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Suppose the observations of Lagrangian trajectories
for fluid flow in some physical situation can be
modelled sufficiently accurately by a spatially
correlated Itô stochastic process (with zero mean)
obtained from data which is taken in fixed Eulerian
space. Suppose we also want to apply Hamilton’s
principle to derive the stochastic fluid equations
for this situation. Now, the variational calculus
for applying Hamilton’s principle requires the
Stratonovich process, so we must transform from Itô
noise in the data frame to the equivalent Stratonovich
noise. However, the transformation from the Itô
process in the data frame to the corresponding
Stratonovich process shifts the drift velocity of
the transformed Lagrangian fluid trajectory out of
the data frame into a non-inertial frame obtained from
the Itô correction. The issue is, ‘Will non-inertial forces
arising from this transformation of reference frames
make a difference in the interpretation of the solution
behaviour of the resulting stochastic equations?’ This
issue will be resolved by elementary considerations.

1. Introduction
The Kelvin circulation theorem. The key element of fluid
dynamics is the Kelvin circulation theorem, which is a
statement of Newton’s force law for mass distributed
on closed material loops c(uL

t ) moving with the flow
velocity vector, uL

t (x), where the subscript t denotes
explicit time dependence. That is, the material loops
move with the Lagrangian transport velocity vector
uL

t (x) tangent to the Lagrangian trajectory of the
fluid parcel in the flow which occupies position x at
time t. For the fluid situation, Newton’s law states that
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the time rate of change of the circulation integral—around the material loop c(uL
t )—of the

momentum-per-unit-mass co-vector u�
t(x) is equal to the circulation of the co-vector representing

force per unit mass f �
t(x). Here, one denotes co-vector components by superscript �, as u�

t(x). In
integral form, this is

d
dt

∮
c(uL

t )
u�

t = d
dt

∮
c(uL

t )
u�

t(x) · dx =
∮

c(uL
t )

f �
t(x) · dx =

∮
c(uL

t )
f �
t , (1.1)

where uL
t := uL

t (x) · ∇ denotes the vector field with vector components uL
t tangent to the

Lagrangian trajectories in the vector field basis ∇, and u�
t = u�

t · dx denotes the circulation 1-form
with co-vector components u�

t in the 1-form basis dx.
Physically, ut(x) is the time-dependent momentum per unit mass measured in a fixed Eulerian

frame. Since momentum per unit mass and velocity have the same dimensions and because
momentum and force are defined in Newton’s force law to be measured in an inertial reference
frame, one may refer to ut(x) (without superscript �) as the Eulerian velocity. Thus, the Kelvin–
Newton relation in (1.1) for loop momentum dynamics involves two kinds of ‘velocity’, both
of which may be evaluated at a given point x ∈ R

3 in an inertial frame with fixed Eulerian
coordinates. However, the vector field uL

t and the 1-form u�
t in Kelvin’s theorem have quite

different transformation properties.
As we said, the vector field uL

t (x) is the velocity at each point x fixed in space along the path of the
material masses distributed in the line elements along the moving loop. Thus, the velocity uL

t (x)
in (1.1) may be regarded as a Lagrangian quantity, because its argument is the pullback of the
tangent to the Lagrangian trajectories of the fluid parcels of the circulation loop moving through
fixed Eulerian space under the smooth invertible flow map, xt = φtx0, where φ0 = Id. That is,

d
dt

φt(x0) = φ∗
t uL(t, x0) := uL(t, φt(x0)) = uL

t (xt). (1.2)

Here, uL
t := uL

t (x) · ∇ is the vector field tangent to the Lagrangian trajectories. By contrast, the
circulation 1-form u�

t = u�
t · dx has co-vector components—denoted by superscript �—as u�

t(x)
and representing the momentum per unit mass at position x at time t which is determined from
Newton’s Laws of motion.

