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Phosphorylation of H2A.X (serine 139) in the histone H2A family located in the downstream of the DNA damage kinase signaling
cascade is an important indicator of DNA damage. Recently, phosphorylation of H2A.X was proposed as a sensitive biomarker of
aging. This study investigated if phosphorylation of H2A.X in peripheral blood mononuclear cells (PBMCs) is associated with
cardiometabolic risk in nondiabetic individuals. Basic parameters and oxidative stress/inflammatory markers were measured in
nondiabetic healthy Koreans (n = 119). Phosphorylation of H2A.X was measured randomly among the study subjects using a
flow cytometer. According to the number of metabolic syndrome risk factor (MetS-RF), the study subjects were subdivided into
“super healthy” (MetS− RF = 0, n = 71) and “MetS-risk” (MetS− RF ≥ 1, n = 48) groups. Phosphorylation of H2A.X in PBMCs
(percentages and mean fluorescence intensity) was significantly higher in the MetS-risk group than in the super healthy group
after adjusting for age, sex, cigarette smoking, and alcohol consumption. Phosphorylated H2A.X was positively correlated
with the number of MetS-RF as well as waist circumference, blood pressures, triglyceride, HbA1C, oxidized LDL, high sensitivity
C-reactive protein, tumor necrosis factor-alpha, and alanine aminotransferase after the adjustment. The present study suggested
that phosphorylated H2A.X in circulating PBMCs measured by flow cytometer may be a useful marker for monitoring
cardiometabolic risk in nondiabetic individuals.

1. Introduction

Cardiometabolic syndrome is one of the major public health
problems in the world, which develops to type 2 diabetes
mellitus (T2DM) and cardiovascular disease (CVD) [1].
Major risk factors of cardiometabolic syndrome include
overweight/obesity, metabolic syndrome (MetS), hyper-
tension, dyslipidemia, or glycemic disorder (i.e., impaired
glucose and insulin resistance) [2]. Li et al. reported the
association between cardiometabolic risk factors and changes
for cardiac structure/function in patients with early-stage
heart failure [3]. Previous studies have demonstrated that

patients with diabetes had sevenfold higher risk of CVD than
nondiabetic individuals [4, 5], and people with impaired
glucose tolerance had almost twice higher risk of developing
CVD than those with normal blood glucose levels [6].

Impaired balance between oxidative stress (i.e., reactive
oxygen species (ROS)) and antioxidants is considered as
one of the primary causes in the pathogenesis of chronic
diseases such as diabetes and CVD and their complications
[7–12]. Low levels of ROS produced during the metabolic
processes promote cell growth and participate in stress
adaptation, injury responses, and various modifications in
the cellular phenotype [7]. However, excessively high levels
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of ROS induce cellular apoptosis and tissue injury and
trigger oxidative stress and inflammatory response, thereby
impairing cellular functions and inducing various metabolic
dysfunctions [7, 13, 14].

Higher oxidative stress is involved in the pathogenesis of
oxidative damage in cellular proteins, membrane lipids, and
DNA [15]. Double-strand breaks (DSBs) created in the
eukaryotes are generally accompanied by the formation of
hundreds of histone H2A.X molecules in the chromatin
flanking the DSBs [16]. H2A.X is a member of the histone
H2A family which resides downstream of the DNA damage
kinase signaling cascade [17, 18]. Phosphorylation of histone
H2A.X on serine 139 which is also known as γ-H2A.X is an
important indicator of DNA damage [19]. Recent studies
suggested that H2AX and its phosphorylation on serine
139, beyond their role as a marker for DNA damage,
may be a sensitive molecular biomarker of aging and
related disease which is accumulated in senescent human
cells [20, 21]. However, there is no study on the relation-
ship between phosphorylation of H2A.X in circulating
PBMCs and the risk of metabolic disease in healthy people.
Therefore, this study investigated if phosphorylation of
H2A.X in PBMCs is associated with oxidative stress, and
inflammatory response, and reflects cardiometabolic risk in
nondiabetic individuals.

