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Abstract

Background: Marine sponges can associate with abundant and diverse consortia of microbial symbionts. However,
associated bacteria remain unexamined for the majority of host sponges and few studies use phylogenetic metrics to
quantify symbiont community diversity. DNA fingerprinting techniques, such as terminal restriction fragment length
polymorphisms (T-RFLP), might provide rapid profiling of these communities, but have not been explicitly compared to
traditional methods.

Methodology/Principal Findings: We investigated the bacterial communities associated with the marine sponges
Hymeniacidon heliophila and Haliclona tubifera, a sympatric tunicate, Didemnum sp., and ambient seawater from the
northern Gulf of Mexico by combining replicated clone libraries with T-RFLP analyses of 16S rRNA gene sequences. Clone
libraries revealed that bacterial communities associated with the two sponges exhibited lower species richness and lower
species diversity than seawater and tunicate assemblages, with differences in species composition among all four source
groups. T-RFLP profiles clustered microbial communities by source; individual T-RFs were matched to the majority (80.6%) of
clone library sequences, indicating that T-RFLP analysis can be used to rapidly profile these communities. Phylogenetic
metrics of community diversity indicated that the two sponge-associated bacterial communities include dominant and
host-specific bacterial lineages that are distinct from bacteria recovered from seawater, tunicates, and unrelated sponge
hosts. In addition, a large proportion of the symbionts associated with H. heliophila were shared with distant, conspecific
host populations in the southwestern Atlantic (Brazil).

Conclusions/Significance: The low diversity and species-specific nature of bacterial communities associated with H.
heliophila and H. tubifera represent a distinctly different pattern from other, reportedly universal, sponge-associated
bacterial communities. Our replicated sampling strategy, which included samples that reflect the ambient environment,
allowed us to differentiate resident symbionts from potentially transient or prey bacteria. Pairing replicated clone library
construction with rapid community profiling via T-RFLP analyses will greatly facilitate future studies of sponge-microbe
symbioses.
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Introduction

Sponge-microbe symbioses represent novel associations between

an ecologically successful phylum of basal invertebrates and

genetically diverse consortia of distinct microbial lineages [1–3].

Symbiotic bacterial communities often exhibit high abundance

within the sponge host, comprising up to 35% of total holobiont

biomass [4], while the biodiversity of sponge-associated microor-

ganisms includes representatives from most major clades of

Bacteria [5,6] and Archaea [7–9]. In fact, recent deep sequencing

of sponge microbiota revealed the highest diversity of bacterial

symbionts for any invertebrate host investigated to date [10]. A

multitude of metabolic functions underlies this extensive diversity,

including nitrification [9,11–13], denitrification [14], nitrogen

fixation [15,16], sulfur oxidation [17], and carbon fixation [18–

21]. Symbiotic microbial communities can significantly impact

host sponge ecology and evolution through the provision of

supplemental nutrition [21–25] and the production of secondary

metabolites [26] that deter predators, competitors and fouling

organisms [27].
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The broad implications of sponge-bacterial symbioses have

prompted a recent surge in the field of sponge microbiology [1–3],

but many fundamental questions remain unresolved. For example,

it is often unclear whether these symbionts are generalists that

associate with all sponges at a particular location, or specialists that

associate with a single host species. In addition to mutualistic

symbionts, bacteria recovered from sponges may also represent: 1)

a food source that is selectively filtered and consumed, 2) parasitic

microbes acting as invasive pathogens [28,29], 3) fouling species

[30,31], or 4) transient microorganisms in the ambient environ-

ment at the time of sample collection. Numerous comparisons of

sponge-derived microbes to environmental bacteria using culture-

dependent and culture-independent (i.e., molecular) techniques

have reported clear distinctions between sponge-associated

microbes and ambient sediment [32] and seawater bacteria

[5,8,10,32–38].

Molecular evidence initially revealed 14 sponge-associated

bacterial clades that are absent from seawater bacterial commu-

nities [5]. These phylogenetically diverse and sponge-specific

clades inhabit taxonomically diverse host species from geograph-

ically distant regions [5,39,40] and are hypothesized to represent a

‘‘universal’’ bacterial community within sponge hosts. An

extensive phylogenetic analysis of over 1,500 sponge-derived

bacterial 16S rRNA gene sequences available in the GenBank

database showed that nearly one-third (32%) of all sponge-

associated bacteria fall into monophyletic, sponge-specific clusters

[2]. Other studies suggest an even higher degree of host-specificity

between sponges and bacteria, with distinct symbiont 16S rRNA

phylotypes consistently associated with particular host species

[8,32,35,41–44] or genera [45] and some molecular data

supporting potential host-symbiont coevolution [46,47].

Investigations of stability and fluctuations in sponge-bacteria

symbioses, in conjunction with on-going studies of diversity, have

begun to assess the dynamics of host-symbiont relationships

[35,41,48–51] and the factors that may disrupt the symbiosis, such

as pollutants [52], thermal stress [53,54], and disease outbreaks

[13,55]. Such studies typically involve large sample sizes and

employ DNA fingerprinting techniques to rapidly profile symbiont

communities, since traditional clone library construction and DNA

sequencing become increasingly laborious and expensive with

larger sets of samples [56]. In particular, denaturing gel gradient

electrophoresis (DGGE) analyses have been prominent in the

study of sponge microbiology [8,35,40,41,43,48,51,57–60]. In

addition, a few studies have used terminal restriction fragment

length polymorphism (T-RFLP) analyses to monitor surface-

fouling communities [31] and archaeal [13,61] and bacterial

symbionts [43,51,62]. General patterns of microbial community

profiles are often similar between DGGE and T-RFLP [43,51],

although increased reproducibility and resolution has been

observed with T-RFLP analyses compared to DGGE analyses

[43,51], likely due to the standardization of T-RFLP analyses via

an automated capillary electrophoresis platform. In fact, T-RFLP

analysis revealed similar community-level patterns as massively

parallel pyrosequencing in Red Sea sponges [62].

Accurate characterization of sponge-associated microbial com-

munities is an essential step in resolving sponge-microbe

interactions and understanding the importance of these symbiotic

assemblages to their host sponges. The patterns of host-specificity

and community structure revealed to date are derived from a

relatively small number of host species, compared to extant sponge

biodiversity (over 8,000 species [63]); therefore, further study of

additional sponges from varying geographical regions is required

to understand the prevalence and ecological implications of

hosting specialist and generalist symbiont communities. Moreover,

since most studies of sponge-symbiont associations to date lack

sufficient replication for rigorous statistical analyses of host-

specificity, we sought to demonstrate the utility of a replicated

sampling strategy.

The sponge Hymeniacidon heliophila, commonly termed the ‘‘sun

sponge,’’ inhabits shallow-water, near-shore environments

throughout the western Atlantic, Gulf of Mexico and Caribbean

[64], including intertidal zones [65] and artificial substrates [66].

H. heliophila also colonizes pilings of offshore oil and natural gas

drilling platforms in the northern Gulf of Mexico (this study) and

appears to represent a pollution-tolerant species able to adapt to

eutrophic environmental conditions [67]. The local abundance

and widespread distribution of H. heliophila from high-impact

coastal zones and artificial substrata to natural reef environments

renders this species ideal for the study of biogeography, holobiont

fitness, symbiont dynamics and disturbance responses in sponge-

microbial symbioses.

