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Introduction
The PTM process is highly critical for the regulation of protein function. It is 
fundamental for protein initiation, protection, and maintenance; loci identification also 
plays a role in genomic replication. Some PTM processes include sumoylation, wherein 

Abstract 

Post-translational modifications (PTMs) are fundamental to essential biological 
processes, exerting significant influence over gene expression, protein localization, 
stability, and genome replication. Sumoylation, a PTM involving the covalent 
addition of a chemical group to a specific protein sequence, profoundly impacts 
the functional diversity of proteins. Notably, identifying sumoylation sites has garnered 
significant attention due to their crucial roles in proteomic functions and their 
implications in various diseases, including Parkinson’s and Alzheimer’s. Despite 
the proposal of several computational models for identifying sumoylation sites, their 
effectiveness could be improved by the limitations associated with conventional 
learning methodologies. In this study, we introduce pseudo-position-specific scoring 
matrix (PsePSSM), a robust computational model designed for accurately predicting 
sumoylation sites using an optimized deep learning algorithm and efficient feature 
extraction techniques. Moreover, to streamline computational processes and eliminate 
irrelevant and noisy features, sequential forward selection using a support vector 
machine (SFS-SVM) is implemented to identify optimal features. The multi-layer 
Deep Neural Network (DNN) is a robust classifier, facilitating precise sumoylation site 
prediction. We meticulously assess the performance of PSSM-Sumo through a tenfold 
cross-validation approach, employing various statistical metrics such as the Matthews 
Correlation Coefficient (MCC), accuracy, sensitivity, specificity, and the Area 
under the ROC Curve (AUC). Comparative analyses reveal that PSSM-Sumo achieves 
an exceptional average prediction accuracy of 98.71%, surpassing existing models. 
The robustness and accuracy of the proposed model position it as a promising 
tool for advancing drug discovery and the diagnosis of diverse diseases linked 
to sumoylation sites.
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the SUMO proteins are covalently conjugated to the target protein lysine residues [1, 2]. 
This modification has been linked with controlling cellular processes such as nucleus-
cytoplasmic transport, transcription control, DNA repair, and protein interaction [3]. 
This is also shown by its participation in the distinctive mechanisms of pathogenesis 
for neurodegenerative disorders, including Parkinson’s and Alzheimer’s diseases. These 
impairing syndromes have been linked with different irregularities in the process of 
sumoylation, such as misfolded protein aggregation and disruption of homeostasis. 
The emphasis on the sumoylation sites will provide insights into the modern sphere, 
including genetics [4–6].

Within the past, a list of 450 individual protein modifications has been found, which 
includes ubiquitination [7], acetylation [8], phosphorylation [9], and sumoylated as well. 
These alterations regulate the protein–protein interactions, subcellular localization of 
the target proteins, their enzymatic activity, and also PTM processes [10]. As far as this 
protection diversity, a lot about the sumoylation is covered by researchers since they 
appear most frequently in the regulation of post-translational proteins [11], extending 
to the amino acid code, recycling and degradation processes inside cells, intercellular 
protein localization distribution, and control over cell physiology or transport 
transformers enzyme. More recent studies have revealed a strong relationship between 
sumoylation sites and numerous diseases as well as disorders, including Parkinson’s 
disease and Alzheimer’s. Several bioinformatics tools have been developed for structural 
retrieval at these sumoylation sites [12–14]. Given the significance of sequential 
and structural bioinformatics in drug discovery modeling, computational biology 
has emerged as a vital contributor in this field [15]. Therefore, identifying protein 
sumoylation sites has significant implications for understanding the fundamental 
biological processes and even developing therapeutic drugs that can be viable inhibitors 
against cancer or other related diseases [16].