2. Methods

2.1. Study Participant and Design. Study participants were
recruited from the Health Promotion Center at Dong-A
University Hospital between January and March 2014. Sub-
jects were excluded if they had orthopedic limitations or
had ≥10% of weight loss/gain over the previous 6 months
or any diagnosis or history of chronic diseases (e.g., diabetes,
vascular disease, heart disease, renal disease, and liver dis-
ease), cancer (clinically or by anamnesis), pregnancy, breast
feeding, or intending to become pregnant during the time
of this study. All the participants were provided with detailed
information of the study and provided written informed
consent. The participants were interviewed to determine
their smoking and drinking behavior. The study protocol
was approved by the Institutional Review Board of Dong-A
University and was carried out in accordance with the
Declaration of Helsinki. Finally, 119 individuals were
included in the study and subdivided into two groups: “super
healthy” people (MetSriskfactor = 0, n = 71) and “MetS risk”
carriers (MetSriskfactor ≥ 1, n = 48) based on MetS risk
factors (waist circumference ≥ 90 cm for male and ≥80 cm
for female; systolic blood pressure ≥ 130mmHg or diastolic
bloodpressure ≥ 85mmHg; fastingglucose ≥ 100mg/dL; fast-
ing triglycerides ≥ 150mg/dL; HDL cholesterol < 40mg/dL
for male and <50 for female) [22–26].

2.2. Anthropometric Parameter, Blood Pressure, and Blood
Collection. Body mass index (BMI) was calculated as body
weight divided by height (kg/m2). Waist circumference was
measured at the umbilicus with the subject standing. Blood
pressure (BP) was obtained from the left arm of the seated
individuals with an automatic BP monitor (HEM-7220,

Omron, Matsusaka, Japan) after getting a short rest. After
a 12h fast, venous blood specimens were collected in
EDTA-treated and plain tubes, separated to plasma or
serum, and stored at −80°C until analysis. Blood specimens
for flow cytometric analysis of phosphorylated H2A.X
expression in circulating peripheral blood mononuclear cells
(PBMCs) were collected from the participants who agreed to
the measurement.

2.3. Serum Lipid Profile, Fasting Glucose, and Glycated
Hemoglobin (HbA1C). Fasting total cholesterol and triglycer-
ides were analyzed by enzymatic assays using commercially
available kits on a Hitachi 7150 Autoanalyzer (Hitachi Ltd.,
Tokyo, Japan). After precipitation of chylomicrons with dex-
tran sulfate magnesium, levels of low-density lipoprotein
(LDL) and high-density lipoprotein (HDL) cholesterol in
the supernatants were measured by an enzymatic method.
Fasting glucose levels were determined by the glucose oxidase
method with Beckman Glucose Analyzer (Beckman Instru-
ments, Irvine, CA, USA). Glycated hemoglobin (HbA1C) was
measured using VARIANT II Turbo HbA1C kit-2.0 (Bio-
Rad, Hercules, CA, USA).

2.4. Oxidative Stress and Inflammation Markers. Plasma
oxidized LDL (oxLDL) was measured using an enzyme
immunoassay (Mercodia, Uppsala, Sweden). The resulting
color reaction was measured using the iMark™ microplate
absorbance reader (Bio-Rad Laboratories, Hercules, CA,
USA). The wavelength correction was set to 450nm and
540 nm. Serum high-sensitivity C-reactive protein (hs-
CRP) was measured with an ADVIA 1650 system (Bayer,
Tarrytown, NY, USA) using a commercially available, high-
sensitivity CRP-Latex(II) X2 kit (Seiken Laboratories Ltd.,
Tokyo, Japan). Plasma tumor necrosis factor-α (TNF-α)
was measured using human Quantikine HS ELISA Kit
(R&D system, Minneapolis, MN USA). The resulting color
reactionwasmeasuredusing the iMarkmicroplate absorbance
reader (Bio-Rad Laboratories,Hercules, CA,USA). Thewave-
length correction was set to 490nm and 560nm.White blood
cell counts were determined using the HORIBA ABX diag-
nostic (HORIBA ABX SAS, Parc Euromedicine, France).

2.5. Liver and Kidney Function Parameters. Serum levels of
aspartate aminotransferase (AST) and alanine aminotrans-
ferase (ALT) were measured by a kinetic UV method based
on recommendations by the International Federation of
Clinical Chemistry using commercially available kits on a
Hitachi 7180 Autoanalyzer (Hitachi Ltd., Tokyo, Japan).
Serum levels of blood urea nitrogen (BUN) and creatinine
were measured by a kinetic UV assay (Hitachi Ltd., Tokyo,
Japan). Serum creatinine was measured by a kinetic colori-
metric assay (Jaffe).

