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Abstract: WRe26-In2O3 (WRe26 (tungsten-26% rhenium) and In2O3 thermoelectric materials) thin film
thermocouples (TFTCs) have been fabricated based on magnetron sputtering technology, which can be
used in temperature measurement. Many annealing processes were studied to promote the sensitivity
of WRe26-In2O3 TFTCs. The optimal annealing process of the thermocouple under this kind of RF
magnetron sputtering method was proposed after analyzing the properties of In2O3 films and the
thermoelectric voltage of TFTCs at different annealing processes. The calibration results showed that
the WRe26-In2O3 TFTCs achieved a thermoelectric voltage of 123.6 mV at a temperature difference
of 612.9 K, with a sensitivity of up to 201.6 µV/K. Also, TFTC kept a stable thermoelectric voltage
output at 973 K for 20 min and at 773 K for two hours. In general, the WRe26-In2O3 TFTCs developed
in this work have great potential for practical applications. In future work, we will focus on the
thermoelectric stability of TFTCs at higher temperatures.
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1. Introduction

The accurate measurement of high temperature is particularly important in modern science.
With the development of MEMS technology, TFTCs are widely used in many areas [1–4]. TFTCs
have many advantages, such as fast response, high measurement accuracy, and easy integration [5–7].
Traditionally, for metal TFTCs, Such as type-K (Ni10Cr/Ni5Si) and type-S (Pt-10%Rh/Pt) TFTCs [8–11].
This kind of metal TFTCs have low sensitivity and low thermoelectric voltage output. To achieve high
sensitivity and oxidation resistance, some silicide, carbides, and conductive oxides have been developed
as alternative electrodes for high temperature measurement, such as the working temperature of
CrSi2-TaC TFTCs in a vacuum or inert gas going up to 1080 ◦C while the thermoelectric output
remains stable. When it was in an oxidizing atmosphere, it failed at 455 ◦C. Meanwhile, CrSi2 can
only work stably in an oxidizing environment at 670 ◦C; for more than 180 h, its sensitivity coefficient
is 102 µV/◦C [12,13]. MoSi2-TiSi2 carbide TFTCs was used to high temperature of 1200 ◦C. However,
at high temperatures, SiO2 is formed due to oxygen entering the film, which leads the stability of the
TFTCs to become worse due to the composition of the thin-film changes [14]. Compared to carbide
and silicide thin film thermocouples, oxide ceramic TFTCs have more potential for high temperature
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stability and thermoelectric voltage output. Indium tin oxide (ITO) as a prevalent conductive oxide
has been applied to TFTCs [15–17].

The basic principle of the thermocouple is based on the Seebeck effect, wherein two legs of
the thermocouple have different Seebeck coefficients. Also, most of the metal and semiconductor
thermoelectric materials are the same type. That is, the Seebeck coefficients of thermoelectric materials
are all positive or negative. The Seebeck coefficients of tungsten-rhenium TFTCs are both positive,
and the Seebeck coefficients of In2O3-ITO thermoelectric materials are negative. In order to increase the
sensitivity of the TFTCs, one Seebeck coefficient of thermoelectric material is negative, while another,
which is positive, is chosen. Therefore, some metal-oxide TFTCs are developed. Platinum (Pt) is a
refractory precious metal with a low Seebeck coefficient and higher oxidation resistance, which can be
used as a leg of TFTCs, such as Pt-ITO, Pt-ITON and Pt-In2O3 TFTCs [18–20]. During the heating cycle
of 25–1200 ◦C, the Pt-ITO showed good stability; its Seebeck coefficient was up to 65.39 µV/◦C [21].
Oxide (ITO) is annealed in a nitrogen atmosphere to improve the thermoelectricity stability of the
Pt-ITON TFTCs.

It is hoped that prepared TFTCs have strong high temperature resistance and a high thermoelectric
voltage output. The tungsten-rhenium TFTCs have been reported for high temperature measurements
of up to about 1500 ◦C [22–24]. Typical In2O3-ITO TFTCs have been reported which have shown a
higher thermoelectric voltage output (173 mV at 1273 ◦C) and high temperature stability. To obtain high
temperature resistance and high thermoelectric voltage output at the same time, WRe26 and In2O3 are
chosen as a new combination of TFTCs based on the SI3N4 substrate. In this paper, the WRe26-In2O3

TFTCs were fabricated by RF magnetron sputtering, and the proprieties of In2O3 thin films and the
thermoelectric voltage output of the TFTCs were analyzed under different annealing processes. The best
annealing process was found to make the sensitivity of the WRe26-In2O3 TFTCs reach the expectation.