The importance of sumoylation sites has significantly fuelled computational biology 
and bioinformatics research efforts towards their prediction and characterization. 
The current models such as SUMOsp [17], SUMOsp2.0 [18] and GPS-SUMO [19], are 
based on the group phosphorylation scoring algorithm (GPS) that uses clustered known 
peptide groups, calculates similarities of peptides to determine closeness among them 
according in their closest belonging Another type, called SUMO_LDA [20], introduces 
unique sequence Although it shows good potential, the SUMO_LDA heavily uses linear 
discriminant analysis (LDA), which has difficulties with high-dimensional feature vectors 
and struggles to deal with nonlinearly separable classes. In some of the recent studies, 
Xu et al. [21] and Chen et al. [22] proposed SUMOPre and SUMOHydro models that 
apply a Support Vector Machine (SVM) used for the classification of the SUMO sites. 
Analogously, Jia et al. [23] presented the pSumo-CD predictor using a universal PseAAC 
approach and SVM together. Later, Sharma et al. [24] proposed HseSUMO, employing 
the half-sphere exposure technique and a decision tree algorithm for sumoylation site 
prediction. Recently, khan et al. proposed Deep-Sumo [25] a deep learning-based model 
for predicting sumoylation sites using efficient feature representation and principal 
component analysis. The model achieves an average accuracy of 96.47%, outperforming 
existing methods. Nonetheless, while the aforementioned existing models show good 
potential, they require further improvement. Additionally, most of these models rely 
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on traditional learning approaches that demand significant human expertise in feature 
extraction and are limited to linear datasets [26].

In this study, we propose PSSM-Sumo, an advanced computational model that 
integrates state-of-the-art deep learning methods and efficient feature extraction 
methods to accurately identify sumoylation sites. The PSSM-Sumo model is designed 
to overcome the limitations of conventional machine learning approaches by leveraging 
the power of deep neural networks and innovative feature representation strategies, 
thereby enhancing the accuracy and reliability of sumoylation site prediction. The model 
performance through an extensive evaluation applying different metrics in a tenfold 
cross-validation. From an experimental perspective, the proposed predictor attains 
a high 98.71% average prediction accuracy rate. Comparative analysis of the recently 
published predictors shows the superiority of the proposed Deep Sumo, especially 
in accuracy and other performance metrics. These findings support the marked 
improvements and efficiency achieved by the proposed model in improving predictive 
precision compared to the current predictors. The significant contributions of the paper 
are as follows.

• Development of an intellectual and strong computational model based on a multi-
layer DNN model, incorporating automatic weight optimization through a standard 
learning procedure.

• Utilization of the Pseudo position-specific scoring matrix method, enabling the 
efficient transformation of peptide sequences into a feature vector.

• Implementation of an efficient feature extraction technique, Sequential forward 
selection using Support Vector Machine (SFS-SVM), to eliminate noisy and 
irrelevant features.

• Comprehensive performance evaluation metrics, demonstrating the model’s 
robustness and effectiveness in accurately predicting sumoylation sites.

The remainder of the paper is structured as follows: “Framework model” section 
explains the materials and methods, which include the benchmark dataset, feature 
extraction, and classification algorithms. The performance evaluation metrics are 
presented in “Performance evaluation” section. “Experimental results and analysis” 
section discusses the experimental findings and provides discussions. Finally, 
“Conclusions” section includes the paper’s conclusion and future work.

Framework model
In this section, we introduces the proposed model’s design, as illustrated in Fig.  1. A 
comprehensive explanation of each component comprising the model is provided to 
offer a detailed understanding.

Benchmark dataset

In deep learning and bioinformatics, choosing an appropriate training dataset is essential 
for developing an intelligent prediction model. The choice of benchmark dataset has a 
major effect on the performance of a computational model. In this study, we use a highly 
reliable dataset to validate our computational model [27, 28]. Therefore, the selection 
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is a trustworthy benchmark dataset from [24] for the training and validation of the 
proposed model. The visualization below presents the benchmark set, demonstrating 
our commitment to transparency and credibility in building the model.

