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Abstract

Subglottal Impedance-Based Inverse Filtering (IBIF) allows for the continuous, non-invasive 

estimation of glottal airflow from a surface accelerometer placed over the anterior neck skin 

below the larynx. It has been shown to be advantageous for the ambulatory monitoring of vocal 

function, specifically in the use of high-order statistics to understand long-term vocal behavior. 

However, during long-term ambulatory recordings over several days, conditions may drift from 
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the laboratory environment where the IBIF parameters were initially estimated due to sensor 

positioning, skin attachment, or temperature, among other factors. Observation uncertainties and 

model mismatch may result in significant deviations in the glottal airflow estimates; unfortunately, 

they are very difficult to quantify in ambulatory conditions due to a lack of a reference signal. 

To address this issue, we propose a Kalman filter implementation of the IBIF filter, which allows 

for both estimating the model uncertainty and adapting the airflow estimates to correct for signal 

deviations. One-way analysis of variance (ANOVA) results from laboratory experiments using the 

Rainbow Passage indicate an improvement using the modified Kalman filter on amplitude-based 

measures for phonotraumatic vocal hyperfunction (PVH) subjects compared to the standard IBIF; 

the latter showing a statistically difference (p-value = 0.02, F = 4.1) with respect to a reference 

glottal volume velocity signal estimated from a single notch filter used here as ground-truth in this 

work. In contrast, maximum flow declination rates from subjects with vocal phonotrauma exhibit 

a small but statistically difference between the ground-truth signal and the modified Kalman filter 

when using one-way ANOVA (p-value = 0.04, F = 3.3). Other measures did not have significant 

differences with either the modified Kalman filter or IBIF compared to ground-truth, with the 

exception of H1–H2, whose performance deteriorates for both methods. Overall, both methods 

(modified Kalman filter and IBIF) show similar glottal airflow measures, with the advantage of the 

modified Kalman filter to improve amplitude estimation. Moreover, Kalman filter deviations from 

the IBIF output airflow might suggest a better representation of some fine details in the ground-

truth glottal airflow signal. Other applications may take more advantage from the adaptation 

offered by the modified Kalman filter implementation.

Keywords

vocal hyperfunction; inverse filtering; Kalman filter

1. Introduction

Voice disorders are a health problem of significant concern in our society. In the United 

States, voice disorders affect about 7% of the working population [1–4]. Many of these voice 

disorders are chronic or recurring conditions that result from repeated detrimental patterns 

of vocal behavior, referred to as vocal hyperfunction (VH) [5,6]. Subtypes of VH include 

phonotraumatic VH (PVH) that is associated with the formation of benign vocal fold lesions 

(e.g., nodules) due to phonotrauma, and non-phonotraumatic VH that is associated with the 

dis-coordination of laryngeal muscle control in the absence of structural abnormalities (often 

diagnosed as primary muscle tension dysphonia) [7]. Despite the significant prevalence of 

these disorders, very little is known about the underlying physical mechanisms of VH. 

Given that multiple factors contribute and interact in different ways to cause and sustain 

VH disorders, there are non-specific, broad-based behavioral treatments that are inefficient, 

make patient compliance more challenging, and make it difficult or impossible to link 

improvements in vocal function to specific parts of the therapy program [8].

Several efforts have been carried out to develop objective measures that can capture VH, 

such as aerodynamic measures obtained from estimates of the glottal airflow [5,9,10], 

relative fundamental frequency [11], estimates of spectral tilt of the voice source [12,13], 
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and cepstral-related measures [14], among others. However, these measures are typically 

applied in the context of a laboratory assessment with sustained vowels and do not capture 

the nuances of VH in natural speech during daily activities.

The objective assessment of VH is expected to be significantly enhanced through 

ambulatory monitoring of vocal function. Ambulatory voice monitoring aims at providing 

complementary information that current clinical methods cannot offer, such as long-term 

behavior through the use of high-order statistics [14–20]. An ambulatory approach that could 

precisely pinpoint the instance, duration, and type of VH behavior would have the capability 

to provide transformative advancements in how clinical practices monitor, evaluate, and treat 

VH. Efforts in ambulatory methods are heading in this direction [17–19], but there are many 

associated challenges.

Some of the ambulatory voice monitors use either a microphone signal to estimate 

fundamental frequency (f0) and jitter [21], a surface electromyograph to estimate 

increased muscle tension [22], or a neck-surface accelerometer over the extrathoracic 

trachea to estimate sound pressure level, fundamental frequency, voicing activity, vocal 

dose, and related measures[15,23–28], as well as aerodynamic, cepstral and related 

parameters [14,16]. Aerodynamic measures have been successfully used to differentiate 

both phonotraumatic and non-phonotraumatic VH patients from matched controls using 

sustained vowels [9,29], and have been shown to become salient features of compensatory 

mechanisms associated with VH in modeling studies [30,31]. Thus, these aerodynamic 

measures have a strong potential to enhance the ability to identify VH in ambulatory settings 

[16].