2.6. Phosphorylation of Histone H2A.X in Peripheral Blood
Mononuclear Cells. Blood specimens for flow cytometric
analysis of phosphorylated H2A.X expression in circulating
peripheral blood mononuclear cells (PBMCs) were collected
from the participants who agree to the measurement as
mentioned above. Whole blood was mixed with the same
volume of RPMI 1640 medium (HyClone, Logan, UT,
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USA) and gently laid on a histopaque-1077 (Sigma-Aldrich,
St. Louis, MO, USA). The sample was then centrifuged at
1800 rpm for 20min at 10°C. After the separation, a thin layer
of PBMCs was isolated and washed twice with RPMI 1640.
The pellet was resuspended in RPMI 1640 with streptomycin
[27, 28]. Phosphorylation of histone H2A.X in PBMCs was
measured with the Muse™ H2A.X activation dual detection
kit (MCH200101, Millipore, Billerica, MA, USA). Briefly,
isolated PBMCs were counted and diluted with assay buffer
(5× 106 cells/2.5ml). After that, the cells were fixed, perme-
abilized, and incubated with antiphosphohistone H2A.X
(Ser139, Alexa Fluor®555, part number CS208203, Millipore,
Billerica, MA, USA) and anti-H2A.X (PECy5, part number
CS209202, Millipore, Billerica, MA, USA), and then analyzed
by the Muse cell analyzer (Millipore, Billerica, MA, USA)
following the manufacturer’s protocol. Each sample for
the phosphorylated H2A.X measurement was prepared
in triplicates; then, the average values were used in the
statistical analysis.

2.7. Statistical Analysis. Statistical analyses were performed
using SPSS ver22.0 for Windows (SPSS Inc., Chicago, IL,
USA). The Student t-test was used to compare parameters
between the two groups. A general linear model analysis
followed by Bonferroni correction was also performed to
evaluate the differences in the parameters between the groups
after adjustment for the confounding factors (i.e., age, sex,
cigarette smoking, and alcohol consumption). Frequency
was tested with the chi-square test. The relationships
between phosphorylated H2A.X and cardiometabolic risk
parameters were tested by partial correlation analyses after
adjusting for confounding factors. The distribution of
continuous variables was inspected to detect nonnormal
distribution before statistical analysis. Skewed variables
were log-transformed for statistical analysis (i.e., fasting
glucose, triglyceride, oxidized LDL, TNF-α, and phosphor-
ylated H2A.X parameters (percentage and MFI)). For
descriptive purposes, the mean values are presented using
untransformed values (expressed as means ± standarderror
or percentages). A two-tailed p value of less than 0.05 was
considered statistically significant.

3. Results

3.1. General Characteristics and Cardiometabolic Risk
Parameters of the Study Subjects. Table 1 shows the general
characteristics and MetS risk-related biochemical parameters
of the study subjects. MetS risk carriers were older, showed
higher proportion of men, and consumed more cigarette
and alcohol than super healthy people. After adjusting for
age, sex, cigarette smoking, and alcohol consumption, the
MetS risk group showed higher levels of BMI, waist circum-
ference, blood pressures, fasting glucose, HbA1C, triglyceride,
LDL cholesterol, and total cholesterol and lower levels of
HDL cholesterol than the super healthy group (p < 0 05 for
all) even though the average values of the parameters in both
groups were in normal range. In addition, the levels of oxida-
tive stress (oxidized LDL), inflammation (hs-CRP, TNF-α,
white blood cell counts), and liver (ALT) and kidney

(BUN) function markers were significantly higher in the
MetS risk group than those in the super healthy group
(p < 0 05 for all) (Table 2).

3.2. Phosphorylated H2A.X in Peripheral Blood Mononuclear
Cells between Super Healthy People and the MetS Risk
Carriers. As mentioned in Section 2, phosphorylations of
H2A.X expressed in circulating PBMCs were randomly
measured among the study subjects who agree to the
measurement. After the adjustment for age, sex, cigarette
smoking and alcohol consumption, and percentage andmean

Table 1: General characteristics and metabolic risk-related
biochemical parameters of the study subjects.