where S represents both sumoylation Sp and non-sumoylation SN site sequences. 
The used dataset is from the Compendium of Protein Lysine Modification (CPLM) 
[29], a database describing 12 types of lysine PTMs in detail. The dataset comprised 
780 sumoylation site sequences (positive examples) and 21,353 non-sumoylation 
site sequences (i.e., negative samples). Recognizing the imbalance in the dataset as a 
standard classification challenge is essential. The literature discusses several methods, 
including data-centric approaches such as oversampling and under sampling, which 
are very common [30]. To overcome the disparity in our reference dataset, we applied 
underrepresentation methods with the Near Miss algorithm [31] developed by Python. 
Under-sampling entails resizing the number of majority class members, such as non-
sumoylation sites, to use a balance distribution. Under-sampling, which performs 
a moderate solution, is important because the over-sample methods that duplicate 
instances of the minority class result in model over-fitting from repeated data samples. 
After running the under-sampling method, 780 positive and negative samples are 
achieved. This balance ensures an appropriate representation of the sumoylation 
and non-sumoylation sites in our following analyses and model training, making our 
computational method reliable. To objectively express the model generalizability, one-
fifth of the original samples was separated as the testing dataset to perform independent 
test. To ensure the generalization of the training model, none of the sequences from the 
training data were repeated in the independent dataset.

Feature formulation method

The majority of predictive machine learning models handle numerical vectors, making it 
challenging to express a peptide sequence with numerical values or discrete models while 
preserving sequence information. Feature extraction can address this issue; however, 
selecting appropriate features is crucial for designing highly accurate predictive models, 

(1)S = Sp U SN

Fig. 1 The framework proposed computational model
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as the success of the model depends on the features chosen during training. A notable 
and complex stage is encoding a discrete model for an input sequence [32]. The model 
should include features that preserve structural information and key characteristics. 
While PSSM provides evolutionary information, machine-learning algorithms like SVM, 
RF, and KNN are limited by variable-length protein sequences. Additionally, PSSM 
does not consider order information and correlation factors. To solve these problems, 
PsePSSM is used, which incorporates sequence-order details for calculating residue 
frequencies. PsePSSM applications include bioinformatics, proteomics, DNA-binding 
protein systems, and predictions on the structure of non-protein classes.

However, the datasets used in our work are inconsistent with a diverse length of 
peptide sequences, creating a hurdle in the classifier training process. The dataset used 
in this work comprises peptide sequences ranging from 4 to 53 amino acids in length. 
Most sequences have readily available PSSM profiles, while a few require additional 
parameters such as the number of iterations, and E-value threshold for retrieval. For 
the remaining short sequences, we augmented the peptide sequence by adding dummy 
alphabets like hypon (-), which do not correspond to standard amino acids. These hypons 
(-) have no impact on the function or physical structure of the peptide. Furthermore, 
we ensured that the extended sequences retained the original peptides without altering 
their sequence. For example, in the sequence “--- HDEF---“, the original “HDEF” 
remains at the center. In this study, for a protein sequence with length L, PsePSSM has a 
size L*20, that is formulated via the PSI-BLAST tool, searching the Swiss-Prot database 
[33]. Hence, Pseudo-PSSM (PsePSSM) generates a uniform vector length from diverse 
peptide samples. PsePSSM is used for calculating the mean score of each amino acid 
in the PSSM matrix by determining the correlation between residues separated by ‘d’ 
amino acids. The PsePSSM vector for a peptide sample can be represented as:

Correspondingly, the initial exuberant correlation factor p1j  comes from the 
consecutive amino acid deposits of type j in a given protein sequence using their 
respective scores obtained through the PSSM. The second subsequent neighbouring 
PSSM scores are represented as the p2j  and so on. The ε defines the vigorous association 
feature value, which must be less than L straight protein sequence length in the data set.

Feature selection

Feature selection is crucial for achieving optimal classifier performance, as noisy or 
irrelevant information can significantly affect the results. To address this, we use the 
SFS-SVM technique, known for its computational efficiency in reducing complexity 
and improving accuracy. SFS-SVM trains the classifier by introducing features from 
a qualifying training dataset, starting with an empty feature subset. Superior features 
are added to the subset through recursive testing. This process identifies the best 
feature set for a predictive model, minimizing classification errors and computational 
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time by eliminating redundant or less effective features. The result is a highly effective 
feature set that significantly enhances the efficiency and accuracy of classification.