Given that traditional assessment of aerodynamic signals using a Rothenberg mask [32] 

is not feasible for ambulatory scenarios, indirect estimation methods are required. The 

Subglottal Impedance-Based Inverse Filtering (IBIF) scheme [33] allows for estimating the 

glottal airflow signal from neck-surface vibration. The IBIF approach was recently tested 

in a discrimination task using week-long ambulatory recordings for 50 patients with vocal 

fold nodules and 50 matched healthy-control subjects [16]. The results of classification task 

using aerodynamic features outperformed previous efforts with other measures [14,15,17,19] 

and provides a new avenue to improve the assessment and treatment of VH disorders.

Despite of these advances, unquantified uncertainties are associated to the estimation of 

the glottal airflow signal with the IBIF scheme due to a number of factors. First, the 

determination of the IBIF model parameters uses inverse filtering of the oral airflow from 

few sustained vowel samples, which can lead to IBIF parameter variations for different 

vowels and pitch conditions [16,34]. The latter becomes especially challenging for high-

pitched female voices, which are common in ambulatory studies. In addition, there are 

combined measurement uncertainties from the accelerometer due to sensor positioning, skin 

attachment, temperature, etc. Furthermore, there is no direct reference that can be used to 

quantify these combined effects in ambulatory scenarios. Thus, there is a need to quantify 

the magnitude of the uncertainty in the estimation process, and to potentially improve the 

estimation of the aerodynamic signals through the IBIF framework.
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To address the aforementioned limitations, we propose a Kalman filter (KF) implementation 

of the IBIF filter, which allows for both assessing the estimation uncertainty and correcting 

for potential deviations in the airflow signal estimates. The KF structure is based in a 

Moving Average (MA) Kalman Filter with colored state noise modeling the glottal airflow 

signal. To assess the accuracy of the KF, we compare aerodynamic measures describing the 

glottal airflow signal obtained from the oral mask using a notch-filter [35,36], the standard 

IBIF [33], and the modified Kalman filter for a group of PVH and healthy-controls subjects 

reading a phonetically balanced passage.

The paper is structured as follows: In Section 2, we present the methods utilized to estimate 

glottal airflow, namely the IBIF method and its Kalman filter implementation. Then, in 

Section 3, we describe the experimental setup with participants with PVH and vocally 

healthy control subjects. In Section 4, we present the results of the experiments, and in 

Section 5, we discuss them in detail. Finally, in Section 6, we present the conclusions and 

future work.

2. Materials and Methods

2.1. Standard IBIF Implementation

The IBIF scheme is described in the frequency domain, where the glottal airflow (also 

referred to as glottal volume velocity, GVV) and the acceleration signal are related by

U̇skin(ω) = Tskin(ω) ⋅ Usub(ω) (1)

where U̇skin(ω) is the acceleration signal, Usub(ω) is the inverted GVV (assuming source is 

a dipole, that is, two equal and opposite volume velocity sources [37]), and Tskin(ω) is the 

neck-skin frequency response. In what follows, we remove the frequency dependency ω in 

the expressions for the sake of clarity. Tskin can be modeled by:

Tskin = U̇skin
Usub 

= Hsub1 ⋅ Zsub2  ⋅ Hd
Zsub2 + Zskin

, (2)

where Hsub1 is the frequency response of the subglottal section from the glottis to the 

accelerometer location, and Hd = jω is a derivative filter (similar to the lip radiation 

effect, except that in this case is the acceleration in free field). Zsub2 is a frequency-

dependent driving-point impedance corresponding to the subglottal section [38] below the 

accelerometer position. Zskin is the neck-skin impedance modeled as a mechanical analog of 

a resistor-inductor-capacitor circuit in series:

Zskin = Rm + j ωMm − Km
ω + jωMacc

Aacc
, (3)

where Rm, Mm, and Km are the per-unit-area resistance, inertance, and stiffness of the skin, 

respectively. The radiation impedance due to the accelerometer loading is modeled as a 

derivative term jω times the mass Macc divided by the surface Aacc (per-unit-area) of the 

accelerometer and the coating or mounting disk attached to it [39]. These parameters are 
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subject specific, and therefore involve calibration factors that can be fitted per subject using 

a reference GVV signal and an optimization method. The calibration factors Q = {Qi}i=1,…,5 

are defined as:

Q = Q1, Q2, Q3, Q4, Q5 (4)

Rm = 2320 ⋅ Q1 g ⋅ s−1 ⋅ cm−2 , (5)

Mm = 2.4 ⋅ Q2 g ⋅ cm−2 , (6)

Km = 491, 000 ⋅ Q3 dyn ⋅ cm−3 , (7)

Ltracℎea  = 10 ⋅ Q4 [cm], (8)

Lsub1 = 5 ⋅ Q5 [cm], (9)

where Ltrachea (related to the length of the trachea) and Lsub1 (related to sensor position on 

the neck-surface) are embedded in Zsub2 and Hsub1, respectively. The derivation of these 

terms is beyond the scope of this paper and details can be found in [33,40]. Given the Q 
factors above, the impulse response of neck-skin h(n) in the time domain is obtained by first 

taking the fast Fourier transform (FFT) of Tskin(ω) with N points, which becomes T skin (k)
with k = 0, 1, …, N − 1, where N is the number of FFT frequency points. Then, after forcing 

T skin(k) to be conjugate symmetric T skin(k) = T skin* (N − k) , we take the inverse FFT to 

obtain a real impulse response h(n). In this way, the resulting IBIF filter is implemented 

as a deterministic finite impulse response filter (FIR) of length N. Therefore, in the time 

domain, the IBIF scheme assumes that the GVV signal x(n) is convolved with the impulse 

response h(n) to produce an output signal y(n), which corresponds to the neck-surface 

acceleration. Since we are interested in estimating x(n), the discrete frequency response 