The associated bacterial and archaeal communities of H.

heliophila have been investigated for host populations in the

southwestern Atlantic [32,67], but remain unknown for most of

the species’ geographic range. In this study, we investigated the

bacterial community associated with H. heliophila from the

northern Gulf of Mexico, along with the communities associated

with a sympatric sponge, Haliclona tubifera, a sympatric tunicate,

Didemnum sp., and the ambient seawater. The inclusion of a

distantly related sponge host and a non-sponge host from the same

location as the focal species, H. heliophila, allowed us to statistically

test whether unique taxa were found in each host or whether these

hosts share a common microbial community derived from the

surrounding seawater. Our study entailed three specific aims: (1) to

characterize and compare the community structure, diversity and

specificity of these microbial communities using replicated 16S

ribosomal RNA (rRNA) gene sequence libraries and phylogenetic

metrics of community diversity, (2) to assess the ability of T-RFLP

analyses to rapidly profile these microbial communities and the

congruence between T-RFLP and 16S rRNA gene sequence data,

and (3) to compare the diversity and specificity of microbial

communities from H. heliophila in the Gulf of Mexico to

populations in the southwestern Atlantic and other sponge-

associated communities.

Results

Diversity and composition of microbial communities
A total of 389 bacterial sequences were recovered from sponge,

tunicate, and seawater samples, representing 159 unique bacterial

operational taxonomic units (OTUs), according to an OTU

definition of 99% similarity (Figure 1, Figure 2, Figure 3, Figure

S1). These sequences were deposited in GenBank as accession

numbers EU315321-EU315680 and JF824738-JF824766 (Table

S1). The combined clone library was dominated by 4 OTUs that

accounted for 36.7% of all clones and corresponded to 3

representatives of Alphaproteobacteria (Figure 2) and 1 of Gammapro-

teobacteria (Figure 3). Recovered sequences spanned 13 bacterial

lineages, with Alphaproteobacteria accounting for nearly half (46.9%)

of all screened clones (Table 1, Table S1). Other common lineages

included Gammaproteobacteria, Cyanobacteria, Bacteroidetes, and Actino-

bacteria, together accounting for an additional 45.6% of all clones

recovered (Table 1, Table S1). Several lineages were recovered

solely from one source, including Acidobacteria in Haliclona tubifera

and Nitrospira in Didemnum sp. (Table 1, Figure 1, Figure S1).

Bacterial communities exhibited very little overlap in OTU

composition across sources. The vast majority of bacterial

sequences (92.8%) were recovered exclusively from one source.

Sponge-Bacteria Associations in the Gulf of Mexico
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Furthermore, different proportions of major taxonomic groups

were recovered from each source (Table 1; G = 63.5, df = 9,

P,0.001). Hymeniacidon heliophila was associated with a greater

proportion of Alphaproteobacteria than expected by chance, while H.

tubifera had a much larger proportion of Gammaproteobacteria than

observed in any other group. A third sponge, Halichondria sp. was

only collected twice; its bacterial community was dominated by

Alphaproteobacteria (Table S1, Figure 2), but due to the lack of

sufficient replicate samples, this species was excluded from

subsequent statistical and T-RFLP analyses. Cyanobacteria were

over-represented in Didemnum compared to the other sources,

while seawater and tunicate samples included a greater proportion

of Bacteroidetes and rare taxa than sponge samples (Table 1).

The H. heliophila bacterial community exhibited the second

highest number of unique OTUs (n = 37) and was comprised

mostly of Alphaproteobacteria (63.0%; Table 1, Figure 2) and

Gammaproteobacteria (20.0%; Table 1, Figure 3). Chao1 estimation

predicted that 75 OTUs were present in the H. heliophila bacterial

community, with the observed OTUs accounting for 49.3% of the

total community. A single dominant specialist Alphaproteobacteria

symbiont was recovered, accounting for over one-third (34.1%) of

all clones and present in all samples of H. heliophila. Six OTUs

(34.1% of clones) represented common specialist symbionts, 11

OTUs (10.4%) were rare specialist symbionts, and the remaining

19 OTUs (21.5%) were classified as generalist symbionts.

Singleton OTUs, those occurring only once in the clone library,

accounted for the majority (n = 23, 62.6%) of recovered OTUs,

with most singleton OTUs (n = 15, 65.2%) closely related to free-

living bacteria (Table S1).

The Haliclona tubifera bacterial community exhibited the lowest

number of unique OTUs (n = 14), and was comprised mostly of

Gammaproteobacteria (53.3%; Table 1, Figure 3) and Alphaproteobac-

teria (24.4%; Table 1, Figure 2). Chao1 estimation predicted that

30 OTUs were present in the H. tubifera bacterial community, with

the observed OTUs accounting for 46.6% of the total community.

A single dominant specialist Gammaproteobacteria symbiont was

recovered, accounting for over half (51.1%) of all clones and

present in all samples (Figure 3). Three OTUs (8.9% of clones)

represented rare specialist symbionts, while the remaining 10

OTUs (40.0% of clones) were classified as generalist symbionts.

Singleton OTUs accounted for the majority (n = 10, 71.4%) of

recovered OTUs, with most singleton OTUs (n = 8, 80.0%) closely

related to free-living bacteria (Table S1).

The seawater bacterial community exhibited the highest

number of unique bacterial OTUs (n = 65) and, similar to the H.

heliophila and H. tubifera bacterial communities, was comprised

mostly of Alphaproteobacteria (48.9%; Table 1, Figure 2) and

Gammaproteobacteria (20.0%; Table 1, Figure 3). Chao1 diversity

estimation predicted that 155 OTUs were present in this seawater

community, with the observed OTUs accounting for 41.9% of the

total community. A single Alphaproteobacteria OTU dominated the

seawater bacteria; this OTU accounted for 23.0% of the clone

library and was recovered from all 9 samples (Figure 2). Another

16 OTUs (39.3% of clones) were common, recovered from more

than one sample, and 48 OTUs (37.8%) were rare, recovered from

a single seawater sample. Singleton OTUs (n = 45, 69.2%)

accounted for the majority of bacterial OTUs derived from

seawater (Table S1).

The Didemnum sp. bacterial community exhibited 35 unique

OTUs, similar to the H. heliophila-associated community, despite

two-thirds fewer clones screened. The Didemnum community was

comprised mostly of Gammaproteobacteria (28.9%; Table 1, Figure 3)

and Cyanobacteria (22.2%; Table 1, Figure 1). Chao1 estimation

predicted 81 OTUs in the Didemnum sp. bacterial community, with

the observed OTUs accounting for 43.2% of the estimated OTU

richness. The Didemnum-associated bacteria displayed a more even

community, with no dominant OTUs present and no OTUs

recovered from all samples. One OTU (6.7% of clones)

represented a common specialist symbiont, isolated from 2 of 3

Didemnum sp. samples. Sixteen OTUs (40.0% of clones) represent-

ed rare specialist symbionts, while the remaining 18 OTUs (53.3%

of clones) were classified as generalist symbionts. Singleton OTUs

accounted for the majority (n = 27, 77.1%) of recovered OTUs,

with less than half of singleton OTUs (n = 13, 48.1%) closely

related to free-living bacteria (Table S1).

Comparative analysis of microbial communities
Both traditional ecological metrics and molecular phylogenetic

metrics revealed significant differences among the bacterial

communities associated with different sources. The seawater and

tunicate-associated bacterial communities were significantly more

species-rich and diverse than sponge-associated bacterial commu-

nities, in terms of observed species richness (ANOVA, P,0.05;

Table 2), Shannon diversity index (ANOVA, P,0.05; Table 2),

and rate of unique OTU accumulation (ANCOVA, P,0.05;

Figure S2). In addition to differences in OTU richness and

diversity, the community structure of H. heliophila associated

bacteria (relative abundances and presence-absence of OTUs)

differed significantly from those of the bacterial communities in

ambient seawater, the sympatric sponge H. tubifera and the

sympatric tunicate Didemnum sp. (ANOSIM, P,0.05; Table S2,

Figure 4). The community structure of H. tubifera associated

bacteria also differed significantly from ambient seawater bacterial

assemblages when considering relative abundance of OTUs

(ANOSIM, P,0.05; Table S2, Figure 4) but not when considering

the presence-absence of OTUs (ANOSIM, P = 0.06; Table S2),

indicating that the observed difference was due to the high relative

abundance of a single unique phylotype of Gammaproteobacteria. In

addition, the bacterial communities in H. tubifera were not

significantly dissimilar to those recovered from the tunicate

Didemnum sp. (ANOSIM, P = 0.10, Table S2, Figure 4).