Deep architecture

The network topology of a Deep Neural Network, an algorithm based on machine 
learning or artificial intelligence encouraged by the human brain [34, 35] includes 
input and output layers as well as multiple hidden layers. The mechanism of neuron 
Transmission and activation function in DNN as shown in Fig. 2.

Each neuron in the input layer processes a feature  xi and produced output  yk by 
using a weight vector  Wi, bias vector Bi, and activation function fi as shown in Eq. (4 
& 5). The output value y of the neurons is feed to the next layer and so forth. This 
process is continued until it reaches the output layer. In Eq.  (4), the weight vector 
W was calculated using the Xavier initialization [36] method and it optimized using 
back-propagation and stochastic gradient descent.

Hidden layers play a really essential role in the learning process, but expanding 
them can also cause increased computational costs and high model complexity [37, 
38]. Contrastingly to traditional processing techniques, DNNs can self-learn and 
automatically acquire pertinent features from unstructured or raw data. Domains in 
which DNN has been successfully implemented include speech recognition, NLP and 
bioengineering, and image [39].

(4)yk = f

(

Bi +

n
∑

i=1

xiw
n
i

)

(5)f(i) =
ei

1+ ei

Fig. 2 Mechanism of neuron Transmission and activation function in DNN



Page 7 of 15Khan et al. BMC Bioinformatics          (2024) 25:284  

Model training

Deep learning algorithms require multiple learning layers to train a complex and non-linear 
function. As the dataset used in the study consist of biological sequences that are difficult 
for the classification algorithm to train the model. Therefore, at first, feature encoding 
methods were used to convert the biological sequence into numerical form to efficiently 
train the DNN model. The extracted feature vectors are then provided to the DNN model 
for classification purposes. In the training phase, our DNN model was configured with an 
input layer, four hidden layers, and an output layer as shown in Fig. 3.

At first, the input layer has multiple neurons that receive input features vector and 
compute the process and forward it to the first hidden layer. Secondly, the output of the 
first hidden layer is given as input to the second hidden layer and so forth. This process 
was continued until we reached the output layer. Finally, the output layer contained a single 
neuron with a Softmax activation function [40]., which learns the mapping from the hidden 
layers to the output class labels [0, 1]. The final output either predicts ‘0’ for representing 
sumoylation sites or a “1” for non-sumoylation sites.

Performance evaluation
Evaluation of the performance metrics is required for any statistical machine learning 
models before deploying in a natural production environment. While accuracy is critical, 
more is needed. Various measurements have been proposed, including the SN, SP, ACC, 
AUC ROC, and MCC. The excellent of metrics depends on the particular applicability and 
problem domain, according to [41, 42]. These popular metrics research uses them to assess 
the performance of the proposed Deep Sumo, like other publications. These presentation 
measurement metrics are calculated as follows:

(6)Acc = 1−
S+− + S−+
S+ + S−

Fig. 3 DNN configuration topology
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Experimental results and analysis
Hyper‑parameters analysis

The objective of this section is to determine the optimal configuration values for the 
hyper-parameters employed in the topology of the Deep Neural Network (DNN). 
The critical hyper-parameters encompass the number of layers and neurons, seed, 
regularization techniques (L1 & L2), activation function, weight initialization, 
momentum, dropout, updater, iterations, learning rate, and optimizer, as indicated 
in Table  1. These parameters significantly influence the performance and behavior of 
the neural network. For instance, the number of layers and neurons per layer directly 
impacts the network’s learning capacity and its ability to fit the training data. The seed 
is a predefined starting point for initializing or controlling random processes, ensuring 
reproducibility in computations or experiments. Regularization techniques like L1 and 
L2 regularization contribute to preventing over-fitting by introducing penalty terms to 
the loss function. Activation functions introduce non-linearity into each neuron, while 
the initialization of weights sets the initial values for the parameters (weights and biases) 
of the network’s neurons before training.