T skin(k) is inverted to yield Tskin (k) = 1/T skin (k) and, as with T skin(k), it is also forced to 

be conjugate symmetric, so when taking the IFFT the sequence h(n) is obtained, which is 

the impulse response of Tskin(k). Therefore, the GVV signal x(n) can be estimated through 

the convolution of the acceleration signal y(n) and the response h(n). One limitation of 

this approach is the assumption of fixed Q factors for each subject. However, these factors 

contain certain degree of uncertainty [34,41] due to small changes either in the mechanical 

properties of the neck-skin tissue, as well as changes in the effective length of the trachea 

when the speaker is voicing in continuous speech. Therefore, a better approach to estimate 

the GVV signal would be to consider the uncertainty associated to the estimation process 

with an adaptive filter.
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2.2. Formulation of IBIF Model Based on a Kalman Filter

Even though the IBIF algorithm performs well in laboratory settings where the calibration 

procedure is done with a Rothenberg mask, there are uncertainties related to the application 

of the IBIF filter in ambulatory settings. First, the position and arrangement of the sensor 

during in field monitoring might not match laboratory specifications, so the subject-specific 

parameters could change slightly. One approach for tracking relevant latent signals (i.e., 

GVV) of a given process (i.e., IBIF) based on related noisy/perturbed observations (i.e., 

neck-skin acceleration) is the use of a Bayesian approach, which allows to simultaneously 

estimate both the unknown signal and its uncertainty [42]. Under the assumption of linearity 

and Gaussian distributions for the unknown states, a Kalman Filter is the optimal Bayesian 

estimator. In this work, we propose an alternative formulation of IBIF combining the state-

space framework with the MA canonical form [43] obtained from the h(n) impulse response:

x(n + 1) = Ax(n) + w(n), (10)

y(n) = Cx(n) + v(n) . (11)

What follows is the instantiation of a Kalman filter from the model (10) and (11), to our 

particular problem, where x(n) is the state vector containing the GVV signal: x(n) = [x(n − N 
+ 1) x(n − N + 2) x(n − N + 3) ⋯ x(n)]T where N is the length of the skin-impulse response. 

Following [43], the transition matrix A is given by:

A =

0 1 0 ⋯ 0 0
0 0 1 ⋯ 0 0
⋮ ⋮ ⋱ ⋮ ⋮ ⋮
0 0 0 ⋯ 0 1
0 0 0 … 0 0

∈ ℝN × N,

and w(n) is a Gaussian process noise with zero mean and covariance matrix:

Rw =

0 0 … 0 0
0 0 … 0 0
⋮ ⋮ ⋱ ⋮ ⋮
0 0 … 0 0
0 0 … 0 σw2

∈ ℝN × N .

The initial condition is specified with the mean m0 = E(x0) and covariance P0 = E((x0 − 

m0)(x0 − m0)T) of the initial state x0.

The observation Equation (11) relates the accelerometer signal y(n) as the convolution 

between the unobserved state x and the neck-skin impulse response h(n) with coefficients:

C = ℎ(0) ℎ(1) ℎ(2) … ℎ(N − 1) T ∈ ℝ1 × N .
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According to (11), Gaussian measurement noise v(n) with mean zero and variance σv2 is 

assumed as the additive perturbation to the observed signal. Implementation of the standard 

MA Kalman filter for a discrete-time set n = 1, …, T is described in Algorithm 1:

The state matrix A is circular, and the state vector is defined by including the glottal flow 

for different delays. Therefore, when the filter is applied, states with different delays n − N + 

1, n − N + 2, …, n − 1 are estimated conditioned on the observations up to the current time 

index n, i.e., future information is used in the inference process. In this case, the structure 

of the Kalman filter in Equations (10) and (11) fulfill that of a fixed-lag smoother [44]. 

It is important to notice that the canonical MA framework assumes that the GVV signal 

follows a Gaussian distribution with zero mean and variance σW
2  (note that the last term in 

Equation (10) is x(n) = w(n), where w(n) ≈ N 0, σw2 .) In the following section, we propose 

a colored noise model that resembles a physiological glottal spectrum in accordance to the 

source-filter theory of voice production [45].

2.3. Glottal Flow Model for the Kalman Filter

According to Fant’s source-filter theory of speech production [45], the glottal excitation is 

assumed independent of the vocal tract. Even though there is evidence for certain cases of 

non-linear coupling between the glottal source and the vocal tract [25,40], the source-filter 

theory has served well for the development of glottal source modeling and estimation. In 

terms of modeling the glottal source, parametric time domain models have been proposed, 

such as the Rosenberg model of glottal pulse [46] and the Lijecrants-Fant (LF) model of the 

derivative of the glottal pulse [47]. These models are widely used and serve as templates to 

other more complex source modeling strategies [48,49]. In this work, we use the Rosenberg 

model to construct a glottal spectrum, due to its efficacy in modeling colored noise as a 

low-pass filter with fewer parameters than the LF model [50,51].