Phylogenetic diversity analyses confirmed the presence of

significant differences among the four bacterial communities

(LIBSHUFF, P,0.001 among sources and all pairwise compar-

isons; AMOVA, P,0.001 among sources; Table S3), with

Hymeniacidon, Didemnum, and seawater harboring distinct phyloge-

netic lineages of bacteria (P-test, P,0.005 when comparing these

three sources, Table S3) but not H. tubifera (P-test, P.0.23, Table

S3). Both sponge-associated bacterial communities were signifi-

cantly clumped, or phylogenetically under-dispersed (Table S4),

Figure 1. Phylogeny of bacterial 16S rRNA gene sequences recovered from sponges, tunicates and seawater. Terminal node labels
denote the sequence source and GenBank accession number; for condensed clades (gray triangles) the total number of sequences (in parentheses),
sequences from this study (abbreviations) and bootstrap support (%) for each clade are shown. Bold labels highlight individual sequences or clades
containing sequences from in this study. Tree topology was constructed using maximum likelihood criteria and numbers on nodes depict bootstrap
support (100 replicates; values ,50% not shown). Condensed clades for Alphaproteobacteria and Betaproteobacteria+Gammaproteobacteria are
expanded in Figure 2 and Figure 3, respectively. The full phylogeny is available as supplemental material (Figure S1). GOM = Gulf of Mexico seawater,
HYM = Hymeniacidon heliophila, HTU = Haliclona tubifera, HCH = Halichondria sp. and DID = Didemnum sp.
doi:10.1371/journal.pone.0026806.g001
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likely a result of the unique lineages of bacterial phylotypes that

dominated these assemblages.

Bacterial communities were similar among collection locations

(i.e., drilling platforms). An ANOSIM conducted with collection

location as a factor revealed no significant differences (P = 0.33)

among platforms. Likewise, comparisons of average species

richness, the Shannon index, evenness, and the Chao1 estimator

were not significantly different among platforms (all P.0.14).

Although an AMOVA comparing platforms found no significant

variation (FST = 0.010, P = 0.937), a P-test revealed significant

lineage sorting among locations (P,0.001), even when seawater

samples were excluded. This pattern could be created by the

strong influence of water column bacteria on the community

associated with H. tubifera, because while unique lineages were

present at each location, the total amount of genetic variation did

not differ among locations.

Comparison of recovered bacterial sequences to the GenBank

database revealed a unique pattern of affiliation with previously

reported sources of bacteria in each of the four bacterial

communities (G = 623.1, df = 9, P,0.001; Figure 5). The vast

majority (89%) of seawater clones were closely related ($99%

identity) to other bacterioplankton-derived sequences (Figure 5).

Sponge-associated bacterial communities exhibited some overlap

with seawater microbes, with 17.0% (H. heliophila) and 37.8% (H.

tubifera) of clones matching closely ($99% identity) to bacterio-

plankton sequences; however, the majority of clones from these

libraries matched to other invertebrate-derived sequences or were

distantly related (,97% identity) to seawater bacteria. In H.

heliophila, over half of all clones (n = 68, 50.4%) matched to

sequences derived from H. heliophila in Brazil (Turque et al. 2008),

with the majority of these clones (n = 58, 85.3%) exhibiting nearly

identical sequence similarity ($99%). In contrast, bacterial clones

from H. tubifera only rarely matched to other sponge-derived

sequences (n = 2, 4.4%). Rather, these communities were most

commonly matched to coral-derived sequences (n = 25, 55.5%),

due largely to the close relationship between the single dominant

symbiont in H. tubifera and coral-associated bacteria. Bacterial

clones recovered from Didemnum sp. matched to sequences derived

from a variety of sources, with only 1 singleton OTU matching to

another ascidian-derived sequence (GenBank accession number

DQ860071 [68]). Other clones from Didemnum sp. were related to

bacteria derived from the sponge Tethya californiana (n = 6, 13.3% of

clones [69]), various coral species (n = 11, 24.4%) and marine

sediment (n = 9, 20%).

Phylogenetic analysis of microbial communities
Phylogenetic analysis revealed that in H. heliophila bacterial

communities, several symbiont lineages were present in hosts from

both the Gulf of Mexico and the southwestern Atlantic, forming

shared monophyletic clades or closely related sister taxa (Figure 1,

Figure 2, Figure 3). In particular, 4 well-supported monophyletic

clades were recovered that were comprised solely of sequences

derived from H. heliophila (Figure 1, Figure 2, Figure 3;

‘‘GOM+Brazil’’ clades), including the dominant Alphaproteobac-

teria-affiliated phylotype in H. heliophila from the Gulf of Mexico

that also exhibited high relative abundance (n = 13, 20.6% of

clones) in H. heliophila from Brazil [32]. Notably, related bacterial

sequences were recovered from sympatric Halichondria sp. samples

in the Gulf of Mexico; these sequences formed the dominant

symbiont phylotypes of this host (n = 25, 83.3% of clones). Other

H. heliophila-derived symbiont clades were affiliated with Alphapro-

teobacteria (n = 2; Figure 2) and Gammaproteobacteria (n = 1; Figure 3).

A final sequence cluster was affiliated with Gammaproteobacteria

(Figure 3) and contained clones derived from Halichondria spp.

(n = 3) in addition to H. heliophila from the Gulf of Mexico (n = 12)

and Brazil (n = 10). In total, these shared symbiont clades

accounted for 65.2% and 42.9% of bacterial sequences derived

from H. heliophila in the Gulf of Mexico and Brazil, respectively.

The remaining clones, specific to a single geographic region, were

affiliated with diverse bacterial phyla (e.g., Bacteroidetes, Deferribac-

teres and others) and closely matched seawater bacterioplankton

(e.g., Planctomycetes and Verrucomicrobia) or formed distinct symbiont

clades specific to one host population (e.g., Spirochaetes and

Deltaproteobacteria clones in H. heliophila from the Gulf of Mexico).

Phylogenetic analysis also revealed no overlap between the

sponge-associated bacterial communities recovered in this study

and previously described sponge-specific lineages [2,5]. A single

sequence was recovered from BLAST searches that corresponded

to a sponge-specific symbiont lineage: a Nitrospira-affiliated clone

from Theonella swinhoei (AF434964 [5]) that matched most closely

(89.5% sequence identity) to a Didemnum sp. derived sequence and

grouped separately in the phylogenetic tree (Figure 1).

Similar to BLAST search results, the phylogenetic analysis of

bacteria associated with Didemnum sp. revealed that these

communities overlapped with numerous other sources, including

bacterioplankton, sediment, biofilms, sponges and corals. Most

strikingly, several symbionts derived from the ascidian were shared

with numerous coral species and formed distinct sequence clusters

in phylogenetic trees. These occurred most prominently in clones

affiliated with Alphaproteobacteria, where 4 monophyletic ‘‘Asci-

dian+Coral’’ clades were recovered (Figure 2). Within the

Gammaproteobacteria, another symbiont clade specific to ascidians

and corals was reported, along with the single Didemnum sp. specific

clade (n = 3 sequences) recovered (Figure 3). In addition, two

monophyletic clades of Nitrospira-affiliated sequences from Didem-

num sp. and coral hosts occurred, forming a larger sequence cluster

with various sediment-derived clones (Figure 1).