We stress that the Kelvin–Newton relation (1.1) is a statement about the time rate of change of
the momentum-per-unit-mass 1-form u�

t distributed on closed material loops. In particular, Kelvin
circulation is not about the acceleration of velocity distributions uL

t on closed loops. Unfortunately,
this distinction can often be lost for fluid motion in an inertial frame, because the momentum
is simply proportional to the velocity in that case, and in the R

3 inner product the distinction
between vector fields uL

t and 1-forms ut is a nicety, except for their transformations under smooth
maps. Therefore, in transforming to a non-inertial frame such as a rotating frame, the distinction
becomes important even in R

3. In that case, the velocity uL
t := uL

t (x) · ∇ is the velocity vector
field relative to the reference frame moving at velocity R(x), while ut = (uL

t )�(x) + R�(x) · dx is the
total momentum per unit mass, relative to the fixed frame after being parallel transported to the
coordinate system x in the moving frame by using the connection 1-form R�(x) · dx.

Thus, the Coriolis force arises in the acceleration of the relative velocity in the moving reference
frame with coordinates x fixed on the surface of the rotating Earth. The Coriolis parameter is
curlR(x) = 2Ω(x) where Ω(x) is the angular velocity of the Earth in the moving frame, relative to
the fixed stars. Newton’s force law for the rate of change of total momentum in (1.1) becomes

d
dt

∮
c(uL

t )

(
uL

t (x) + R(x)
)
� · dx =

∮
c(uL

t )
f �

t(x) · dx, (1.3)

while Newton’s relation between acceleration of the relative velocity and force becomes

d
dt

∮
c(uL

t )
(uL

t )�(x) · dx =
∮

c(uL
t )

(
f t(x) + uL

t × 2Ω
)
� · dx. (1.4)
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Figure 1. Trajectories from the National Oceanic and Atmospheric Administration Global Drifter Program are shown, in which
each colour corresponds to a different drifter.

Thus, the circulation of Newton’s force law in terms of momentum in (1.3) is covariant under the
change of reference frame, while the circulation of Newton’s force law in terms of acceleration
in (1.4) changes its form by acquiring the ‘fictitious’ Coriolis force. That is, the form of Newton’s
Law F = ma is covariant under changes of frame, only if ma = dP/dt. Having made this point in
the context of Kelvin’s circulation theorem, we will henceforth drop the superscript � for 1-forms
and assume that the reader will understand the differences between vector fields and 1-forms in
context in the remainder of the paper.

Background of the stochastic problem. The form of the Kelvin circulation theorem in (1.3) persists
for stochastic flow, provided the Lagrangian paths follow Stratonovich stochastic paths, as shown
in [1] by using a Stratonovich stochastic version of Hamilton’s principle for fluid dynamics in
an inertial domain. The observation of the persistence of the Kelvin form (1.3) for Stratonovich
stochastic fluid trajectories has led to the SALT algorithm for uncertainty quantification and data
assimilation for stochastic fluid models.1 The SALT algorithm proceeds from data acquisition, to
coarse graining, to uncertainty quantification by using stochastic fluid dynamical modelling. The
algorithm then continues to uncertainty reduction via data assimilation based on particle filtering
methods, as discussed and applied in [2,3].

The present note has a simple storyline. Suppose the Lagrangian trajectories for fluid flow in
some physical situation are modelled sufficiently accurately by a spatially correlated Itô stochastic
process obtained from data which is taken to be statistically stationary with zero mean in the
inertial frame of fixed Eulerian space. For example, this could be drifter data on the surface of the
ocean as seen from a satellite, as shown in figure 1.2

Remark 1.1. Figure 1 [4] displays the global array of surface drifter trajectories from the
National Oceanic and Atmospheric Administration’s ‘Global Drifter Program’ (www.aoml.noaa.
gov/phod/dac). In total, more than 10 000 drifters have been deployed since 1979, representing
nearly 30 million data points of positions along the Lagrangian paths of the drifters at six-
hour intervals. An important feature of this data is that the ocean currents show up as spatial
correlations, easily recognized visually by the concentrations of colours representing individual

1SALT is an acronym for Stochastic Advection by Lie Transport [2,3].

