there
was an 8.8% decline in SNR value throughout the entire
study over 3 years. The peak-to-peak value of the TCs
decreased by 33.06% by day 1186 post-implantation
(from 198.42 + 8.38 pV to 132.82 + 6.41 puV), while RMS
value of the recordings decreased by 28.76% (from 23.78
+1.29 pV to 16.94 £ 0.75 pV) (Fig. 3¢, d). The slight de-
crease (~9%) in SNR value can therefore be attributed

Table 3 Overall accuracy of the decoders when using different
neural features as input

Overall accuracy in Task 1 (%)  Overall accuracy in Task 2 (%)

mfFMWP 91,06 + 2.79 83.97 £ 399
hFMWP 7533 + 4.75 6245 £ 477
IFMWP  80.73 + 4.38 66.46 + 5.65
MUA 9161 £ 6.14 8944 + 496
TCs 69.80 + 5.66 60.10 = 3.09
LFP 7216 + 494 61.24 + 0.22

to the bigger decrease in peak-to-peak value of the de-
tected TCs. Similar results have been observed for the
SNR of the neural signal to be relatively stable despite
decrease in impedance values and amplitude of TCs over
time (Barrese et al. 2013).

In this study, neural features called MWP were extracted
using a custom signal processing approach based on wave-
let decomposition. Wavelet transformation decomposes a
time-varying signal into different frequency sub-bands
while preserving its spectral and temporal characteristics
(Brychta et al. 2007; Farina et al. 2007). Wavelet decompos-
ition based features are also designed to capture important
neural information and condense it into a much lower di-
mensional representation (Bouton et al. 2016; Sharma et al.
2016; Friedenberg et al. 2017). For example, the MWP fea-
ture extraction step reduced the size of data for each
100 ms processing bin from 288,000 raw voltage readings
to 96 MWP features, one for each channel of the MEA,
while retaining sufficient information to allow motor tasks
related decoding (Bouton et al. 2016). This feature engin-
eering step made it possible to process large amount of in-
put BCI data in real-time with standard computer
hardware.

Our results indicate that, qualitatively, mf-MWP and
MUA appear to have a more robust time-locked response
to the cue compared to the other type of neural features
investigated (Fig. 4). The results also showed that signal
strength for all neural features declined for approximately
the first 200 days post-implantation (Fig. 5). This initial
signal decline could be due to the initiation and resolution
of inflammatory response around the electrodes and/or
neuronal loss following implantation of the MEA (Biran et
al. 2005; McConnell et al. 2009; Barrese et al. 2013). After
the initial decline, the signal strength remained relatively
stable for the duration of the study, most likely due to the
stablization of glial scarring (Barrese et al. 2013; Malaga et
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Accuracy in Task 1 (%)

Accuracy in Task 2 (%)

Hand open Hand close Wrist flexion Wrist extension Index flexion Index extension
mf-MWP 9534 +1.95 9421 + 247 96.13 + 1.39 9443 + 2.16 95.14 + 2.16 9457 + 1.88
hf-MWP 84.02 = 3.63 8552 + 3.58 90.38 = 2.75 89.90 £ 2.13 8595 + 2.74 86.80 £+ 2.67
IFMWP 8791 £ 321 87.69 + 3.81 90.19 + 244 89.25 £ 2.55 8809 + 326 8767 336
MUA 94.95 + 535 9534 + 382 96.27 + 238 94.59 + 2.31 9438 + 248 93.87 £ 244
TCs 86.96 + 6.08 8834 + 246 90.99 + 261 91.06 = 091 90.74 + 0.83 90.72 £ 0.68
LFP 83.22 + 3.05 8266 + 338 8593 + 2383 86.64 + 2.54 85.18 + 2.81 86.03 + 2.65

al. 2016). Overall, the signals in the normalized mf-MWD,
hf-MWP, [FMWP bands declined by an average of about
40, 47, 11% respectively, while the MUA, TCs, and LFP
signals declined by an average of about 41, 44, 6.81%, re-
spectively, over 720 days post-implantation in Task1. Simi-
lar trends were observed for data collected during Task2
(Fig. 5, Table 2).

Among all neural features that we investigated,
[-MWP and LFP signals showed the least signal decline
over the course of the study. This is not surprising as
the [fFMWP frequency band (0-234 Hz), with power
spectrum that overlaps in frequency range with that of
LFP (0 to 100 Hz), represents an ensemble of synaptic
activity from many neurons over a large area. Therefore,
the [-MWP and LEP signals are less likely to degrade
due to local neurodegeneration around the electrode tips
(Buzsaki 2004; Scherberger et al. 2005). These results are
also in agreement with previous study, in which re-
searchers noted that the signals in the LFP frequency
band were more stable compared to higher frequency
signals (Andersen et al. 2004). Normalized mf-MWP and
MUA signals, with higher frequency range, showed a lar-
ger overall decline compared to LFP and /[fFMWP signals
in both Tasks. The #f-MWP signal, with frequency range
similar to that of the higher frequency part of MUA and
other high frequency signals, showed a significantly larger
decline (p <0.001, n=64) compared to that of mf-MWP
and MUA signals in Task 2. TCs signal, which is a direct
detection of the the spiking neural acitivity, showed the
most pronounced degradatuion in signal strength (Fig. 5).