Additionally, momentum enhances the optimization process by incorporating past 
gradient information to expedite convergence and improve stability during training. 
Dropout, a regularization technique, randomly drops out a fraction of neurons during 

(7)SP = 1−
S+−
S+

(8)SN = 1−
S−+
S−

(9)MCC =

1−
(

S+−+S−+
S++S−

)

√

(1+
S+−+S−+
S+

)

(

1+
S+−+S−+
S−

)

Table 1 DNN model optimum hyper-parameters values

List of parameters Optimal values

LR 0.1

Weight initialization function XAVIER function

Seed 12345L

Training iterations 500

Updater ADAGRAD function

Momentum 0.9

Dropout 0.35

Number of hidden layers 4

Regularization l2 0.001

Activation functions Tanh & Softmax

Optimizer SGD method

Neurons at hidden layers 90-60-40-26
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each training iteration. The “updater” is responsible for adjusting model parameters, 
“iteration” represents a single cycle through the training data, “learning rate” controls the 
size of weight updates, and the “optimizer” serves as the overarching algorithm guiding 
the optimization process by determining how weights are updated in each iteration. To 
assess the DNN’s performance under various hyper-parameters, a grid search technique 
was employed, exploring different combinations of parameters. Specifically, the analysis 
focused on the hyper-parameters that significantly influence the performance of the 
DNN model, including the activation function, learning rate, and number of iterations.

We conducted experiments to examine the effects of activation functions and LR. The 
result of the experiments is given in Table 2. From the table, it can be observed that the 
highest accuracy i.e. 98.71% is obtained by the DNN classifier at a learning rate value of 
0.1 using Tanh as an activation function. Furthermore, the DNN model is continuously 
improved by decreasing the learning rate, however, after reducing the LR (i.e. 0.09 and 
0.08), the DNN model accuracy could not significantly be improved. Hence, the DNN 
model presented a high accuracy at a learning rate 0.1 with the Tanh activation function.

Secondly, we also carried out many experiments to test the performance of DNN with 
different iteration counts for the model training. Tanh, ReLU, and Sigmoid activation 
functions results show that after 500 epoch, error losses reach stabilization. In our study, 
we used two activation functions Tanh, which is used at the hidden layers and Softmax, 
which is used at the output layer, for predicting the input instance in the Sumoylation or 
non- Sumoylation site class. The specific optimal parameters for the DNN used in this 
study are shown in Table 1.

Performance analysis of cross‑validation scheme

In computational biology and bioinformatics, statistical learning models experience 
difficult testing through validation methods like jackknife, k-fold, and sub-sampling. 
Among these, k-fold cross-validation is particularly prevalent due to its unbiased 
results. Its systematic approach partitions data, ensuring thorough evaluation and 
enhancing the reliability of statistical learning models in diverse biological applications. 
This study analyzed the proposed method’s performance using fivefold and tenfold CV 

Table 2 Performance comparison of DNN model with different grid search of DNN model

LR ReLU Sigmoid Tanh

0.08 95.01 92.23 98.71

0.09 95.01 92.23 98.71

0.1 95.01 92.23 98.71

0.2 94.71 91.78 97.92

0.3 93.21 90.80 96.47

0.4 92.84 90.17 95.94

0.5 91.94 89.46 94.41

0.6 91.14 88.74 93.95

0.7 90.34 88.03 93.45

0.8 89.54 87.31 92.95

0.9 88.74 86.60 92.45
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tests. Results in Table 3 indicate that the PSSM-Sumo model achieved higher accuracy 
(95.91%) with a tenfold CV compared to a fivefold CV (95.94%).

The feature vector obtained through the PsePSSM method contained 1,090 features, 
which may include inappropriate, redundant, and noisy features. To obtain efficient 
features and reduce the dimensionality, we employed the feature selection method 
discussed in “Feature selection” section. We reduced the feature vector dimension 
from 1090 × 1560 to 120 × 1560. The evaluation of the proposed model includes 
the assessment of its performance using both comprehensive and optimized feature 
sets, ensuring a thorough analysis of its capabilities. The experimental results of this 
evaluation are shown in Table 3.