2. Theoretical Analysis

The principle of TFTCs are the same as the traditional wire thermocouples, which is based on
the Seebeck effect [25,26]. When the hot junction is heated, and its temperature is T1. And the
temperature of cold junction is T0. The thermoelectric potential can be measured at the cold junction of
the thermocouples. The thermoelectric voltage of the thin film thermocouple is described as:

EAB =

θ∫
θ0

SAB(T)dT =

θ∫
θ0

[SB(T) − SA(T)]dT (1)

where the SAB(T) is the Seebeck coefficient of TFTC, SA(T) is the Seebeck coefficient of material A;
SB(T) is the Seebeck coefficient of material B, θ is the temperature of hot junction; θ0 is temperature of
cold junction.

At the same time, the Seebeck coefficient of the conductive oxides are different from the metals.
In2O3 is an N-type non-degenerate semiconductor material. The Seebeck coefficient of In2O3 is gave as:

S(ND) = −
Ak
e
−

k
e

In

 (2πm∗ekT)2/3

h3ND

 (2)

where S is Seebeck coefficient, K is the Boltzmann constant, h is the Planck constant, e respects electronic
charges; ND is carrier concentration, me is effective mass, A is a transport constant [27]. If additional
oxygen enters the In2O3, it will affect the Seebeck coefficient of the In2O3. The conductive carriers
of In2O3 mainly comes from the electrons released by the oxygen vacancy, and one oxygen vacancy
contributes two electrons (Equation (3)) [28]. VO are doubly charged oxygen vacancies. When additional
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oxygen occupied the oxygen vacancy of the In2O3 film, it caused the carrier concentration in the In2O3

film to decrease while increasing the Seebeck coefficient of the In2O3.

Ox
o → 1/2O2 + VO + 2e−1 (3)

To verify whether the thermoelectric voltage output of WRe26-In2O3 was better than the pure oxide
combination (ITO-In2O3), thermoelectricity simulation of TFTCs with different thermoelectric material
combinations was required. The thermoelectric characteristics of the ITO-WRe26, WRe26-In2O3 and
ITO-In2O3 TFTCs were studied by using commercial software COMSOL to ensure the results of model
analysis. Figure 1 shows the model of the three combinations of TFTCs. The single size of the TFTC
is 30 mm × 90 mm. The area of hot junctions is 4 mm × 10 mm. In this analysis, the temperature
of hot junctions was increased from 300 K to 1300 K, and the cold junctions were set to 293 K.
The Finite Element Analysis results of temperature gradient and thermoelectric voltage distribution
are presented in Figure 2. The maximum temperature of the hot junctions are 1300 K. Figure 3 shows
the thermoelectric voltage output of TFTCs. According to the simulation results, thermoelectric output
of WRe26-In2O3 is the biggest at 1300 K, which means the sensitivity coefficient of this combination is
bigger than ITO-In2O3 in theory.
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film samples and WRe26-In2O3 TFTCs were prepared by RF magnetron sputtering. RF Magnetron 
sputtering technology is widely used because of the good adhesion of the films on the substrate, good 
thickness uniformity and high film density [29–31]. High purity WRe26 and In2O3 Target (purity 
99.999 wt.%, diameter: 101.6 mm, and thickness: 3 mm) were been used while the distance between 
target and substrate was 80 mm. In Figure 4, WRe26 and In2O3 films were deposited on the Si3N4 
substrate. The mass size of Si3N4 substrate is 30 mm × 90 mm × 3 mm, and the TFTC is 8 mm × 70 mm 
×2 um. 
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3. Experiment

In order to study the effect of different annealing on the thermoelectric voltage of TFTCs, In2O3

film samples and WRe26-In2O3 TFTCs were prepared by RF magnetron sputtering. RF Magnetron
sputtering technology is widely used because of the good adhesion of the films on the substrate,
good thickness uniformity and high film density [29–31]. High purity WRe26 and In2O3 Target
(purity 99.999 wt.%, diameter: 101.6 mm, and thickness: 3 mm) were been used while the distance
between target and substrate was 80 mm. In Figure 4, WRe26 and In2O3 films were deposited on
the Si3N4 substrate. The mass size of Si3N4 substrate is 30 mm × 90 mm × 3 mm, and the TFTC is
8 mm × 70 mm × 2 um.
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Figure 4. Structure of WRe26-In2O3 TFTCs.