The likely cause of this decline in higher frequency signals
is the potential loss of spiking neural activity near the elec-
trode tips due to chronic, local neurodegenration (Biran et
al. 2005; McConnell et al. 2009). Overall, all neural
features showed a bigger initial decline compared to that
in latter part of the study — a result consistent with a
previous report where intracortical signal was recorded
and analyzed from a non-human primate over a
7.5-month duration (Sharma et al. 2015).

It is evident from the previous discussion that the sig-
nals in the higher frequency domains (TCs, hf-MWP)
degrade over time while signals in the lower frequency
domains ([fMWP, LFP) remain more stable. However,
lower frequency signals, even those recorded from
neighboring channels can be highly correlated and can
therefore limit the unique information that can be ex-
tracted from these channels (Stark and Abeles 2007). In-
deed, we observed that [-MWP feature has the highest
overall correlation within all MWP-based features and
the LFP signals has the highest correlation compared to
MUA and TCs signals (Fig. 6). In contrast, mf-MWDP
and MUA features are not only less correlated compared
to [-MWP and LFP features, but also are more stable
over time compared to Af-MWP and TCs (Fig. 5) and
therefore represent a promising robust signal to evaluate
BCI decoding performance. Not surprisingly, we ob-
served a high temporal correlation between mf-MWP
and MUA signals (Fig. 7, also see Additional file 1:
Figure S1) implying that these two features might
encode similar information about the cue.

Table 5 Sensitivity of the individual decoders when using different neural features as input

Sensitivity in Task 1 (%)

Sensitivity in Task 2 (%)

Hand open Hand close Wrist flexion Wrist extension Index flexion Index extension
mf-MWP 80.17 £ 9.36 8045 + 9.94 81.76 = 945 74.26 £ 11.58 73.66 = 1153 6598 + 13.82
hf-MWP 39.17 £ 1539 46.54 £ 1749 3898 + 19.95 37.30 £ 1994 1797 £ 11.55 21.72 £ 1298
IFMWP 5562 £ 1595 56.14 = 15.58 3698 + 16.99 35.64 + 16.86 3211 £ 1653 3347 £ 16.65
MUA 79.15 £ 1251 7880 £ 13.31 79.83 £ 12.55 7164 £ 1515 6255+ 17.12 61.36 = 18.09
TCs 3718 £ 552 3061 + 19.68 27.59 £ 17.16 2800 + 1861 747 £ 9.68 1279 £ 1195
LFP 3448 £ 11.08 3134 £ 11.04 21.57 £ 9.85 31.14 £ 1451 2486 = 10.16 1740 £ 9.59
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Specificity in Task 1 (%)

Specificity in Task 2 (%)

Hand open Hand close Wrist flexion Wrist extension Index flexion Index extension
mf-MWP 9782+ 148 9646 + 239 9768 +1.31 96.60 + 1.82 9745+ 173 97.64 £ 148
hf-MWP 91.32 £ 401 91.86 = 3.67 95.89 + 2.58 9555 £ 2.29 9324 + 2.83 93.79 £ 3.09
IFMWP 93.17 + 265 92.84 + 335 95.90 + 266 95.00 + 2.99 94.10 + 3.50 9349 + 349
MUA 9751+ 279 9803 + 260 9803 + 1.71 97.05 + 1.60 97.80 + 2.04 97.36 + 1.89
TCs 94.27 £ 812 96.81 = 1.84 9724 312 97.28 + 2.05 9894 + 122 9840 £ 1.13
LFP 91.16 + 363 9103 + 382 92.72 + 359 9260 + 2.73 91.65 + 3.65 93.39 + 339

In order to investigate the information content of
these neural features, we compared the use of each
neural feature individually as input to an SVM-based de-
coder to evaluate the performance for classifying discrete
imagined hand movements. While MUA and mf-MWP
has higher correlation compare to any other paired sig-
nals, and this relationship is also reflected in the decod-
ing results, where MUA and mf-MWP could achieve
over 90 and 80% of decoding accuracy, respectively in
Taskl and 2 (Fig. 8). When compared to other neural
features, the mf~-MWP and MUA consistently achieved
and maintained a significantly higher level of decoding
performance throughout the course of the study (Fig. 8).
We also observed that, in general, the trend in the de-
coder performance over time was more stable (Fig. 8a,
b), compared to the trend in the corresponding neural
signal strength themselves (Fig. 5).