Table  3 shows that the proposed model’s performance is superior when using an 
optimized feature set compared to the entire feature set. For instance, using tenfold 
cross-validation, the proposed model achieved an accuracy of 95.94% with the entire 
feature set, while it achieved an average accuracy of 98.71% with the optimized feature 
set. Similar improvements are reported for other performance metrics: specificity 
(99.68%), sensitivity (97.72%), F1 score (0.974), and MCC (0.974) using the optimized 
feature set compared to the entire feature set. Given the significance of the optimized 
feature vector and its prediction results via tenfold testing, we select the optimized 
vector and DNN classification as our training model.

Moreover, the performance of the PSSM-Sumo model was assessed using the 
Area Under the Curve (AUC) metric, a measure of the accuracy of binary classifiers, 
where higher values correspond to improved performance. As depicted in Fig. 4, the 

Table 3 Evaluating the performance of the PSSM-Sumo model via both the feature set and an 
optimized subset of features

Method ACC (%) SP (%) SN (%) F1 MCC

PSSM-Sumo (fivefold) 95.91 95.59 96.22 0.915 0.916

PSSM-Sumo (tenfold) 95.94 95.58 96.24 0.916 0.918

After feature selection

PSSM-Sumo (fivefold) 98.20 98.81 97.61 0.969 0.972

PSSM-Sumo (tenfold) 98.71 99.68 97.72 0.974 0.974

Fig. 4 Comparison of AUC using different cross-validation schemes
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PSSM-Sumo model demonstrated the highest AUC values of 0.996 with tenfold cross-
validation and 0.992 with fivefold cross-validation, leveraging the efficient feature set. 
These outcomes validate the superior predictive capabilities of the proposed model, 
particularly when utilizing the tenfold cross-validation approach and the selected 
features. Additionally, a confusion matrix is presented in Fig. 5 to further explore the 
behavior of the proposed DNN in prediction using the optimized features vector on 
tenfold.

Performance comparison of different classifiers

In this section, we provide an analysis of the DNN model in comparison to well-known 
machine learning algorithms such as K-Nearest Neighbor (KNN) [36], Random Forest 
(RF) [34], and Support Vector Machine (SVM) [25, 42]. The KNN algorithm, often 
used in image processing, is an instance-based learning technique that identifies 
instances based on distances [34, 43]. RF is a popular supervised learning method for 
regression and classification tasks, creating a large number of decision tree models 
based on random samples using the bootstrap algorithm. This comparative study 
highlights the specific strengths and weaknesses of each approach. Additionally, the 
SVM algorithm, known for its effectiveness in bioinformatics, determines an optimal 
hyper-plane to differentiate groups both linearly and nonlinearly. To ensure a fair 
assessment of all the learning algorithms, we used a similar effective feature set, 
standard measurements, and validation methods.

Table  4 presents the performance evaluations of different algorithms. The DNN 
model performed significantly better than the other models. For instance, the DNN 
model achieved an average accuracy of 98.71%, while the SVM achieved only 95.32%. 
Similarly, regarding the MCC criterion for model stability, the DNN achieved a top 

Fig. 5 DNN model Confusion matrix using optimized features
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rate of 0.974, standing high above the SVM’s highest value of 0.911. According to all 
performance measures, the KNN model performed very poorly.

The analysis findings suggest that our proposed model outperforms traditional learning 
algorithms. Due to the high similarity between sumoylation and non-sumoylation sites, 
traditional machine learning algorithms struggle to classify them accurately. These 
traditional methods often rely on a single processing layer, which may be insufficient for 
handling nonlinear datasets, significantly affecting their performance. In contrast, our 
DNN model utilizes multiple hidden layers to perform layer-by-layer sampling on the 
input data. This layered approach enhances its ability to distinguish between similar 
sites, leading to superior performance compared to traditional methods. Additionally, 
Fig.  6 demonstrates a comparison between the performance of the DNN model and 
traditional learning algorithms using AUC. The figure shows that the proposed DNN 
model outperforms all other models in terms of obtaining the highest AUC value. For 
example, the DNN model scored an AUC value of 0.996, while SVM, RF, and KNN 
algorithms recorded AUC values of 0.981, 0.978, and 0.948, respectively.