2The spatial correlations of the data shown in figure 1 depend on the season, which can be modelled as a prescribed long-term
time-dependence. However, we neglect such prescribed time-dependence here, to simplify the presentation.

www.aoml.noaa.gov/phod/dac
www.aoml.noaa.gov/phod/dac
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paths in figure 1. These spatial correlations exhibit a variety of spatial scales for the trajectories of
the drifters, corresponding to the variety of spatio-temporal scales in the evolution of the ocean
currents which transport the drifters.

Suppose we also want to apply Hamilton’s principle to derive the stochastic fluid equations for
this situation. Now, the variational calculus for applying Hamilton’s principle requires the chain
rule and the product rule from vector calculus. The Stratonovich process respects these calculus
rules, but Itô calculus is another matter. Thus, to use these rules of calculus to apply Hamilton’s
principle, we should transform from Itô noise with zero mean in the data frame to the equivalent
Stratonovich noise.

Problem statement. The question is, ‘Will the transformation transform from Itô noise in the
data frame to the equivalent Stratonovich noise make a difference in the solution behaviour of the
resulting stochastic equations?’

Framework for resolving this issue. We know the transformation from the Itô process in the
data frame to the corresponding Stratonovich process shifts the drift velocity of the transformed
Lagrangian fluid trajectory out of the data frame into a non-inertial frame obtained from the Itô
correction. We know the Itô correction explicitly, since the spatial correlations of the Itô noise have
been obtained from the observed data. So, perhaps all is well, even though the spatial correlations
depend upon location.

Thus, we have seen that the Itô correction shifts the Stratonovich drift velocity of the fluid
into a spatially-dependent non-inertial frame relative to the data frame. (The data frame is the
fixed Eulerian frame in which the Itô drift velocity was defined.) Now, such a shift of reference
frame would introduce a non-inertial force into the motion equation for ut, whose derivation
using variational calculus requires the Stratonovich representation of the noise. According to
oceanographic experience, this non-inertial force can generate circulation of the Eulerian velocity
[5,6]. The question then arises, ‘Is the three-dimensional (3D) circulation which would be
generated by the non-inertial force due to the Itô correction going to be important the comparison
of the stochastic motion equation to the observed fluid motion?’

To demonstrate the resolution of this issue, we apply Hamilton’s principle to derive the
equations of motion in the example of the stochastic Euler–Boussinesq equations (SEB) for the
incompressible flow of a stratified fluid under gravity.3 In this case, including the non-inertial
force produces a ‘vortex force’ analogous to the Coriolis force. Upon inspection, we will recognize
the derived equations as a version of the Craik–Leibovich (CL) equations [5,6], altered by the
presence of stochastic advection by Lie transport (SALT).

Oceanographic background. The ‘vortex force’ of the deterministic Craik–Leibovich (DCL) theory
derived in [5,6] was introduced to model the observed phenomenon of Langmuir circulations
arising physically from wave–current interaction (WCI), [7–11]. The corresponding velocity shift
due to WCI was called the ‘Stokes mean drift velocity’ and was a prescribed quantity denoted as
uS(x). The importance of including uS(x) in the DCL equations has been investigated for Kelvin–
Helmholtz instability in [12] and for symmetric and geostrophic instabilities in the wave-forced
ocean mixed layer in [13]. In fact, because of its effectiveness in generating Langmuir circulations,
the DCL has become a standard feature of the WCI literature.

The three-dimensional results of having transformed the SEB fluid equations into a stochastic
version of CL equations have yet to be investigated. However, it would not be surprising if
the solutions of the Craik–Leibovich (SCL) equations were interpreted as possessing Langmuir
circulations generated by the Itô correction to the stochastic drift velocity. Such an interpretation
should be received with care, though, since they would represent circulations of the relative
velocity, uL, generated simply because the equations for uL are not written in the inertial frame
of the data.

Objective of the paper. The present note investigates how to deal with non-inertial forces in
stochastic dynamics which arise from Itô corrections as changes of frame when applying mixed
Itô and Stratonovich stochastic modelling in 3D SEB fluid dynamics.