T-RFLP analysis
A total of 120 T-RFs were identified from T-RFLP profiles

analyzed using the restriction enzyme HaeIII (45 in H. heliophila, 32

in H. tubifera, 44 in Didemnum sp. and 50 in seawater); 65 T-RFs

were identified with MspI (22 in H. heliophila, 14 in H. tubifera, 18 in

Didemnum sp. and 32 in seawater); and 62 T-RFs were identified

with RsaI (36 in H. heliophila, 22 in H. tubifera, 16 in Didemnum sp.

and 21 in seawater). The majority of recovered T-RFs were

isolated solely from a single source (sponge, tunicate or seawater):

65.9% in HaeIII digests, 78.5% in MspI digests and 61.3% in RsaI

digests. No T-RFs were present in all sources. Average bacterial

diversity (number of T-RFs per profile) varied significantly among

restriction enzymes (P,0.001), with T-RFLP analysis using HaeIII

revealing twice as much diversity as either MspI or RsaI across all

sources (Figure S3). No significant differences in diversity were

observed based on source (P = 0.128) and no significant interaction

occurred between source and restriction enzyme (P = 0.318).

T-RFLP profiles produced distinctive microbial community

fingerprints based on isolation source (H. heliophila, H. tubifera,

Didemnum sp. or seawater; Figure S4). Non-metric multi-dimen-

Figure 2. Phylogeny of bacterial 16S rRNA gene sequences recovered from sponges, tunicates and seawater: Alphaproteobacteria.
Labels and abbreviations as in Figure 1. The full phylogeny is available as supplemental material (Figure S1).
doi:10.1371/journal.pone.0026806.g002
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sional scaling (MDS) plots exhibited discrete clustering of samples

based on source, indicating clear distinctions between the bacterial

communities, and were consistent across different analysis

methods (relative abundance, presence-absence) and restriction

endonucleases (Table S2, Figure 4). Similar to results from 16S

rRNA gene sequence clone libraries, the relative abundances and

presence-absence of bacterial T-RFs associated with H. heliophila

were significantly different from those in ambient seawater, the

sympatric sponge H. tubifera and the sympatric tunicate Didemnum

sp. (ANOSIM, P,0.05; Table S2). H. tubifera bacterial community

structure was also significantly different from ambient seawater

bacterial assemblages for most analysis methods and restriction

endonucleases (ANOSIM, P,0.05), with the single exception of

presence-absence data from RsaI (ANOSIM, P = 0.06; Table S2).

In addition, the bacterial communities in H. tubifera were not

significantly dissimilar from the tunicate Didemnum sp. for any data

analysis and restriction endonuclease combination (ANOSIM,

P = 0.10, Table S2). MDS plots constructed from T-RFLP analysis

using HaeIII, the enzyme which displayed the highest number of

distinct T-RFs (Figure S3), showed the clearest distinctions among

bacterial communities and exhibited discrete and tight sample

clusters based on isolation source and high R-statistic values (Table

S2; Figure 4).

Congruence between T-RFLP and clone library analysis
In silico digestion of our clone library sequences predicted that

T-RFLP analysis using HaeIII would match the highest number

and percentage of clone sequences (n = 100, 71.9%), followed by

MspI (n = 98, 70.5%) and RsaI (n = 63, 45.3%). Together, the

enzymes were predicted to account for 133 (95.7%) of the clone

library sequences. Empirical T-RFLP analysis corroborated in silico

predictions, with peak profiles from the HaeIII digestion matching

to the highest number and percentage of clones (n = 71, 51.5%),

followed accordingly by MspI (n = 57, 41.0%) and RsaI (n = 40,

29.0%; Table S5). Together, the 3 enzymes accounted for 112

(80.6%) of the clones from 16S rRNA gene sequence libraries

(Table S5). The frequency of major taxonomic groups of bacteria

recovered using T-RFLP did not differ significantly from clone

library analysis for the enzyme HaeIII (G = 11.4, df = 12, P = 0.49)

and the combination of all enzymes (G = 11.7, df = 12, P = 0.47);

however, significant differences were observed for the enzymes

MspI (G = 28.3, df = 12, P,0.05) and RsaI (G = 28.1, df = 12,

P,0.05). The bacterial community recovered using T-RFLP

analysis with MspI exhibited a greater proportion of Alphaproteo-

bacteria and Gammaproteobacteria than expected from clone library

analysis and a lower proportion of Bacteroidetes, while T-RFLP

analysis with RsaI exhibited a greater proportion of Bacteroidetes.

While the vast majority of clone library sequences were

represented in T-RFLP profiles, less than half (n = 57, 41.0%) of

distinct phylotypes presented unique T-RFLP signatures. An

additional 55 phylotypes (39.6%) presented shared T-RFLP

signatures and were thus detected in T-RFLP profiles but not

individually distinguishable. The remaining 27 phylotypes (19.4%)

presented no T-RFs within the detected range (100–500 bp) for

any of the 3 enzymes and thus were not recovered in T-RFLP

profiles.

The resolution of empirical T-RFLP signatures varied depend-

ing on the number of enzymes represented within each signature.

When 1 or 2 enzymes were represented, approximately half

(n = 52, 48.6%) of the T-RFLP signatures were unique, while the

remaining (n = 55, 51.4%) were shared between at least 2 distinct

phylotypes. In the few cases where all 3 enzymes were represented

(n = 5), all T-RFLP signatures were unique. Notably, most

phylotypes that produced shared T-RFLP signatures represented

related bacteria, averaging 5.8% sequence divergence (60.95 SE).

Among the distinct phylotypes that exhibited shared T-RFLP

signatures, those with 2 enzymes represented (n = 22) were more

closely related (3.1%61.0 sequence divergence) than those with

only 1 enzyme represented (n = 33; 7.7%61.3 sequence diver-

gence). No more than 3 phylotypes matched to a single T-RFLP

profile (average 6 SE = 2.260.1).

Clone libraries accounted for over half (n = 127, 51.4%) of

recovered T-RFs, including 56 matches from HaeIII profiles

Figure 3. Phylogeny of bacterial 16S rRNA gene sequences recovered from sponges, tunicates and seawater: Betaproteobacteria and
Gammaproteobacteria. Labels and abbreviations as in Figure 1. The full phylogeny is available as supplemental material (Figure S1).
doi:10.1371/journal.pone.0026806.g003

Table 1. Major bacterial divisions represented in sponge,
tunicate and seawater bacterial communities, shown as
percentages of the total recovered community.

H.
heliophila

H.
tubifera

Didemnum
sp. Seawater

(n = 135) (n = 45) (n = 45) (n = 135)

Alphaproteobacteria 63.0 24.4 15.6 48.9

Gammaproteobacteria 20.0 53.3 26.7 22.2

Cyanobacteria 8.1 8.9 22.2 5.2

Bacteroidetes 3.7 4.4 8.9 11.1

Actinobacteria - 2.2 - 8.9

Deltaproteobacteria 2.2 - 4.4 1.5

Nitrospira - - 11.1 -

Betaproteobacteria - - 6.7 0.7

Verrucomicrobia 0.7 2.2 - -

Planctomycetes 0.7 - 2.2 -

Spirochaetes 1.5 - - -

Acidobacteria - 4.4 - -

Firmicutes - - 2.2 -

Epsilonproteobacteria - - - 0.7

Deferribacteres - - - 0.7

Numbers in parentheses refer to total clones recovered for each source. Bold
values represent dominant lineages associated with each source.
doi:10.1371/journal.pone.0026806.t001

Table 2. Average species richness (Sobs), Shannon diversity
(H9) and evenness (J) indices for bacterial communities
recovered from sponge, tunicate and seawater samples.