Existing models performance comparison

In this section, we compare our proposed model with the existing benchmark 
methods i.e. [23–25]. The mentioned latest methods build prediction models based 
on machine learning algorithms. The performance of our proposed model and the 
existing benchmark models are evaluated on benchmark datasets by using tenfold 
cross-validation. For facilitating comparison, Table  5 shows the corresponding results 
obtained by the existing state of the art methods. It can be observed from Table 5 that 
our proposed PSSM-Sumo model performs overwhelmingly better than the existing 

Table 4 A comparison of the proposed model with machine learning models has been considered

ML ACC (%) SP (%) SN (%) MCC

PSSM-Sumo 98.71 99.68 97.72 0.974

SVM 95.32 96.08 94.62 0.911

RF 95.11 95.82 94.38 0.908

KNN 92.76 93.91 91.52 0.881

Fig. 6 AUC performance comparison of ML algorithms
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model. For instance, the proposed model yielded the highest accuracy of 98.71%, and 
the current predictor (Deep-Sumo) got the second-highest success rate, which is equal 
to 96.47%. Likewise, the PSSM-Sumo had a 0.974 MCC, which was the highest score 
achieved and far more significant than Deep-Sumo’s result of 0.929. These outcomes 
emphasize the superior performance of PSSM-Sumo compared to the existing models, 
with an average success rate increasing up by 10.46%.

Performance analysis of classification learners using an independent dataset

In most cases, the generalization capability of a prediction model is examined using 
unseen data. Therefore, to test our proposed model we used an independent dataset (i.e. 
80% Training and 20% Testing dataset). The performance outcome of the independent 
dataset is given in Table  6. Among the traditional algorithms, SVM achieved an 
improved accuracy of 92.53% with sensitivity, specificity, and MCC of 93.23%, 91.82%, 
and 0.861. On the other hand, DNN obtained higher prediction outcomes with an 
accuracy of 94.45%, a sensitivity of 96.87%, a specificity of 92.03%, and an MCC of 0.912.

Conclusions
The evaluated PSSM-Sumo demonstrated high reliability in identifying sumoylated sites 
with superior accuracy. PSSM-Sumo outperformed previous models in this domain, 
leveraging an optimized deep learning algorithm as an advanced feature extraction 
technique. The model also proved effective across various statistical measurements, 
including MCC, accuracy, sensitivity, and specificity. The AUC, on average, showed 
significantly better results compared to other models, achieving a prediction rate of 
98.71%. The model’s accuracy was verified through rigorous tenfold cross-validation, 
indicating strong generalizability in real-world applications. Furthermore, a comparison 
of PSSM-Sumo with widely used machine learning algorithms such as KNN, RF, and 
SVM revealed several distinctive strengths, leading to much more accurate predictions 
of sumoylation sites.

Table 5 Comparison performance of the existing models

Method ACC (%) SP (%) SN (%) MCC

pSumo-CD [23] 72.80 92.10 53.60 0.494

HseSUMO [24] 89.50 89.50 89.50 0.790

Deep-Sumo [25] 96.47 96.25 96.71 0.929

PSSM-Sumo 98.71 99.68 97.72 0.974

Table 6 A comparison of the proposed model with machine learning models on independent 
dataset

ML ACC (%) SP (%) SN (%) MCC

PSSM-Sumo 94.45 92.03 96.87 0.912

SVM 92.53 91.82 93.23 0.861

RF 91.01 89.21 92.81 0.859

KNN 90.74 88.74 92.73 0.853
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The PSSM-Sumo model also suggested a positive impact on drug discovery and disease 
diagnosis by accurately identifying sumoylation sites. Future work should address the 
model’s applicability to other biological characteristics and its practical implementation 
in personalized medicine or specific drug therapies. We also plan to employ parallel 
programming methods, distributing data across multiple processing nodes using big 
data analytics platforms, which will significantly enhance the model’s scalability and 
efficiency in handling larger datasets [43, 44].
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