Super healthy
(n = 71)

MetS risk
(n = 48)

Age (year) 45.9± 1.24 54.9± 1.56+

Male, n (%) 7 (10.0) 17 (35.4)+

Cigarette (n/day) 1.34± 0.57 5.73± 2.00+

Alcohol (g/week) 20.8± 2.80 38.0± 10.9+

BMI (kg/m2) 21.9± 0.27 25.9± 0.48∗
Waist (cm) 72.4± 0.77 84.8± 1.47∗
Systolic BP (mmHg) 109.8± 0.99 120.3± 1.74∗
Diastolic BP (mmHg) 69.7± 0.70 74.1± 1.07∗

Glucose (mg/dL)ϕ 85.4± 0.82 100.1± 2.21∗
HbA1C (%) 5.17± 0.04 5.65± 0.08∗

Triglyceride (mg/dL)ϕ 67.6± 3.48 144.7± 11.9∗
HDL cholesterol (mg/dL) 69.5± 1.50 52.9± 1.97∗
LDL cholesterol (mg/dL) 115.0± 3.05 132.6± 5.30∗
Total cholesterol (mg/dL) 187.7± 2.92 202.0± 6.13∗
Data are means ± S E. or percentage (%); ϕtested after log-transformed,
+p < 0 05; tested by Student’s t-test or chi-square method, ∗p < 0 05; tested
by general linear model method adjusted for age sex, cigarette smoking,
and alcohol consumption. AST: aspartate aminotransferase; ALT: alanine
aminotransferase; BMI: body mass index; BP: blood pressure; BUN: blood
urea nitrogen; HbA1C: hemoglobin A1C.

Table 2: Oxidative stress, inflammation, and liver and kidney
function markers between super healthy people and MetS risk
carriers.

Super healthy
(n = 71)

MetS risk
(n = 48)

Oxidized LDL (U/L)ϕ 54.9± 2.08 62.2± 3.17∗

hs-CRP (mg/dL)ϕ 0.51± 0.17 0.84± 0.25∗

TNF-α (pg/mL)ϕ 1.07± 0.07 1.69± 0.30∗
White blood cell (×109/L) 4.92± 0.15 5.65± 0.21∗
AST (U/L) 25.0± 0.88 27.2± 1.31
ALT (U/L) 20.0± 1.37 27.3± 2.14∗
Creatinine (mg/dL) 0.77± 0.01 0.87± 0.07
BUN (mg/dL) 13.2± 0.38 14.2± 0.73∗
Data are means ± S E ϕTested after log-transformed, ∗p < 0 05; tested by
general linear model method adjusted for age, sex, cigarette smoking, and
alcohol consumption. hs-CRP: high-sensitivity C-reactive protein; TNF-α:
tumor necrosis factor-alpha.
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fluorescence intensity (MFI) of phosphorylated H2AX were
still significantly higher in theMetS risk carriers (n = 17) than
in super healthy people (n = 18) (for percentage, super
healthy: 3.44± 0.53% versus MetS risk: 5.34± 0.70%;
for MFI, super healthy: 109.1± 21.1 versus MetS risk:
205.9± 39.3) (p < 0 05 for all) (Figure 1(a)). In addition,
Figure 1(b) represents the images of flow cytometric analysis
for phosphorylation of H2A.X expressed in PBMCs from
super healthy (n = 1) and MetS risk (n = 1) individuals who
were age and sex matched (56 years, females).