No. Sobs H9 J

H. heliophila 9 7.44 (60.41)a 1.76 (60.08)a 0.88 (60.02)a

H. tubifera 3 6.33 (60.33)a 1.44 (60.03)a 0.76 (60.02)b

Seawater 9 11.56 (60.71)b 2.29 (60.10)b 0.94 (60.02)a

Didemnum sp. 3 12.33 (60.33)b 2.45 (60.04)b 0.98 (60.01)a

Numbers in parentheses correspond to 61 SE. Superscript letters denote
differences among sources.
doi:10.1371/journal.pone.0026806.t002
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(46.7% of total T-RFs, Table S6), 40 matches from MspI (61.5% of

total T-RFs, Table S7) and 31 matches from RsaI (50.0% of total

T-RFs, Table S8). In many cases, specific ranges of T-RF length

were consistently matched to one bacterial lineage. For example,

435–449 bp T-RFs in MspI profiles matched to 22 Alphaproteo-

bacteria sequences (Table S7) and 313–318 bp T-RFs in RsaI

profiles matched to 13 Bacteroidetes sequences (Table S8). In other

cases, unrelated bacteria shared terminal cut sites and T-RFs. For

example, 228–230 bp T-RFs in HaeIII profiles matched to 16

sequences representing Alphaproteobacteria, Betaproteobacteria and

Cyanobacteria (Table S6).

Discussion

The bacterial communities associated with the marine sponges

H. heliophila and H. tubifera were differentiated from the bacterial

Figure 4. Host-specificity of bacterial communities associated with sponge, tunicate and seawater samples. Non-metric multi-
dimension scaling (MDS) plots of bacterial communities recovered from sponge, tunicate and ambient seawater samples constructed from 16S rRNA
gene sequence libraries (A) and T-RFLP profiles with HaeIII (B), MspI (C) and RsaI (D). Circles encompass all samples from each source and highlight the
distinct nature of bacterial communities from each source. Stress values are shown in parenthesis and values below 0.15 indicate an excellent match
between MDS ordination distances and similarity matrix distances.
doi:10.1371/journal.pone.0026806.g004

Figure 5. Similarity of bacterial sequences recovered from sponge, tunicate and seawater samples to GenBank sequences. Results
from BLAST searches are grouped by sequence identity and highlight the source of each GenBank sequence.
doi:10.1371/journal.pone.0026806.g005
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communities associated with sympatric tunicates and seawater,

exhibiting lower species richness, lower species diversity and host-

specific bacterial phylotypes. These results lend further support to

the hypothesis that sponges host unique microbial assemblages

that are distinct from the microbial community found in ambient

seawater. Additionally, differentiation of sponge-associated and

tunicate-associated bacteria suggests that the recovered bacteria do

not represent members of a generalist fouling community,

contamination from marine sediment or shared bacterioplankton

prey. Each host sponge species harbored a unique bacterial

assemblage and shared only 4 bacterial OTUs, with 2 of these

OTUs also present in ambient bacterioplankton communities.

Notably, none of the recovered sequences belonged to the

previously described sponge-specific clades [2,5], suggesting that

specialized and host-specific bacterial symbionts inhabit the

temperate sponges H. heliophila and H. tubifera.

The low diversity and species-specific nature of bacterial

symbionts in H. heliophila and H. tubifera represent a distinct form

of sponge-bacteria symbiosis that appears to be quite different

from the commonly reported ‘‘universal bacterial community’’ of

other marine sponges [2,5]. Previous studies have also reported

specialist sponge-associated bacterial communities, distinct from

seawater bacteria and the microflora of sympatric sponge species

[8,32,35,41–43]. An interesting, yet preliminary trend is that

sponges hosting specialist microbial communities tend to represent

low-microbial-abundance (LMA) species (e.g., Mycale laxissima [70]

and Ianthella basta [71]), while high-microbial-abundance (HMA)

sponges often host generalist lineages of symbionts [70]. Consistent

with this hypothesis, electron microscopy data suggest that H.

heliophila is a LMA sponge [32]. Future studies incorporating

microbial abundance data and phylogenetic analyses are needed

to test for potential correlations between symbiont abundance and

symbiont specificity.

A prominent feature of the bacterial communities associated

with H. heliophila and H. tubifera, as well as Halichondria sp., was the

presence of one or few dominant and species-specific symbionts

associated with each host. For example, a single specialist

phylotype dominated the H. tubifera community, with the

remainder of the community found predominately in seawater.

Dominance of symbiotic communities by a small number of

phylotypes has also been observed in Ianthella basta, where two

phylotypes accounted for .90% of all clone library sequences [71]

and a single OTU (at a 97% sequence similarity definition)

comprised nearly half (49%) of all recovered high-throughput V6

16S rRNA sequences [10]. Further, over one-fifth of the sequences

recovered from H. heliophila in Brazil (n = 13, 20.6% of clones [32])

formed a monophyletic group with the dominant phylotype in H.

heliophila presented herein. Several hypotheses concerning the

maintenance (e.g., vertical transmission) and implications (e.g.,

competitive exclusion of other microbes) of dominant bacterial

symbionts are tempting from these observed trends; however, the

relative abundance of bacteria in clone libraries must be

interpreted with caution, due to the potential for selective PCR-

amplification and over-representation of specific phylotypes.

Additional data from microscopy and fluorescent in situ hybrid-

ization (FISH) [72–74] are required to fully test these hypotheses.

Comparison of the bacterial community in H. heliophila from the

northern Gulf of Mexico and southwestern Atlantic revealed

several striking similarities and notable differences in symbiont

diversity and structure between these distant, conspecific host

populations. H. heliophila sponges in Brazil harbored higher

diversity communities (SChao1 = 230) than sponges in the Gulf of

Mexico (SChao1 = 75). Although fewer clones were screened

(n = 66) and a more conservative OTU definition (97% sequence

identity) was employed by Turque et al. [32] for H. heliophila in

Brazil, these differences would only decrease their diversity

estimates compared to the analyses herein, thus making the

recovered trend particularly noteworthy. From a broad taxonomic

view, both host sponge populations exhibited a high prevalence of

Alphaproteobacteria and Gammaproteobacteria, but differed in the

number and composition of rare bacterial phyla. Several of the

phylotypes affiliated with Alpha- and Gammaproteobacteria were

shared among the biogeographically separate hosts, found to be

exclusive to this species, and accounted for a large portion (.40%)

of each symbiont community. The presence of shared bacterial

phylotypes in distant populations of H. heliophila suggests a high

potential for host-specificity in these symbiont lineages, which

should be further investigated in adults and larvae using targeted

FISH.

Two phylotypes associated with H. heliophila also formed larger

sequence clusters with clones derived from closely related host

sponges in the family Halichondriidae. An Alphaproteobacteria-

affiliated cluster that contained the dominant phylotype recovered

in H. heliophila, also included symbiont clones harbored by the

congeneric species H. sinapium from Japan (HM100889) and H.

flavia from Korea (HM100931), as well as 2 Halichondria spp. from

the Gulf of Mexico (this study) and Korea (EF040530).

Gammaproteobacteria-affiliated sequences from the same 2 Halichon-

dria spp. formed a second sequence cluster with H. heliophila clones

from the Gulf of Mexico and Brazil (Figure 3). Other sequences

grouping within these clusters were recovered from non-sponge

sources, including other invertebrate hosts (coral species Porites

compressa FJ930173 and Favites sp. EF089433) and sandy reef

sediments (FJ 358860 and FJ358928), suggesting that closely

related bacterial phylotypes can inhabit unrelated hosts and

environments. Further studies are needed to determine whether

these observations reflect a pattern of horizontal transmission of

symbionts or transient taxa that were present at the time of

sampling by chance.

Examining sponge-bacterial associations over larger spatio-

temporal scales can be facilitated by microbial profiling tech-

niques, such as DGGE and T-RFLP. Consistent with recent

studies of sponge-bacteria symbioses [51,62], T-RFLP recovered

distinct microbial profiles and differentiated the unique bacterial

communities present in sponges, tunicates and seawater. We

documented consistent community-level trends despite the vari-

able resolution of individual REs [75], indicating that this high-

throughput and standardized technique will prove a useful tool in

the study of sponge-bacteria associations.