3In Hamilton’s principle, such shifts of frame are accomplished transparently by an additive term in the action integral.
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The resolution of this issue has already been given above in the comparison between
equations (1.3) and (1.4). Namely, the Itô correction will generate no Langmuir circulations, as
seen in the data frame with ‘velocity’ ut(x) = uL

t (x) − uS(x), which is really the momentum per unit
mass. However, Langmuir circulations would indeed be viewed in the relative drift frame of
the Lagrangian fluid parcels with velocity uL

t (x), as being caused by the non-inertial force felt in
the moving frame of the Itô correction uS(x). The presence of this sort of fictitious force is why
Newton’s law of motion F = ma only applies in an inertial frame. Undergraduate physics students
will recognize this point as the analogue of the familiar Coriolis force felt in a rotating frame.
They may also recall that the canonical momentum is not necessarily the mass times the velocity
in a rotating frame, or in an external magnetic field. Although the reasoning in the remainder
of the paper is elementary, we hope the explicit stochastic fluid dynamical calculations which
demonstrate the resolution of this issue for 3D SEB fluid dynamics below may be illuminating.

(a) Stochastic Kelvin circulation dynamics
This section describes the background for the Itô correction in stochastic fluid dynamics.

Multi-time homogenization for fluid dynamics in [14] was used to derive the following
Itô representation of the stochastic vector field which generates a stochastic Lagrangian fluid
trajectory in the Eulerian representation,

dxt = ut(xt) dt + ξ (xt) dBt, with divξ = 0, (1.5)

where subscript t denotes explicit time dependence, i.e. not partial time derivative. In this
notation, dBt denotes a Brownian motion in time, t, whose divergence-free vector amplitude ξ (xt)
depends on the Eulerian spatial position xt ∈ R

3 along the Lagrangian trajectory, xt = φtx0 with
initial condition x0. The differential notation (d) in equation (1.5) is short for

xt − x0 =
∫ t

0
dxt =

∫ t

0
ut(xt) dt +

∫ t

0
ξ (xt) dBt, (1.6)

where the first time integral in the sum on the right is a Lebesque integral and the second one
is an Itô integral. The representation of stochastic Lagrangian fluid trajectories in equation (1.5)
has a long history, going back at least to GI Taylor [15], who provided an exact Lagrangian
solution for the rate of spread of tracer concentration in unbounded, stationary homogeneous
turbulence. Equation (1.5) is also a fundamental tenet in atmospheric science. See [16] for a
historical survey of the applications of this ansatz in atmospheric science. Let us also mention
a few recent papers which are more directly related to our present lines of thought about fluid
dynamics with multiplicative noise [17–22].

The Stratonovich representation (denoted with symbol ◦) of the Itô trajectory in (1.5) is given
by transforming to

dxL
t = uL

t (xt) dt + ξ (xt) ◦ dBt, with divξ = 0. (1.7)

Remark 1.2. The quantity dxt(x) in (1.7) may be regarded as a stochastic Eulerian vector field
which generates a smooth invertible map in space whose parameterization in time is stochastic.
In integral form, the operation the expression dxt in (1.7) represents,4

xt = x0 +
∫ t

0
u(x, t) dt +

∫ t

0
ξ (x) ◦ dB(t), (1.8)

which is the sum of a Lebesgue integral and a Stratonovich stochastic integral.

4The usual superscript ω for pathwise stochastic quantities will be understood throughout. However, this superscript will be
suppressed for the sake of cleaner notation.
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The difference in drift velocities for the two equivalent representations (1.5) and (1.7) of the
same Lagrangian trajectory dxL

t = dxt is called the Itô correction [23]. It is given by,

uL
t (xt) − ut(xt) = −1

2

(
ξ (xt) · ∇)

ξ (xt) =: uS(xt). (1.9)

The difference of velocities uS = uL
t − ut is called the ‘Itô-Stokes drift velocity’ in [24], as an

analogue of the classic Stokes mean drift velocity, which is traditionally written as uS(x) =
uL(x, t) − uE(x, t), where the overlines denote time averages or phase averages at constant
Lagrangian and Eulerian positions, respectively. Identifying the difference uS = uL

t − ut in
equation (1.9) with the traditional Stokes mean drift velocity uS in the DCL model emphasizes
the potential physical importance of the choice between Itô and Stratonovich noise in modelling
uncertainty in fluid dynamics. Note, however, that uS(x) (without overline) is the Itô correction,
while uS(x) (with overline) is the Stokes mean drift velocity. Although the notation stresses the
analogue, the distinction between uS(x) in (1.9) and uS(x) should be clear in context.