Rosenberg Model for the Glottal Pulse

A parametric model of the glottal pulse can be obtained from the Rosenberg model [46], 

which can be formulated as [51]:

g[n] =
0.5 1 − cos(π(n + 1))/N1 , 0 ≤ n ≤ N1 − 1,
cos 0.5π n + 1 − N1 /N2 , N1 ≤ n ≤ N1 + N2 − 1,
0, otherwise,

where N1 is the number of samples of the opening phase and N2 is the number of samples of 

the closing phase. For a sequence of 96 samples (equivalent to approx. 210 Hz fundamental 

frequency, pitch period of 4.8 msec., and sampling frequency fs = 20 kHz), with N1 = 25 and 

N2 = 10, the z-transform G(z) has the form:
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G(z) = z−33 ∏
k = 1

33
−bk

−1 ∏
k = 1

33
1 − bkz , (12)

where bk corresponds to the zeros of G(z), which can also be written in the following form:

G(z) = g[0] + g[1]z−1 + g[2]z−2 + ⋯ + g[N − 1]z−(N − 1),
= β0 + β1z−1 + β2z−2 + ⋯ + βN − 1z−(N − 1),

= ∑
k = 0

N − 1
βkz−k .

(13)

The glottal pulse time-domain waveform g[n] and its spectrum are plotted in Figure 1

The periodic comb excitation p[n] is modeled as one-sided quasi-periodic impulse train:

p[n] = ∑
k = 0

∞
γkδ n − kNp , (14)

which has z-transform:

P(z) = ∑
k = 0

∞
γkz−kNp = 1

1 − γz−Np
, (15)

where Np = fs/f0 (fundamental period in samples) and γ is a number close to 1 (e.g., 

0.999) to make the filter stable. The spectrum of the periodic input P(z) has a fundamental 

frequency of f0 = 210 Hz (Np = 96).

Therefore, P(z)G(z) is the z-transform of the glottal flow model (spectrum shown in Figure 

2). In the time-domain, the GVV signal can be represented by an ARMA model that can 

be constructed as a shaping filter (sf) driving the canonical MA model (see Equation (16)) 

[43,44]:

xsf(n) = − ∑
k = 1

p
αkxsf(n − k) + ∑

k = 0

q
βkw2(n − k), (16)

where xsf (n) is the state of the shaping filter, αk = −γk and βk are the kth coefficient of 

the AR and MA model, respectively, and w2(n) is Gaussian noise with mean 0 and variance 

σw2
2  . The state-space equation for this model is:

xSF(n + 1) = ASFxSF(n) + BSFw2(n), (17)

w1(n) = CSFxSF(n), (18)
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where xsf(n) = (xSF(n − p + 1) xSF(n − p + 2) … xSF(n))T is the state vector and p is the 

order of the AR model. Since the periodic input has Np poles, the order of the AR model is p 
= Np. ASF is the transition matrix p × p:

ASF =

0 1 0 … 0 0
0 0 1 … 0 0
⋮ ⋮ ⋱ ⋮ ⋮ ⋮
0 0 0 ⋯ 0 1

−αp −αp − 1 −αp − 2 ⋯ −α2 −α1

∈ ℝp × p,

BSF = 0 0…1 T ∈ ℝp × 1 and w2(n) is a stochastic driving noise with 

zero mean and variance σw2
2 . The MA equation Equation (18) contains 

CSF = βq βq − 2…β1 β0 ∈ ℝ1 × (q + 1) and the colored noise w1(n) ∈ ℝ is the dot product 

of CSF and xSF(n). Considering the source-filter theory, the colored noise model can be 

considered as modeling the GVV for the Kalman implementation of IBIF in Equation (19). 

A diagram of this augmented system is shown in Figure 3. The white noise w2(n) is the 

input to the shaping filter, the latter being the Rosenberg model convolved with the periodic 

input (Figure 2). The output of this filter is the colored noise w1(n) modeling the GVV 

signal, which is the state noise to the canonical MA system (physical system in Figure 

3), whose output z(n) is the observed signal, i.e., the neck-skin acceleration. The new 

state-space equations in discrete-time are:

XT(n + 1) = ATXT(n) + BTw2, (19)

z(n) = CTXT(n) + v(n), (20)

where

AT =
A CSF
0 ASF

(21)

BT =
0

BSF
(22)

CT = C 0 (23)

XT =
x

xSF
. (24)

An example of the estimated GVV using matrix AT is shown in Figure 4 and compared 

to the estimated GVV using the original matrix A. The upper plot shows the tracking of 

the first time step state x(n − N + 1 ∣ n), which corresponds to the smoothed (time delayed 
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estimate) GVV. Can be noticed that there are no differences between the original MA 

Kalman filter and the one incorporating a colored state noise. There is, however, a noticeable 

difference in the tracking of the last time step state x(n ∣ n) of the GVV, which corresponds 

to the the filtered GVV estimate considering all the observation information up to the current 

sample n. The original Kalman filter produces a zero-mean signal, while the modified 

Kalman filter with colored state noise modeling the glottal spectrum tracks an expected 

GVV signal.