Few studies have investigated the microbial communities

associated with ascidians [76,77] beyond the prominent cyano-

bacterial symbionts in the genera Prochloron and Synechocystis

[78,79]. To date, the most comprehensive analyses of microbial

symbionts in ascidians have focused on a Mediterranean species,

Cystodytes dellechiajei. This colonial ascidian was shown to host

diverse bacterial and archaeal communities [80,81] that may

benefit the host ascidian directly by providing a food source (e.g.,

phagocytosis by host cells) or indirectly through the acquisition of

nutrients (e.g., nitrification). Only 1 sequence derived from

Didemnum sp. herein was closely related (97.8% identity) to

previously reported clones from ascidians (C. dellechiajei), showing

negligible symbiont community overlap between these hosts.

Bacterial sequences from Didemnum sp. were more often closely

related to sediment-derived and coral-associated clones. Clearly,

additional studies of ascidian-associated microbes are required to

understand the host-specificity and ecological roles of these

symbionts; however, preliminary results show that ascidians host

diverse bacterial symbionts related to other invertebrate-associated
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microbes, similar to findings from culture-based diversity studies

[80], and suggest that ascidians should also be considered as

potential niche habitats for specialized symbionts and hotspots of

marine microbial diversity.

Early trends in the emerging field of sponge microbiology

include the occurrence of sponge-specific bacteria that are

distinct from bacterioplankton yet shared among diverse hosts

from disparate geographic regions. In this study, the bacterial

communities in H. heliophila and H. tubifera were shown to be

markedly different, consisting of specialized symbionts distinct

from the previously reported and widespread sponge-specific

clusters. In H. heliophila, these symbionts were also present in

conspecific host populations from the southwestern Atlantic,

suggesting that specialist communities are maintained despite

large geographic distances among host populations. In addition,

the current study highlights the ability of T-RFLP analysis to

produce rapid, accurate profiles of sponge-associated communi-

ties and thus its applicability to large-scale studies of spatio-

temporal monitoring and experimentation. Future studies

describing symbiont communities among diverse sponge hosts

and targeting host-symbiont interactions will enhance our

understanding of the selective pressures that shape these

communities and further reveal the prevalence and trade-offs of

hosting generalist versus specialist microbial communities. With

implications ranging from basic sponge ecology and host-

symbiont coevolution to natural products prospecting, the

necessity and incentive for research in the field of sponge-

microbial symbioses continues to increase.

Materials and Methods

Ethics Statement
No state or federal permits were required for these collections.

In the State of Alabama, offshore drilling sites are owned by the

State and are leased to various operators (often with rapid

turnover) by the State. While the machinery and site are leased

from the State, the waters surrounding the platforms remain

accessible to the public. Platform operators do not regulate fishing

or harvesting at the platforms; this right is retained by the State of

Alabama. Thus, it is permissible to scuba dive, fish, and harvest

organisms at each platform site; thus, these platforms have many

recreational visitors every day. Legal permission to fish, harvest, or

collect some types of organisms (e.g. fishes) must be obtained from

the State of Alabama, but Alabama does not require permission to

collect sponges. The United States federal government also does

not require permission to collect sponges. Our fieldwork required

permission from the Dauphin Island Sea Lab (DISL) to use their

boat and crew to reach each field location. The DISL crew

contacted each platform operator via radio for the logistical

permission to approach the platform, which is necessary for safety

reasons.

Sample Collection and Species Identification
The marine sponges Hymeniacidon heliophila, Haliclona tubifera and

Halichondria sp., the colonial tunicate Didemnum sp., and ambient

seawater were collected from the pilings supporting 5 natural gas

drilling platforms in the northern Gulf of Mexico (Table S9).

Sponge and tunicate samples were processed individually and

preserved in ethanol for morphological analyses and RNAlater

(Ambion) for genetic analyses. Ambient seawater samples were

collected directly next to sampled sponges in 500 mL Nalgene

bottles, pre-filtered through a 55 mm mesh screen to remove debris

and concentrated on 0.2 mm filters. Filters were immediately

preserved in RNAlater for subsequent genetic analyses.

Sponge samples were identified by morphological analyses,

using light microscopy of spicules and histological sections and the

checklists and characters provided by Rützler et al. [82] and Little

[83], and by molecular analyses, using a segment of nuclear

ribosomal DNA corresponding to the 59-end of the 28S subunit

and the entire second internal transcribed spacer (ITS-2) region

following the methods of Erwin & Thacker ([84]; GenBank

accession numbers JF824781-JF824794). Species identifications

were confirmed for Hymeniacidon heliophila and Haliclona (Reniera)

tubifera, reported as H. permollis by Little [83]. Halichondria sp. was

identified only to the genus level, as the two specimens collected

did not match the morphology of any described species of

Halichondria reported from the Gulf of Mexico [64,82], but

displayed the morphological characteristics of the genus and

exhibited 94% sequence identity to a partial 28S rDNA sequence

from H. panicea (GenBank accession number AF062607 [85]).

Halichondria sp. colonies were rarely encountered on platform

pilings, yielding only two collected specimens, and thus lacked

proper replication for statistical comparisons. Therefore, bacterial

sequences recovered from Halichondria sp. were only included in

phylogenetic tree reconstructions for comparative analyses.

Whole Genomic DNA Extractions
Metagenomic DNA extracts were prepared from sponge,

tunicate, and concentrated seawater samples using the Wizard

Genomic DNA Purification Kit (Promega) and cleaned using the

Wizard DNA Clean-Up System (Promega). Prepared DNA

extracts were used as templates in PCR amplification for both

clone library construction and T-RFLP analyses.

Clone Libraries and DNA Sequence Analysis
The universal bacterial forward primer Eco8F (59-AGA GTT

TGA TCA TGG CTC AG-39) [86] and reverse primer 1509R

(59-GGT TAC CTT GTT ACG ACT T-39) [87] were used in

PCR reactions to amplify approximately 1,500 bp of the bacterial

16S rRNA gene sequence. Total PCR reaction volume was 50 ml,

including 25 pmol of each primer, 10 nmol of each dNTP, 1X

MasterTaq PCR Buffer (Eppendorf), and 1X TaqMaster additive

(Eppendorf). Thermocycler reaction conditions for bacterial rRNA

gene amplification were an initial denaturing time of 2 min at

94uC, followed by the addition of 0.5 units MasterTaq DNA

polymerase (Eppendorf), then 34 cycles of 1 min at 94uC, 0.5 min

at 50uC, and 1.5 min 72uC, and a final extension time of 2 min at

72uC. PCR products were gel-purified and cleaned using the

Wizard SV Gel Clean-Up System (Promega) and ligated into

plasmids using the pGEM T-Easy Vector System (Promega).

Individual clones were PCR-screened using vector primers

until 15 clones with approximately 1,500 bp inserts were

recovered from each sponge, tunicate and seawater sample.

Plasmids from positive clones were harvested using the QIAprep

Spin Miniprep Kit (Qiagen) and sequenced on an ABI 377

automated sequencer at the UAB Center for AIDS Research

DNA Sequencing Core Facility. A single forward sequencing

reaction was performed for all clones using a plasmid primer or

the forward amplification primer. All sequences were trimmed to

600 bp starting at the highly conserved E. coli site 54, thereby

excluding ambiguities on either end of the sequencing reaction,

checked for chimeric origin using Bellerophon [88] and deposited

in GenBank (accession numbers EU315321 to EU315680 and

JF824738-JF824766; Table S1). Sequences were ascribed to

operational taxonomic units (OTUs) by grouping in Sequencher

(GeneCodes) according to 99% or greater sequence identity.