Remark 1.3 (Physical implications of the Stokes mean drift velocity). The traditional Stokes
mean drift velocity uS(x) is assumed to be a time-independent prescribed difference between the
Lagrangian mean fluid velocity uL(x, t) and its Eulerian mean counterpart uE(x, t) [25]. The Stokes
drift velocity plays a key role in the celebrated CL model of Langmuir circulations arising from
wind forcing at the air-sea interface in oceanography [6]. See [26], for a review of recent advances
in modelling and observing Langmuir circulations driven by wind and waves in the upper layers
of large bodies of water.

In the present notation, ut is the Eulerian momentum per unit mass in Newton’s second law
and uL

t is the transport drift velocity for the corresponding equivalent Stratonovich representation
of the Lagrangian trajectory. The difference uS(x) between these two quantities in (1.9) with the
dimension of velocity at a fixed Eulerian point x along the Lagrangian trajectory xt = φtx0 may be
assumed to be time-independent, provided the statistics of the observed data is stationary. One
may also prescribe a temporal dependence of the Itô correction uS(x) to vary with the seasons in
geophysical applications, say, without interfering with the conclusions of the SCL model.

The effects of uncertainty in the statistics of the Stokes mean drift velocity uS in the context of
the CL model has been treated in [27], as well. However, no self consistent dynamical theory of
the Stokes drift uS has been developed yet, to our knowledge. Nonetheless. today, the Stokes
drift representation of the wave–current interaction (WCI) in the Euler–Boussinesq (EB) fluid
motion equation is in general use for numerically modelling the vertical transport effects of
Langmuir circulations on mixed layer turbulence by using large-eddy simulations (LES) approach
in computational fluid dynamics. However, the theoretical issues are by no means settled. For a
recent discussion of these issues from the viewpoint of LES computations, e.g. [28–31].

The Kelvin circulation integral for the Eulerian representation of the Lagrangian trajectory in
(1.5) is defined as

I(t) =
∮

c(dxL
t )

ut · dx, (1.10)

where ut(x) is the Eulerian velocity at a fixed spatial position x ∈ R
3 and dxL

t is the Stratonovich
representation of the transport velocity of the circulation loop moving along the Lagrangian
trajectory determined by integrating the semimartingale relationship in the vector field (1.5) to
find the path (1.6).

In the Stratonovich representation of the transport velocity vector field dxL
t in (1.7), we may

use the ordinary rules of calculus to compute the evolution equation for the circulation in
equation (1.10). For this calculation, we invoke the evolutionary version of the classic Kunita-
Itô-Wentzell (KIW) formula [32–34] for a 1-form, as derived in [35]. The KIW formula produces
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the following dynamics,

d
∮

c(dxL
t )

ut · dx =
∮

c(dxL
t )

(
d+ LdxL

t

)
(ut · dx)

=
∮

c(dxL
t )

(
dut + (dxL

t · ∇)ut + (∇dxL
t )T · ut)

) · dx

=
∮

c(dxL
t )

(
dut − dxL

t × curlut + ∇(dxL
t · ut)

) · dx, (1.11)

where the operator LdxL
t

denotes the Lie derivative with respect to the vector field dxL
t .

equation (1.11) will play a role in deriving the Kelvin circulation theorem, itself, and thereby
interpreting the solution behaviour of the fluid motion equation, derived below from Hamilton’s
principle.

In the next section, we will show how passing from the Itô representation of the Lagrangian
trajectory in (1.5) to its equivalent Stratonovich representation in (1.7) enables the use of
variational calculus to derive the equations of stochastic fluid motion via the approach of
SALT, based on Hamilton’s variational principle using Stratonovich calculus, [1]. The resulting
equations will raise the issue of non-inertial forces and this issue will be resolved by elementary
considerations.