3.3. Relationships between Phosphorylation of H2A.X in
PBMCs and Cardiometabolic Risk Parameters. Phosphory-
lated H2A.X in PBMCs was positively correlated with age
(for percentage: r = 0 526, p = 0 001; for MFI: r = 0 609,
p < 0 0001). Therefore, correlation analysis between phos-
phorylated H2A.X and cardiometabolic risk parameters was
performed with adjustment for age, sex, cigarette smoking,
and alcohol consumption. Figures 2 and 3 present the rela-
tionship between phosphorylated H2A.X (both percentage
and MFI) and each of the MetS risk components and the
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Figure 1: Phosphorylated H2A.X (percentage, MFI) between the super healthy and MetS risk groups. (a) Phosphorylated H2A.X (percentage
and MFI) levels expressed in peripheral blood mononuclear cells (PBMCs) between the super healthy group (n = 18) and the MetS risk group
(n = 17). Data are means± S.E. ϕTested after log-transformed, ∗p < 0 05; tested by general linear model method adjusted for age, sex, cigarette
smoking, and alcohol consumption. (b) Representative flow cytometric analysis images for phosphorylation of H2A.X expressed on PBMCs
in age- and sex-matched individuals (56 years, females: super healthy: n = 1; MetS risk: n = 1). MetS: metabolic syndrome; MFI: mean
fluorescence intensity.
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Figure 2: Relationships between phosphorylated H2A.X (percentage, MFI) and MetS risk related parameters. r: correlation coefficient, tested
by partial correlation analysis adjusted for age, sex, cigarette smoking, and alcohol consumption; ϕtested after log-transformed; super healthy
(•, —: narrow solid line) (MetS risk factor = 0) and MetS risk (o, - - -: narrow open line) (MetS risk factor≥ 1) groups and total subjects
(—: bold solid line); BP: blood pressure; HgbA1C: hemoglobin A1C; MFI: mean fluorescence intensity.
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related parameters. Precisely, correlation dot plots were
separately presented for the super healthy group (MetS risk
factor = 0) and the MetS risk group (MetS risk factor ≥ 1).
As shown in Figure 2, both percentage and MFI of the phos-
phorylated H2A.X were positively correlated with each of
MetS risk components in both subject groups, particularly
in the MetS risk group: positively correlated with waist cir-
cumference (r = 0 417, p = 0 013; r = 0 364, p = 0 031, resp.),

systolic BP (r = 0 372, p = 0 028; r = 0 369, p = 0 029, resp.),
triglycerides (r = 0 603, p < 0 001; r = 0 414, p = 0 013, resp.),
and HbA1C (r = 0 345, p = 0 043; r = 0 524, p = 0 001, resp.).
Figure 3 also presents that both percentage and MFI of
phosphorylated H2A.X were positively correlated with oxi-
dized LDL (r = 0 380, p = 0 025; r = 0 372, p = 0 028, resp.)
and ALT (r = 0 385, p = 0 025; r = 0 362, p = 0 033, resp.).
TNF-α levels were also positively correlated with MFI of
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Figure 3: Relationships between phosphorylated H2A.X (percentage, MFI) and oxidative stress and inflammation and liver functionmarkers.
r: correlation coefficient, tested by partial correlation analysis adjusted for age, sex, cigarette smoking, and alcohol consumption; ϕtested after
log-transformed; super healthy (•,—: narrow solid line) (MetS risk factor = 0) and MetS risk (o, - - -: narrow open line) (MetS risk factor≥ 1)
groups and total subjects (—: bold solid line). ALT: alanine aminotransferase; hs-CRP: high-sensitivity C-reactive protein; MFI: mean
fluorescence intensity; TNF-α: tumor necrosis factor-alpha.
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phosphorylated H2A.X (r = 0 402, p < 0 017), but the
relationship between TNF-α levels and percentage of phos-
phorylated H2A.X turned to be a tendency (r = 0 298,
p < 0 083). Phosphorylated H2A.X was also positively corre-
lated with the number of MetS risk factor (for percentage:
r = 0 338, p = 0 047; for MFI: r = 0 320, p = 0 061, resp.). In
addition, two phosphorylated H2A.X parameters were
compared according to the level of each MetS component
(see Supplementary Figure S1 available online at https://doi.
org/10.1155/2017/2050194). Interestingly, some of the MetS
risk factors (i.e., particularly, waist circumference, triglycer-
ide, HbA1C, and blood pressure) were distinctly associated
with phosphorylated H2A.X parameters: subjects with
higher waist circumference showed significantly higher
values of phosphorylated H2A.X parameters (both percent-
age and MFI), those who had higher fasting triglyceride
also showed higher percentage of phosphorylated H2A.X,
and those who had higher HbA1C showed higher MIF of
phosphorylated H2A.X. Regarding BPs, subjects with
higher BPs showed increased tendency of higher MFI of
phosphorylated H2A.X.

4. Discussion

The present study shows that phosphorylation of histone
H2A.X in circulating PBMCs was significantly higher in
the MetS risk group than in the super healthy group.
In addition, phosphorylated H2A.X was positively corre-
lated with the number of MetS risk factors as well as
waist circumference, triglyceride, HbA1C, blood pressures,
oxidized LDL, inflammatory markers (i.e., hs-CRP and
TNF-α), and ALT. The statistical significances were main-
tained after adjusting for age, sex, cigarette smoking, and
alcohol consumption. Flow cytometric analysis of phos-
phorylation of H2A.X in circulating PBMCs was used
for the first time for monitoring cardiometabolic risk in
nondiabetic individuals.