Representative clones from common 99% OTUs were bi-

directionally sequenced to retrieve near full-length 16S rRNA
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gene sequences (.1400 bp; GenBank accession numbers

JF824767-JF824780) for phylogenetic analyses. Representative

sequences from each 99% OTU were analyzed by using a

nucleotide-nucleotide BLAST search [89] to find the most closely

related sequence, and by using the Ribosomal Database Project

II [90] sequence classifier to assess taxonomic affiliations. For

each sequence, the highest percentage sequence identity match in

GenBank was recorded, along with the major taxonomic group of

this match. A likelihood ratio chi-square test was used to compare

the frequency of major taxonomic groupings among sponge,

tunicate, and seawater sources. Alphaproteobacteria, Gammaproteo-

bacteria, and Cyanobacteria were analyzed as individual taxonomic

groups, while Bacteriodetes and all other taxonomic groups were

pooled due to a low frequency of occurrence. A log-linear model

was used to compare the frequency of percentage sequence

identities (grouped as: ,95% identity, 95.0–96.9%, 97.0–98.9%,

and 99–100%) that matched to GenBank sequences (grouped by

isolation source as: sponge, seawater, sediment, coral, and other)

among sponge, tunicate, and seawater sources.

Partial bacterial 16S rRNA gene sequences recovered herein, all

H. heliophila derived clones from Turque et al. [32], and top

BLAST search matches (total sequences = 734) were aligned using

MAFFT [91], with an archaeal outgroup (Haloarcula vallismortis,

GenBank accession number D50851 [92]). Maximum likelihood

(ML) phylogenetic trees were constructed in RAxML [93] using

the general time reversible (GTR) model of nucleotide substitu-

tions, with a gamma distribution of substitution rate heterogeneity

among sites; support for each node was assessed using 100

bootstrap replicates.

Recovered sponge and tunicate-associated bacteria were

classified as either ‘specialist’ or ‘generalist’ symbionts based on

host-specificity. Bacterial OTUs present only in sponge or tunicate

samples and exhibiting $2% sequence divergence from free-living

bacteria reported in GenBank were considered specialist symbi-

onts. Bacterial OTUs shared with seawater communities and/or

closely related (.98% identity) to environmental (i.e., non-

symbiont) DNA sequences in GenBank were considered generalist

symbionts. Specialist symbionts were further classified based on

their abundance/presence in each community, with (1) ‘dominant

symbionts’ present in all samples from one host species and

accounting for over one-fourth of all recovered clones, (2)

‘common’ symbionts present in more than 1 sample from a host

species and (3) ‘rare symbionts’ present in only 1 sample from a

host species.

To compare the diversity of recovered bacterial communities,

we calculated common ecological indices of diversity for each 15-

clone sample: species richness (S(obs)), expected species richness

(S(Chao1)), Shannon diversity index (H9), and Evenness (J).

EstimateS software version 7.5 [94] was used to calculate the

Chao1 expected richness and rarefaction curves for each 15-clone

sample and for all samples within each source. Richness, evenness,

and diversity of bacterial communities were compared across

sponge, tunicate, and seawater sources using a one-way analysis of

variance (ANOVA) with a Bonferroni correction applied to all

pairwise post-hoc comparisons. Average rarefaction curves were

compared among sources using an analysis of covariance

(ANCOVA) of log-transformed data.

Bray-Curtis similarity matrices were constructed using square

root transformations of relative OTU abundances and the

presence/absence of OTUs in each sample and multi-dimen-

sional scaling (MDS) plots were used to visually compare the

bacterial communities recovered from each sample. Analysis of

similarity (ANOSIM) was used to compare the statistical

significance of similarity among bacterial communities recovered

from sponge, tunicate, and seawater sources. Calculations were

performed using the PRIMER v5.1.2 computer program

(Plymouth Marine Laboratory, UK). Additionally, the LIB-

SHUFF program [95] was used to compare bacterial community

similarity among sources. Both methods were used to assess

community similarity because ANOSIM is a more conservative

estimate, relying on OTU definitions, while LIBSHUFF is a more

comprehensive estimate, incorporating all sequence information

into the analysis.

Genetic diversity was compared among sponge, tunicate, and

seawater sources using an analysis of molecular variance

(AMOVA). Levels of variation included the source of the samples,

replicates within each source, and sequences within replicates.

Distances were calculated for AMOVA using the Tajima and Nei

algorithm with alpha = 0.05. Using the Arlequin software package,

version 3.0 [96], variation among sources was computed as FST,

with statistical significance based on 1000 permutations. Distribu-

tions of unique lineages among bacterial communities were

examined using a phylogenetic lineage-sorting test (P-test) [97].

The net relatedness index (NRI) and nearest taxon index (NTI)

were computed using PHYLOCOM [98,99]; these metrics

compare the phylogenetic dispersion and clustering of lineages

within and among communities.

T-RFLP Analysis
The universal bacterial forward primer Eco8F, tagged with a

hexachlorofluorescein label (HEX), and reverse primer 1509R

were used in PCR reactions to amplify approximately 1,500 bp of

the bacterial 16S rRNA gene sequence. The total PCR reaction

volume was 50 ml, including 15 pmol of the forward primer,

10 pmol of the reverse primer, 10 nmol of each dNTP, 1X

MasterTaq PCR Buffer (Eppendorf), 1X TaqMaster additive

(Eppendorf), and 2 units MasterTaq DNA Polymerase (Eppen-

dorf). Thermocycler conditions consisted of an initial denaturing

time of 5 min at 85uC, then 35 cycles of 0.75 min at 94uC, 1 min

at 55uC, and 1.5 min at 72uC, with a final extension time of

10 min at 72uC. PCR products were gel-purified and cleaned

using the Wizard SV Gel Clean-Up System (Promega). For each

sample, PCR products from 3 separate PCR reactions were

combined and quantified using a ND-1000 UV-Visible Spectro-

photometer (NanoDropH).

Approximately 400 ng of purified PCR products were digested

with the restriction endonucleases HaeIII, MspI and RsaI in a total

reaction volume of 50 ml, following the manufacturer’s protocol.

All digests were incubated at 37uC for 8 hours. Immediately

following digestion, samples were ethanol precipitated using 5 ml

3 M NaAc and 100 ml cold 100% ethanol. Samples were fully

dried using a SpeedVac (LabConco).

Prior to capillary electrophoresis, 10 ml formamide and 0.5 ml

GeneScan 500 TAMRA size standard were added to each sample.

Samples were heated at 94uC for 2 min, immediately cooled on

ice for 2 min, and analyzed on an automated sequencer (ABI377)

with the program GeneScan (PE Applied Biosystems). Following

electrophoresis, the length of individual fluorescently labeled

terminal-restriction fragments (T-RFs) was determined by com-

parison with TAMRA size standards (GenescanTM). Raw T-RFLP

peak profiles were standardized using the variable threshold

calculation across samples [100] and compared across samples

using T-Align [101]. Peak profiles were standardized using relative

abundance (percentage total fluorescence) and presence-absence

(i.e., binary).

To compare the diversity of recovered bacterial communities,

species richness (number of unique T-RFs per profile) was

calculated for each sample and compared across source (sponges,
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tunicate, and seawater), restriction enzyme (HaeIII, MspI, and RsaI)

and the interaction of these two variables using a two-way analysis

of variance (ANOVA). Bray-Curtis similarity matrices were

constructed using square root transformations of relative T-RF

abundances (percentage total fluorescence) and T-RF presence-

absence in each sample and multi-dimensional scaling (MDS) plots

were used to visually compare the bacterial communities

recovered from each sample. Analysis of similarity (ANOSIM)

was used to compare the statistical significance of similarity among

bacterial communities recovered from sponge, tunicate, and

seawater sources. Calculations were performed using the PRIM-

ER v5.1.2 computer program (Plymouth Marine Laboratory,

UK).