The proposed implementation of the IBIF method in a Kalman filter framework has two 

important additions: the adaptive tracking of the GVV signal using the accelerometer and 

the modeling of state and observation noise. In the first case, the adaptive tracking is 

performed through the sample by sample correction of the predicted accelerometer signal 

by the Kalman gain K(n). In our hypothesis, the correction term helps to improve the 

estimation of the GVV signal by minimizing the deviations from the GVV signal obtained 

with IBIF. The process noise variance σw2 mL2/s2  (mL2/s2) and the observation noise 

variance Rv = σv2 cm2/s4  (cm2/s4) were selected using a grid-search process to compare 

the root-meansquare error (RMSE, mL/s) between the Kalman state x(n − N + 1) and a 

reference GVV signal obtained by inverse filtering of the OVV signal [9]. Figure 5 shows 

different values of σw2  and σv2 where multiple minima (RMSE = 17.268) are found within 

a range for one subject producing the vowel /a/. Most blue RMSE values in Figure 5 

correspond to RMSE = 17.273 which are very close to the minimum. Similar trends were 

found for other subjects and vowels. We selected σw2 = 100 and σv2 = 1 in this work, which 

are plausible values for the state and measurement noises due to the assumption of higher 

process noise due to glottal flow variance with low observation noise, while they produce the 

minimum RMSE value.

3. Experimental Setup

The human studies protocol used to collect the data for this study was approved by the 

Institutional Review of the Mass General Brigham (formerly, Partners Healthcare System) 

at the Massachusetts General Hospital. Study participants were 50 pairs of adult females 

(total of 100 subjects) with each pair comprised of one patient with PVH (diagnosed with 

vocal fold nodules) and one normal control subject matched to the patient by age and 

occupation. Due to the higher incidence of female patients with PVH than male in the 

overall population [52,53] and potential sex-specific effects (e.g., due to differences in 

fundamental frequency), only females were selected for this study. The patient matching 

was done to normalize for general vocal behavior differences. Clinical diagnoses were based 

on a complete team evaluation by laryngologists and speech-language pathologists at the 

Massachusetts General Hospital Voice Center that included (a) a complete case history, 

(b) endoscopic imaging of the larynx, (c) aerodynamic and acoustic assessment of vocal 

function [54], (d) a patient-reported Voice-Related Quality of Life questionnaire [55], and 

(e) a clinician-administered Consensus Auditory-Perceptual Evaluation of Voice assessment 

[56]. All patients were enrolled prior to the administration of any voice treatment. Written 

informed consent was obtained from all subjects. The average (standard deviation) age of all 

subjects was 25.0 (10.5) years old.
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Each subject was recorded reading a phonetically balanced text (Rainbow Passage, [57]), 

at a comfortable loudness level, using a Voice Health Monitor system that consists of 

an accelerometer attached to the front of the neck below the larynx and connected to an 

smartphone application [14]. Also, synchronized recordings of oral airflow volume velocity 

provided a reference signal from which glottal airflow could be extracted using standard 

inverse filtering [32]. The sampling frequency for each signal is 20,000 Hz with an average 

of 30 s per passage. A typical set-up of the accelerometer attached to the neck surface is 

shown in Figure 6.

3.1. IBIF Calibration

Each subject underwent a session in the laboratory to obtain a subject-specific calibration 

for the IBIF algorithm. The session involved simultaneous and synchronous recordings of a 

circumferentially vented mask-based OVV and neck-surface acceleration in an acoustically 

treated room. Each subject performed a series of sustained vowel gestures (/a/ and /i/) with 

a constant pitch using comfortable and loud (approximately 6 dB increase) voice. For each 

gesture, a bandpass-filtered (60–1100 Hz) oral airflow vowel segment was used to perform 

inverse filtering with a single notch filter (SNF) constrained to unitary gain at DC [35,36].

Once a glottal airflow approximation was obtained from the OVV signal, the previously 

introduced Q parameters were estimated using the optimization scheme described in [33]. 

These are the parameters describing the mechanical properties of the neck skin, as well as 

the length of the trachea and the position of the accelerometer with respect to the glottis 

[33].

3.2. Ground Truth GVV

A ground truth GVV signal is necessary to compare the performance of the proposed 

algorithm. However, a measurement of GVV is infeasible because there is no sensor 

available to directly measure the airflow in the glottis. An alternative is to obtain a GVV 

estimate from an external sensor, e.g., an oral flow mask. Following the same method for 

IBIF calibration (Section 3.1), the SNF method is used in this work to calculate the ground 

truth GVV. Even though this ground truth is an estimation of the true glottal flow (due to 

the difficulty of obtaining directly the latter signal), the SNF method has been successfully 

applied in previous work related to GVV estimation in sustained vowels [5,9,29,36,58]. 

Since we have running speech in this case, the optimization procedure that finds the best 

notch frequency and bandwidth is done in every 50 ms non-overlapping frame. A simple 

voice activity detector based on the autocorrelation method [51] is used to remove unvoiced 

frames. The signal is reconstructed from individual frames by using the overlap-and-add 

method [51].

3.3. Reducing Order of the IBIF Filter

In order to reduce the complexity of the Kalman filter, we need to reduce the size of the 

matrices A and C in Equations (10) and (11). This is necessary due to the computational 

cost of Kalman filter in the multiplications of state-space matrices of size 550 × 550 when 

processing running speech. Since A and C depend on the length of the neck-skin impulse 

response h(n), the latter is truncated in the middle region and then windowed (Hanning 
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function) to 350 points. This procedure seeks to maintain the performance of IBIF filter 

because most of the energy of the impulse response is concentrated in the middle section, 

while the extremes are considerably low in energy. As an example, Figure 7 shows a given 

h(n) in blue and the resulting truncated version in orange. The magnitude of the frequency 

response is shown in Figure 8.