Table 1 shows the detail sputtering parameters of the TFTCs preparation. The order of deposition
of the two legs of the TFTCs were especially important. The leg of WRe26-In2O3 TFTCs pattern was
transferred by using photolithography. In2O3 films deposited by magnetron sputtering for 4 h. Then,
In2O3 films were soaked in different annealing processes. After the TFTCs were cleaned up, the WRe26
films were sputtered for 90 min with a high power of 400 w. Finally, the Al2O3 protective layer was
covered on the sensitive layer again.

Table 1. Sputtering parameters of WRe26-In2O3 TFTCs.

Sputtering Parameters WRe26 In2O3 Al2O3

Thickness (µm) 2 4 2

Power (W) 400 150 200
Presser (Pa) 1 × 10−6 1 × 10−6 5 × 10−5

Ar (sccm) 30 60 30

The In2O3 films samples at different annealing processes were presented in Figure 5a. The Al2O3

substrate was 14 mm × 20 mm × 1 mm. The color of film samples obviously changed under different
annealing processes. The crystal structure of In2O3 at different annealing conditions was analyzed by
X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) was used to characterize its chemical
composition. Scanning electron microscopy (SEM) was used to observe the micro-morphology of
In2O3 at different annealing conditions, and the WRe26-In2O3 TFTCs were prepared to find the best
annealing process by thermoelectric voltage testing (Figure 5b).
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Figure 5. (a) Prepared In2O3 thin film samples at different annealing processes. (b) Prepared TFTCs
under different annealing processes. (A: No annealing. B: 600 ◦Cin air for 2 h. C: 1000 ◦C in air for 2 h.
D: 600 ◦C in vacuum for 2 h. E: 1000 ◦C in vacuum for 2 h.).

Fabricated WRe26-In2O3 TFTCs were static tested in muffle furnace (LHT0820, Nabertherm,
Lilienthal, Germany). As shown in Figure 6, one K-type thermocouples and WRe26-In2O3 TFTCs
were placed in the muffle furnace to get the temperature of hot junctions. Another K-type was used
to monitor the cold junctions. Cold junctions of the TFTCs were cooled by circulating cold water to
maintain a big temperature gradient. Then thermoelectric voltage of K-type thermocouples and the
WRe26-In2O3 TFTCs were recorded with a data collector (Hioki, LR8410-30, Nagano, Japan).
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4. Result and Discussion

The X-ray diffraction (XRD) patterns of In2O3 film samples at different annealing process were
presented in Figure 7. As shown in Figure 7a, the (222) peak of In2O3 is very small at no annealing.
With increasing of air annealing temperature, the (222) and (400) peaks of In2O3 were promoted a great
deal, especially the (222) peak increases in the air annealing at 1000 ◦C. This indicates that the preferred
growth of the crystal plane are (222) and (400) crystal planes. In Figure 7b, it was obvious that each
peak of In2O3 in XRD was nearly unchanged at the anaerobic annealing processes.
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XPS was used to analyze the oxygen element in In2O3 films at different annealing conditions. O 1s
core energy spectrum of In2O3 films are shown in Figure 8. The O1s spectrum of In2O3 films has two
peaks. The binding energy of 529 eV corresponds to the O element peak and binding energy of 531 eV
corresponds to the O2− element peak in In2O3 films. The area ratio under peak of O1s (I) and O1s (II)
increased after 600 ◦C air annealing for 2 h. It is mainly because a large amount of oxygen in the air
will not enter the film at a low temperature. Instead, oxygen escaped from the film to produce more
oxygen vacancies and the O2− element was increased. Then, In2O3 films recrystallized after annealing
at 1000 ◦C for 2 h. More oxygen entered the In2O3 film, and oxygen vacancy defects were reduced,
causing the carrier concentration of In2O3 to be reduced.
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Figure 9 exhibits the SEM of the In2O3 films under different annealing conditions. Compared to
anaerobic and air annealing, as the temperature increased, the microstructures of In2O3 just became
denser at anaerobic annealing. But the microstructures of In2O3 were changed significantly under air
annealing. The organization grains of In2O3 became denser and larger, and the cellular crystals were
formed at 1000 ◦C, implying that the oxygen entered the thin film structure at 1000 ◦C air annealing,
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and the oxygen occupied the oxygen vacancy of the In2O3 films, making the conductive electrons in
the In2O3 film decrease rapidly according to the Equation (3). As a result, the Seebeck coefficient of
In2O3 increased.
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To verify this phenomenon, Figure 10 shows the result of a static test of TFTCs from room
temperature to 673 K at the different annealing process. It is obvious that the thermoelectric voltage was
the smallest at no annealing. There were slight changes in the microstructures of In2O3 in 600 ◦C and
1000 ◦C anaerobic annealing. The thermoelectric voltage was significantly smaller than air annealing
treatment. Thermoelectric voltage at 1000 ◦C air annealing was much bigger than 600 ◦C air annealing,
which means the Seebeck coefficient of In2O3 films can be improved under air annealing processes,
making the performance of WRe26-In2O3 TFTCs better.
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In order to find the optimal annealing processes, the In2O3 films were annealed at 1000 ◦C for a
longer time. As shown in Figure 11, with longer time in high temperature annealing, structure grains
of In2O3 continued to grow and became more uniform, especially at 10 h. But from the test results of
of WRe26-In2O3 TFTCs in Figure 12, it is observed that the thermoelectric voltage output is best at
air annealing for 8 h. Thermoelectric voltage output for 10 h is smaller than that for 4 h. The reason
was that voids appeared in the In2O3 films (Figure 11d), the grain boundaries of the In2O3 films
structure become discontinuous, and the conductivity of the In2O3 films became poor during long
duration annealing processes, although oxygen promoted the growth of tissue grains, leading to poor
conductivity of the In2O3 film.
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The measured thermoelectric voltage depends on the difference between hot junction (Th) and
cold junction (Tc) and the Seebeck coefficient of the metal materials. The sensitivity coefficient (S) of
thermocouples is given as:

S =
∆V
∆T

=
∆V

Th − Tc
(4)

where the ∆V is the thermoelectric voltage difference between the WRe26 and In2O3. Figure 13 shows
the average sensitivity (The temperature difference was 400K) of WRe26-In2O3 TFTCs at different
annealing. The sensitivity coefficient of the TFTCs reached 186.1 µV/K at air annealing for 8 h.
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Figure 13. Average sensitivity coefficients of TFTCs at different annealing processes. (A: No annealing.
B: 600 ◦C in air for 2 h. C: 1000 ◦C in air for 2 h. D: 600 ◦C with vacuum. E: 1000 ◦C with vacuum. F:
1000 ◦C in air for 4 h. G: 1000 ◦C in air for 6 h. H: 1000 ◦C in air for 8 h. M: 1000 ◦C in air for 10 h.).

Prepared WRe26-In2O3 TFTC was static calibrated in a high temperature after the optimal
annealing process was determined. Figure 14 shows the temperature stability test of TFTC in muffle
furnace. The WRe26-In2O3 TFTC and K-type thermocouples were raised from room temperature to
773 K and kept for two hours, and heated to 1000 K for twenty minutes. The heating rate was set at
10 ◦C/min. Then, TFTC was naturally cooled to room temperature. Figure 15 is a static thermoelectric
voltage curve of WRe26-In2O3 TFTCs with the temperature difference up to 612.9 K. The hot junction
of the thermocouple was 1000 K (the temperature of cold junction was 387.1 K), the thermoelectric
voltage reached 123.6 mv. The average sensitivity coefficient was 201.6 µV/K. We have found the
optimal annealing process at this magnetron sputtering process, but the Seebeck coefficient of In2O3

in the literature is about −200 µV/K, and the Seebeck coefficient of WRe26 is about 20 µV/K. So the
sensitivity of the WRe26-In2O3 TFTCs is about 220 µV/K in theory. There was a little difference between
the prepared TFTC and the theoretical thermoelectric output. This is mainly because the source of the
In2O3 target was different, and so the Seebeck coefficient of In2O3 was also a little different. The Seebeck
coefficient of In2O3 was highly affected by the quality In2O3 film.
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5. Conclusions

In this study, a WRe26-In2O3 TFTC was reported. The WRe26-In2O3 TFTCs were successfully
fabricated on the Si3N4 substrate by magnetron sputtering in order to improve the thermoelectric
performance of the thermocouple. The properties of In2O3 films and the thermoelectric voltage
properties of the WRe26-In2O3 TFTCs under different annealing processes were studied. The properties
of In2O3 films at different annealing processes were analyzed by SEM, XRD, and XPS. The optimal
annealing process of the TFTCs under this sputtering method was proposed. The WRe26-In2O3 TFTCs
had ideal performance at the 1000 ◦C air annealing for 8 h. It was achieved that the average sensitivity
of the WRe26-In2O3 TFTCs could reach 201.6 µV/K at a temperature difference of 612.9 K, which can
maintain a stable output for 2 h at 773 K and 20 min for 1000 K.
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