Oxidative stress is a primary cause of deleterious oxygen
free radical formed through cytosolic NADPH oxidases and
impaired balance of the antioxidant system [7]. These abnor-
mal reactions cause DNA damage and generate phosphoryla-
tion of the histone variant H2A.X that is localized to DSB
signaling response [29, 30]. Phosphorylated H2A.X may
facilitate an appropriate awareness of DNA damage by oxida-
tive stress and/or inflammatory responses and also may be a
predictor for the increased risk of CVD and various meta-
bolic disorders [31, 32]. Demirbag et al. indicated that the
extent of DNA damage is much higher in patients with MetS
than in those without MetS [33]. An in vitro study shows that
phosphorylation of H2A.X (γ-H2A.X) in human endothelial
cells is more upregulated under stably high glucose status,
particularly under oscillating glucose status than under
normal glucose status [34]. Accumulation of DNA damage
such as γ-H2A.X and DSB formation by oxygen free radical
is a typical theory of aging along with telomere length [7].
Recently, Schurman et al. suggested that γ-H2A.X may be a
biomarker for human morbidity in age-related diseases [21]:
the number of γ-H2A.X foci in human blood cells was
higher in the middle-aged subjects (50–59 years) than in

the younger subjects (35–49 years) and the number of γ-
H2AX foci/cell in patients with hypertension was 36%
higher than those in nonhypertensive patients, particularly
among those ≥57 years [21]. In addition, Scarpato et al.
reported that nuclear damages expressed by H2A.X foci
and micronucleus in peripheral lymphocytes were at least
5 times higher in obese/overweight children than in normal
weight children, and they are related to higher inflammation
status (i.e., TNF-α, IL-6, and CRP) [35]. These reports are
partly in accordance with our results. In our study, phos-
phorylated H2A.X was positively correlated with the number
of MetS risk factors as well as waist circumference, sys-
tolic BP, triglyceride, HbA1C, oxidized LDL, hs-CRP, and
TNF-α which are considered as cardiometabolic risk fac-
tors. These significances were maintained after adjusting
for confounding factors (i.e., age, sex, cigarette smoking,
and alcohol consumption).

In addition, epidemiological and clinical studies esti-
mated that liver enzymes might be useful biomarkers for
MetS and other lifestyle-related diseases, even though the
enzymes are within the normal range [36–39]. For example,
Zhang et al. shows the positive associations between MetS
risk and continuous unit (per 5 unit) of liver enzyme (ALT,
AST, γ-glutamyl transpeptidase, and alkaline phosphatase):
the smallest effect size was for alkaline phosphatase [odds
ratio (OR): 1.09, 95% confidence interval (CI): 1.08–1.10]
and the largest was for ALT (OR: 1.41, 95% CI: 1.38–1.43).
Particularly, subjects with relatively higher ALT levels
(>27U/L) showed higher OR for MetS risk (8.03, CI: 7.06–
9.12) than those with lower ALT levels (<15U/L) among
the ALT quartile groups after adjusting for confounding fac-
tors (i.e., age, sex, and education level) [36]. In our study,
ALT levels were significantly higher in MetS risk carriers
than in super healthy people although the average values
are within the normal range [39] and positively correlated
with phosphorylation of H2A.X in circulating PBMCs after
the adjustment.

However, our study may have limitations. First, the study
design was based on cross-sectional observation, not on a
case-control design, because the study subjects were classified
by screening their anthropometric and metabolic values on
the day of participation even though some people in the
borderline of criteria had re-examination. Second, the
study population is relatively small, although the statistical
significances were maintained even after the adjustment
for confounding factors (age, sex, cigarette smoking, and
alcohol consumption). Therefore, a further study with a
large number of subjects especially for measuring H2A.X
phosphorylation using flow cytometer should be per-
formed to verify our results. Despite the study limitations,
the present study suggested that phosphorylated H2A.X in
circulating PBMCs measured by flow cytometer may be a
useful marker for monitoring cardiometabolic risk in non-
diabetic individuals.
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