3.4. Aerodynamic Features

The GVV signals from IBIF, SNF, and Kalman methods are divided in 50 ms, non-

overlapping frames. Voicing is detected by calculating the normalized autocorrelation of the 

ACC signal and the main peak exceeding a threshold of 0.8. If the frame is voiced, measures 

are extracted from the GVV waveform, its time-derivative, and spectrum. Figure 9a shows 

an ACC frame and (b) a GVV waveform, the spectrum (c) and the time-derivative waveform 

(d). The features used in this work are described in Table 1. Some of these aerodynamic 

features, such as AC flow (ACFL) and maximum flow declination rate (MFDR), have 

been shown to be useful to discriminate between subjects with PVH and healthy controls 

[5,9,16,29,58]. Instead of estimating time-domain features based on the detection of glottal 

opening and/or closing instants, the normalized amplitude quotient (NAQ) is calculated in 

this study, due to its robustness to noisy measurements and its correlation to the close 

quotient of the glottal cycle [59]. For time-domain measures (ACFL, MFDR, NAQ and f0), 

the median for all cycles within the 50 ms frame is obtained. The difference in magnitude of 

the first and second harmonic (H1–H2) is computed from the GVV spectrum.

4. Results

Table 2 shows summary statistics (mean ± standard deviation) of average values, per subject, 

of ACFL, MFDR, H1–H2, NAQ, and f0 from the Rainbow passage speech data, across 

PVH and healthy subjects, calculated with SNF, IBIF, and KF implementation of IBIF with 

colored noise model. Mean values are not statistically different for the three methods. Figure 

10 shows box plots for some of the measures. Overall, the distribution of measures is similar 

when using the standard IBIF and the modified Kalman filter algorithm.

From Table 3, the mean values of ACFL and MFDR from healthy subjects are not 

significantly different between the standard IBIF, the modified Kalman filter, and the 

ground-truth GVV (one-way ANOVA: F = 1.8, p = 0.2 for ACFL, F = 2.7, p = 0.07 for 

MFDR). Therefore, both IBIF and the modified Kalman filter have similar ACFL values 

comparable to the ground-truth GVV. Instead, ACFL from PVH subjects are significantly 

different between the standard IBIF and the ground-truth GVV (F = 4.1, p = 0.02), while the 

modified Kalman does not have significant differences withe the same ground-truth. Similar 

to ACFL from healthy subjects, MFDR from the same group do not show significantly 

differences between the two methods and the ground-truth GVV. However, there was a small 

but significantly difference between the modified Kalman filter and the ground-truth GVV 

for PVH subjects (F = 3.3, p = 0.04), indicating that MFDR from the modified KF does 

not estimate MFDR as well as the standard IBIF, when compared to the ground-truth of 

that group. For all other measures, there were not significantly differences, in which either 
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case, the modified KF or standard IBIF could provide similar mean results comparable to the 

ground-truth measure.

The root-mean-square-error (RMSE) between the KF implementation and the ground-truth 

GVV (RMSEKF) and the RMSE between the standard IBIF and the ground-truth GVV 

(RMSEIBIF) were calculated for each subject with voiced frames from the Rainbow Passage. 

The percentage of the error difference Δ = (RMSEKF − RMSEIBIF)/RMSEIBIF are shown 

in Table 4 as the median and interquartile range for each PVH and healthy group for 

all the glottal features. The results indicate an improvement on the median of ACFL for 

both healthy and pathological using the KF implementation compared to the standard IBIF. 

Other features show medians indicating IBIF provides a better estimate of the ground-truth 

signal. However, it is worth to notice that there is a large dispersion of Δ’s for all subjects, 

indicating that some subjects estimates have a large improvement by using KF as well. 

Moreover, ACFL estimated from the neck-surface acceleration signal is a key measure able 

to discriminate between PVH subjects from healthy controls [29] in steady vowels, and 

which the KF implementation can provide better estimates.

We can observe some differences between the IBIF and its KF implementation when 

estimating the peak-to-peak amplitude (e.g., ACFL). Figure 11 shows a voiced segment 

of the Rainbow passage from a vocally healthy female. The KF method (green line) 

estimates a reasonably good fit to the GVV waveform from the SNF method (RMSE = 

24.9 mL/s). However, the IBIF method does not follow the same ground truth signal (RMSE 
= 42.7 mL/s). The peak-to-peak amplitude is smaller, and the close phase contains a large 

resonance. However, the KF method improves the estimation of the peak-to-peak amplitude 

for the same segment. There is some phase distortion in the closed and opening phase, but 

overall, the waveform has a closer match to the SNF method than IBIF. The errors to IBIF 

could be attributed to the production of vowels whose spectra are substantially different to 

a steady /a/ vowel, which in some cases could affect estimated glottal features up to 50% in 

error [60].

Figure 12 shows a voiced segment from a PVH female subject. In this case, the IBIF 

methods overestimates the peak-to-peak values from the SNF method (RMSE = 229.4 

mL/s). Also, the opening phase is faster compared to ground truth. The KF method 

compensates the large amplitude of the IBIF output waveform, while at the same time it 

gets closer to the ground truth signal in the opening and close phase (RMSE = 76.3 mL/s). 