Comparison of Clone Library and T-RFLP Analyses
A reference T-RF database (GOMB) was created using the

16S rRNA gene sequences recovered from clone libraries and

used to compare predicted and empirical results from T-RFLP

analysis, as well as, match individual T-RFs with 16S rRNA gene

sequences. The GOMB database consisted of 59-terminal

fragment lengths, or reference T-RFs, for each 99% OTU

(n = 139) for all restriction endonucleases (n = 3), as determined

by in silico digestion using the computer software BioEdit [102].

The identities of empirical T-RFs were predicted by comparison

to reference T-RFs and their corresponding gene sequences

using the phylogenetic assignment tool (PAT, [103]). To account

for discrepancies between predicted and empirical T-RFs (i.e.,

T-RF drift), which typically increase with T-RF size [104], bins

were established with an increasing window of size tolerances to

group all T-RFs within a given base pair range: T-RFs up to

200 bp in length received a tolerance bin of 1.0 bp, T-RFs from

201–400 bp in length received a tolerance bin of 1.5 bp, and T-

RFs over 400 bp received a tolerance bin of 4.0 bp. PAT

analyses were conducted individually for each of the three

restriction enzymes used in T-RFLP analysis and composite

profiles were constructed manually. For each 99% OTU (i.e.,

phylotype), a ‘T-RFLP signature’ was recovered, consisting of all

empirically derived T-RFs that match predicted T-RFs using

PAT analyses.

To assess potential phylogenetic biases of T-RFLP analysis (i.e.,

over- or under-represented bacterial taxa), the frequency of major

taxonomic groups recovered by T-RFLP analyses were compared

to the entire clone library using log-likelihood ratio goodness-of-fit

(G) tests. G-tests were performed for each restriction enzyme, based

on the observed frequency of major taxonomic groups among

clone library phylotypes matched in T-RFLP profiles and the

expected frequency of major taxonomic groups among all clone

library phylotypes. To estimate the resolution of individual T-RFs

in our dataset and the relatedness of microbial sequences sharing

identical T-RFs, the incidence and sequence similarity of unique

16S rRNA gene sequences sharing the same empirically derived

T-RF length in one or multiple restriction enzyme digests (i.e., T-

RFLP signatures) was calculated.

Supporting Information

Figure S1 Phylogeny of bacterial 16S rRNA gene
sequences recovered from sponges, tunicates and sea-
water. Maximum likelihood phylogeny of 16S rRNA gene

sequences recovered from sponges, tunicates and seawater with

closely related GenBank sequences. Terminal nodes denote the

host species or source of each sequence, followed by the

GenBank accession number or sequence reference (HYM = H.

heliophila, HTU = Haliclona tubifera, HCH = Halichondria sp.,

DID = Didemnum sp., GOM = Gulf of Mexico seawater). Num-

bers on nodes depict bootstrap support (100 replicates; values

,50% not shown). Asterisks (**) indicate near full-length

(.1400 bp) sequences.

(PDF)

Figure S2 Average rarefaction curves for bacterial
communities associated with sponge, tunicate and
seawater samples. Unique OTUs were encountered at a

significantly faster rate in communities associated with a tunicate

(Didemnum sp.) and seawater compared to the two sponge-

associated bacterial communities (ANCOVA; P,0.05). Error bars

represent 61 SE.

(TIF)

Figure S3 Average diversity (number of T-RFs) of
bacterial communities associated with sponge, tunicate
and ambient seawater samples. Number of T-RFs per

sample recovered from T-RFLP profiles using HaeIII (black), MspI

(gray) and RsaI (white). Asterisks denote significant differences

(ANOVA; P,0.05) among enzymes. Error bars represent 61 SE.

(TIF)

Figure S4 Representative T-RFLP profiles (using re-
striction enzyme MspI) of bacterial communities from
sponges, tunicates and seawater. Black peaks represent T-

RFs within the accurate sizing range (100–500 bp). Vertical axis

represents fluorescent units (note slight variation in scales) and

horizontal axis T-RF length in base pairs. Isolation sources (left)

are shown for each bacterial community profile.

(TIF)

Table S1 Operational taxonomic unit (OTU), isolation
source and GenBank accession numbers for all clones of
bacterial 16S rRNA genes recovered from sponge
(Hymeniacidon heliophila, H. tubifera and Halichondria
sp.), tunicate (Didemnum sp.) and ambient seawater
samples.

(DOC)

Table S2 Pairwise comparisons of sponge, tunicate and
seawater bacterial community similarity (ANOSIM),
highlighting the magnitude (R-statistic, top value) and
significance (P-values, bottom value) of dissimilarity.

(DOC)

Table S3 Pairwise comparisons of the phylogenetic
diversity (AMOVA, FST) and phylogenetic relatedness
(P-tests) of bacterial communities recovered from the
sponge, tunicate and seawater samples.

(DOC)

Table S4 Net relatedness index (NRI) and nearest taxon
index (NTI) of bacterial communities recovered from
sponge, tunicate and seawater samples.

(DOC)

Table S5 Matches between empirically derived T-RFs
and predicted T-RFs from clone library 16S rRNA gene
sequences, using the restriction endonucleases HaeIII,
MspI and RsaI. * = predicted T-RF size outside the
sensitivity range of T-RFLP analysis (100–500 bp).

(DOC)

Table S6 Individual T-RFs recovered using the enzyme
HaeIII and matching 16S rRNA gene sequence OTUs
from clone library analyses.

(DOC)
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Table S7 Individual T-RFs recovered using the enzyme
MspI and matching 16S rRNA gene sequence OTUs from
clone library analyses.
(DOC)

Table S8 Individual T-RFs recovered using the enzyme
RsaI and matching 16S rRNA gene sequence OTUs from
clone library analyses.
(DOC)

Table S9 Sample number, platform number and GPS
coordinates of sponge, tunicate and seawater samples
collected from drilling platform pilings in the northern
Gulf of Mexico.
(DOC)
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12. Jiménez E, Ribes M (2007) Sponges as a source of dissolved inorganic nitrogen:
Nitrification mediated by temperate sponges. Limnol Oceanogr 52: 948–958.

13. Lopez-Legentil S, Erwin PM, Pawlik JR, Song B (2010) Effects of sponge

bleaching on ammonia-oxidizing Archaea: Distribution and relative expression
of ammonia monooxygenase genes associated with the barrel sponge

Xestospongia muta. Microb Ecol 60: 561–571.

14. Hoffman F, Radax R, Woebken D, Holtappels M, Lavik G, et al. (2009)

Complex nitrogen cycling in the sponge Geodia barretti. Environ Microbiol 11:
2228–2243.

15. Wilkinson CR, Fay P (1979) Nitrogen fixation in coral reef sponges with

cyanobacteria. Nature 279: 527–529.

16. Mohamed NM, Colman AS, Tal Y, Hill RT (2008) Diversity and expression of
nitrogen fixation genes in bacterial symbionts of marine sponges. Environ

Microbiol 10: 2910–2921.

17. Hoffman F, Larsen O, Theil V, Rapp HT, Pape T, et al. (2005) An anaerobic
world in sponges. Geomicrobiol J 22: 1–10.

18. Wilkinson CR (1983) Net primary productivity in coral reef sponges. Science

219: 410–412.

19. Cheshire AC, Wilkinson CR (1991) Modelling the photosynthetic production
by sponges on Davies Reef, Great Barrier Reef. Mar Biol 109: 13–18.

20. Steindler L, Beer S, Ilan M (2002) Photosymbionts in intertidal and subtidal

tropical sponges. Symbiosis 33: 263–273.

21. Thacker RW (2005) Impacts of shading on sponge-cyanobacteria symbioses: a

comparison between host-specific and generalist associations. Integr Comp Biol
45: 369–376.

22. Arillo A, Bavestrello G, Burlando B, Sarà M (1993) Metabolic integration
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