These results are in agreement with other studies
where researchers observed that signal, with overlap in
the frequency range around 300 Hz to 6 KHz, can lead
to better decoder performance compared to spiking ac-
tivity for classifying grasp movements in animal experi-
ments (Stark and Abeles 2007). Some of our results are
also in disagreement with findings from other groups.
For example, Bansal et al., found that SUA (as calculated
by thresholded spikes) is superior to low frequency LFP
(<4 Hz) in decoding movement (Bansal et al. 2011).
However, the frequency range of LFP used by Bansal et
al. is different from the frequency range of [fFfMWP (0-
234 Hz) used in our study. In addition, Bansal et al.
compared decoding performance for reach and grasp
(Bansal et al. 2011), whereas in our study we focused on
decoding only isolated hand movements (hand-close,
hand-open and wrist movements) with no reaching
tasks. Together this can explain the contrasting nature
of results obtained in the two studies. In general, diverse
range of neural signals corresponding to different
frequency ranges recorded from intracortical arrays can
provide distinct and complementary information for
decoding movement. For example, one study showed
that LFP (10-40 Hz) is a reliable indicator of movement

onset but doesn’t encode kinematic features, like pos-
ition, direction, and velocity (Barrese et al. 2013);
another study shows that the LFP signal near gamma
band could contain information for arm movement
direction (Mehring et al. 2004); while LFP from 100 to
300 Hz could encode kinematic information like speed
(Bansal et al. 2011). On the other hand, TCs and SUA
can better encode information related to movement dir-
ection direction (Fraser et al. 2009). Similarly, it has
been shown that MUA (300 Hz — 6 kHz) can outper-
form SUA and LEP for classifying multiple discrete grasp
types (Stark and Abeles 2007).

Conclusion

In conclusion, we give details on a new method to ex-
tract MWP-based neural features from chronic human
intracortical data. The results presented here show a sys-
tematic, long-term tracking of MWP-based neural fea-
tures and their comparison with traditionally used
features such as LFP, MUA and TCs, as well as SVM
algorithm-based decoding of complex discrete hand
movements from a human brain over 3 years. This infor-
mation is important and valuable as it will allow re-
searchers to objectively evaluate features of neural data
captured in the chronic phase of MEA implantation,
which has significance for building and improving upon
algorithms in BCI systems. Our results indicate that
wavelet processing based neural features engineering can
be a viable new way to automate neural signal process-
ing for big data and that mf-MWP based neural features
can be an optimal signal for BCI decoding applications
with stability and performance comparable to tradition-
ally used MUA features. While this report provides im-
portant information about signal stability in the human
motor cortex and useful comparisons between different
features derived from neural signals, our other recent
works have shown that this feature engineering and de-
coding approach can enable real-time control of a
BClI-controlled functional electrical stimulation system
to enable multiple hand movements in the same study
participant.
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Additional files

Additional file 1: Figure S1. Temporal corrlation between different
paired neural features time series over the course of study. In each insertion,
y-axis shows the correlation value range from 0 to 1 and x-axis shows the
days post-implantation. Each data point represents the average correlation
value of a day between a paired types of neural features from Task 2. The
dashed line indicates a 3rd order polynomial fit for the data. Each group of
color coded data points shows the temporal correlation of a given paired
types of neural features. Taken the first figure as an example, it shows the
temporal correlation between the hf-MWP feature and other neural features
(using h-MWP features as the base time series). (JPG 288 kb)

Additional file 2: Figure S2. Overall decoding accuracy affected by
using different features averaged from different scales of MWP. Each data
point here shows the average of overall decoding accuracy time series
over the course of the study for Task2. The error bar indicates the standard
deviation of its overall accuracy time series. Selection of MWP features from
scales [3, 4, 5, 6] enables the best decoding accuracy, 85.99 + 4.29%.
However, when use MWP from scales [3, 4, 5] and [4, 5, 6], these input
features could also enable a very similar level of decoding with overall
accuray of 85.81 +4.42% and 85.93 + 4.26%, respectively. One way ANOVA
test indicates these three groups of decoding performances were non-
significant different (p = 0.94, n = 128). Using MWP scales with less overlap
with scales [3, 4, 5, 6] would induce a larger decrease in decoding accuray.
Statistical analysis indicates decoding performances, when using scales
within [3, 4, 5, 6] and outside this frequency, were significant different with
p <0001 (n=128). (For frequency bands of each scale in MWP, please refer
to Table 1). UPG 72 kb)
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BCI: Brain computer interface; FES: Functional electrical stimulation; hf-MWP: High-
frequency mean wavelet power; If-MWP: Low-frequency mean wavelet power;
LFP: Local field potential; MEA: Microelectrode array; mf-MWP: Mid-frequency
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