As previously stated, the IBIF and, therefore, the model used by the Kalman filter, are both 

calibrated using a procedure based on fitting the vowel /a/. In these cases, the method based 

on Kalman follows the reference signal a bit closer than IBIF. Even though the Kalman 

filter is an alternative implementation of the IBIF filter, the adaptive filtering nature of 

Kalman allows to track better the ground truth signal than IBIF. Similar trends were found in 

different subjects and tokens.

5. Discussion

The proposed method based on the modified MA framework and the Kalman filter algorithm 

is an adaptive implementation of the IBIF scheme. Therefore, it has some differences with 
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the original IBIF design, namely a forward prediction of the accelerometer signal (i.e., 

no filter is inverted) and a truncation of the finite impulse response required to reduce 

the computational burden. Despite these differences, in this paper we have shown that 

the Kalman filter implementation allows for enhancing the glottal airflow estimates, as it 

optimally adapts its latent states to better predict the accelerometer signal, thus resulting in a 

closer estimation of the glottal airflow from a Rothenberg mask in benchmark experiments. 

It is important to note that there are still differences between the Kalman filter glottal airflow 

estimates and the reference signal from the Rothenberg mask, due to supraglottal inverse 

filtering errors and measurement uncertainty of the oral airflow signal [61]. Small, but 

significant, differences between the mean values of ACFL and MFDR from PVH subjects 

can be observed using the IBIF and Kalman method, respectively. These are difficult to 

assess, particularly, for high-pitched female pathological voices [62]. For example, the 

method of closed phase covariance requires several samples in the closed phase of the glottal 

flow, which are difficult to obtain for high-pitched subjects [63].

The signal deviations between the Kalman filter and the original (time invariant) FIR 

IBIF glottal airflow estimates are relatively small, although the former better estimates the 

amplitude, or peak-to-peak flow, compared to IBIF. These differences can be relevant in 

some cases, depending on the application. In the case of ACFL, there is an improvement 

on its estimation using KF from running speech, which adds value in a clinical setting, 

where ACFL has proven to be a key discriminant measure between health subjects and 

subjects with PVH only for steady vowels [29]. When assessing the relevance of these 

differences in the context of a classification task to discriminate between vocal fold nodules 

patients and control subjects using ambulatory accelerometer data, no significant variations 

in the classification were found, even when comparing frames with low and high error 

(or deviation) [64]. Thus, the classification task for long periods of time seems to be 

fairly insensitive to the uncertainty of the airflow estimates from IBIF model parameters, 

sensor positioning, and other effects. This supports the use of the original FIR version of 

the IBIF scheme for such classification tasks, which indicates that factors affecting the 

classification performance in [16] were not degraded by the airflow estimates. However, 

other applications more sensitive to signal quality (for instance, the estimation of glottal 

biomechanics and assessment of tissue-flow-acoustic interaction [65]) can further benefit 

from the enhancement offered by the proposed Kalman implementation to estimate more 

accurate glottal airflow in running speech and/or ambulatory scenarios.

The main differences between the Kalman filter and SNF approach can be observed in 

H1–H2 and NAQ measures, which are related to low-frequency content and closed quotient, 

respectively. The IBIF method shows similar differences as well. In order to better estimate 

these measures, it is necessary to correctly detect the upward and downward slope of the 

glottal cycle, as well as the closed phase portion. Undue modelled rapid changes in the 

signal trajectory might induce errors in the Kalman approach which affect the detection of 

those landmarks in the glottal cycle. In addition, for some subjects, errors in the parameters 

from IBIF due to calibration could carry through to the Kalman implementation since the 

latter is built upon the IBIF scheme.
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The main current limitation of the proposed Kalman filter approach is the relatively 

high computational cost due to the FIR model used, which can become a problem when 

processing many hours of recordings (as in ambulatory monitoring) in numerous subjects. 

Future efforts can be devoted to optimizing the approach via more efficient methods, 

using for example an autoregressive model in the construction of the state space model. 

Also, an optimal tuning of process and observation covariance matrix can be explored to 

improve the estimation. Other variations in the construction, e.g., addition of a random walk 

term or an extended Kalman filter could be investigated as well to encompass non-linear 

implementations of the accelerometer signal to glottal airflow signal transformation. Flow 

estimation can also be improved by considering the backward Kalman smoother algorithm, 

at the expense of an increase in the computational burden and the memory requirements. 

New model strategies suitable for Kalman filter and smoother would be explored in the 

future [66].

6. Conclusions

A Kalman filter implementation of the subglottal impedance-based inverse filtering scheme 

was introduced to enhance the estimated glottal airflow from recordings of a neck-surface 

vibration signal and to assess the relevance of model uncertainty in such estimates. The 

proposed approach can adapt the signal estimates to correct for inverse filtering deviations, 

as observed in benchmark experiments with different sustained vowels. Future work is 

related to the exploration of other applications that can further benefit from the Kalman filter 

enhancement when estimating glottal airflow and to reduce its computational complexity.
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ANOVA Analysis of Variance

FFT Fast Fourier Transform

FIR Finite Impulse Response

f 0 Fundamental Frequency

H1–H2 Difference of Magnitudes between First and Second Harmonic

KF Kalman Filter

MA Moving Average

MFDR Maximum Flow Declination Rate

NAQ Normalized Amplitude Quotient

OVV Oral Volume Velocity

PVH Phonotraumatic Vocal Hyperfunction

RMSE Root-Mean-Square-Error

SNF Single Notch Filter

VH Vocal Hyperfunction
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Figure 1. 
Rosenberg model in time domain (only first 50 samples shown, top panel) and the 

magnitude of its spectrum (bottom panel).
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Figure 2. 
Spectrum of periodic input P(z) multiplied in the frequency domain by Rosenberg model 

G(z), which corresponds to an ARMA model of the glottal source (f0 = 210 Hz).
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Figure 3. 
Diagram of modified Kalman Filter with colored state noise process. The physical system 

corresponds to the standard MA Kalman Filter, with a shaping Kalman filter based on 

a autoregressive noise process from the spectrum of a periodic Rosenberg glottal flow 

excitation.
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Figure 4. 
Top panel: GVV estimates (x(n − N + 1 ∣ n)) using A (blue) and Alp (red). Bottom panel: 

GVV estimates (x(n ∣ n)) using A (blue) and Alp (red).
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Figure 5. 
RMSE values for different combinations of σw2  and σv2.
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Figure 6. 
Experimental setup with oral airflow (pneumotachograph) mask and accelerometer sensor 

(ACC) on neck-surface location.
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Figure 7. 
Neck-skin impulse response for a healthy female subject, full impulse (blue) and truncated 

version with a Hanning window (orange).
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Figure 8. 
Neck-skin frequency response for a healthy female subject, full length (blue) and truncated 

version with a Hann window (red).
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Figure 9. 
(a) ACC frame, (b) GVV frame, (c) spectrum from (b), and (d) time-derivative from (b).

Cortés et al. Page 28

Appl Sci (Basel). Author manuscript; available in PMC 2022 October 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 10. 
Distribution of average measures from the Rainbow passage for 50 vocally-healthy subjects 

(left panel in each subplot) and 50 PVH subjects (right panel in each subplot): (a) ACFL, (b) 

MFDR, (c) H1–H2, and (d) NAQ
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Figure 11. 
Section from the Rainbow passage (healthy female) with estimations of GVV: Kalman filter 

(solid and dot green), IBIF (dashed red), and single notch filter (solid blue). The estimation 

of GVV using Kalman filter includes ±2σ (standard deviation) on the green shaded region.
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Figure 12. 
Section from the Rainbow passage (female PVH) with estimations of GVV: Kalman filter 

(solid and dot green), IBIF (dashed red), and single notch filter (solid blue). The estimation 

of GVV using Kalman filter includes ±2σ (standard deviation) on the green shaded region.
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Table 1.

Frame-based derived glottal airflow measures.

Glottal Airflow Measures Description Units

ACFL Peak-to-peak glottal airflow mL/s

MFDR Negative peak of the first derivative of the glottal waveform L/s2

H1–H2 Difference between the magnitude of the first two harmonics dB

Normalized Amplitude Quotient (NAQ) Ratio of ACFL to MFDR divided by the glottal period –

Fundamental frequency (f0) Inverse of the glottal period Hz
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Table 2.

Mean and ± standard deviation from a pool of average values of ACFL, MFDR, H1–H2, NAQ, and f0 

extracted from the Rainbow Passage (voiced frames only).

ACFL MFDR H1–H2 NAQ f 0 

PVH

SNF 238.8 ± 74.9 279.5 ± 102.0 11.1 ± 1.30 0.19 ± 0.02 202.4 ± 20.1

IBIF 306.8 ± 147.7 346.8 ± 178.6 10.3 ± 4.89 0.20 ± 0.05 202.6 ± 20.3

Kalman 287.6 ± 131.3 357.3 ± 199.1 9.69 ± 5.51 0.19 ± 0.05 200.8 ± 20.1

Healthy

SNF 184.5 ± 47.0 199.7 ± 77.8 10.7 ± 1.49 0.19 ± 0.02 204.6 ± 20.9

IBIF 212.2 ± 82.9 260.0 ± 122.1 8.73 ± 3.63 0.19 ± 0.04 204.6 ± 21.0

Kalman 199.7 ± 77.8 266.1 ± 138.3 7.73 ± 3.85 0.18 ± 0.04 203.5 ± 21.7
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Table 3.

One-way ANOVA table with mean values of glottal flow features for both Healthy and PVH subjects 

when comparing the standard IBIF, the modified Kalman filter, and the ground-truth GVV (* Statistically 

differences: p < 0.05).

ANOVA ACFL MFDR H1–H2 NAQ

Healthy
F 1.79 2.69 10.9 2.36

p-value 0.17 0.07 * >0.001 0.1

PVH
F 4.12 3.27 1.39 0.74

p-value *0.02 *0.04 0.25 0.48
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Table 4.

Median (interquartile range) of RMSE Δs in percentage (%) of the modified Kalman filter with respect to the 

standard IBIF.

ACFL MFDR H1–H2 NAQ

Healthy −9.28 (41.6) 14.2 (27.5) 1.13 (22.2) 5.17 (18.4)

PVH −9.95 (39.9) 7.73 (37.5) 2.45 (27.2) 0.76 (18.2)
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