2. SALT derivation of stochastic Euler–Boussinesq

(a) Hamilton’s principle, motion equations and circulation theorems for SALT
Following [1], we apply Hamilton’s principle δS = 0 with the following action integral S =∫T

0 �(uL
t , D, b) dt whose fluid Lagrangian �(uL

t , D, b) depending on drift velocity uL
t , buoyancy

function b(x, t) and the density D(x, t)d3x for (x, t) ∈ R
3 × R. We constrain the variations to respect

the stochastic advection equations with transport velocity dxL
t given in (1.7),

db + dxL
t · ∇b = 0, and dD + div(DdxL

t ) = 0. (2.1)

These relations ensure that the values of the advected quantities b and D(x, t)d3x remain invariant
along flow given by the stochastic Lagrangian trajectory in (1.6).

In general, with the constraints in (2.1) Hamilton’s principle will result in a motion equation
in the Euler–Poincaré form [36]

(
d+ LdxL

t

)(
ut · dx

) = 1
D

δ�

δb
db + d

δ�

δD
with ut := 1

D
δ�

δuL
t

. (2.2)

The various differential operators in (2.2) are defined, as follows. As usual, d denotes spatial
differential of functions, e.g. db = ∇b · bx. Likewise, δ denotes variational (Gateux) derivative
of functionals, e.g. δ�(u) = 〈δ�/δu, δu〉 where 〈·, ·〉 denotes L2 pairing. Finally, Roman d denotes
stochastic ‘differential’, in the sense of stochastic integrals defined in remark 1.2, cf. formulas (1.7)
and (1.8).

The stochastic Euler–Poincaré equation (2.2) will result in a Kelvin–Newton theorem of the
form

d
∮

c(dxL
t )

(
ut · dx

) =
∮

c(dxL
t )

1
D

δ�

δb
db +

∮
c(dxL

t )
d

δ�

δD
, (2.3)

and the loop integral of an exact differential in the last term will vanish. For more discussion of
stochastic advection, see [35]. For discussion of other stochastic Kelvin theorems, see [37].

For the example of the SEB equations, the pressure constraint appearing in the well-known
deterministic action integral [12] must be altered to become,

S =
∫T

0
�(uL

t , D, b) dt =
∫

dt
∫

d3x
[

1
2

D|uL
t |2 − DuL

t · uS(x) − gDbz
]

−
∫

d3x
∫

dp(D − 1), (2.4)
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and again constrain the variations by requiring satisfaction of the stochastic advection relations
in (2.1). Special care is required when imposing the incompressibility constraint, div(dxL

t ) = 0
by requiring that (D = 1), since the quantity D is a stochastic quantity. As explained in [38],
this means the pressure Lagrange multiplier (dp) is a semimartingale.5 See remark 2.1 below
for the semimartingale formula which determines the pressure. To finish the notation, g in the
Lagrangian (2.4) denotes the gravitational constant.

Hamilton’s principle with the stochastic constraints (2.1) now yields a stochastic Kelvin–
Newton theorem [36], expressible as, cf. (1.11),

d
∮

c(dxL
t )

ut · dx = −g
∮

c(dxL
t )

b dz dt −
∮

c(dxL
t )

d
(

dp − 1
2
|ut|2 dt + 1

2
|uS(x)|2 dt

)
, (2.5)

in which ut := uL
t − uS(x) and the closed loop c(dxL

t ) moves with velocity dxL
t of the Lagrangian

trajectory in (1.7). Again, the last term will vanish in the Kelvin-Newton theorem (2.5).
When uS vanishes, equation (2.5) yields Kelvin’s circulation theorem for the SEB equations.

Remarkably, though, when uS is finite, as given in (1.9), equation (2.5) yields Kelvin’s circulation
theorem for the stochastic Craik-Leibovich (SCL) equations, whose deterministic version (DCL)
is used for modelling Langmuir circulations in the oceanic mix layer [5,6].

Being loop integrals of exact differentials, the last terms in equations (1.11) and (2.5) both
vanish. However, including the last term allows us to envision the SCL equations in full. Namely,
for the Lagrangian trajectory dxL

t in equation (1.7), applying the KIW formula (1.11) to the Kelvin
circulation integral on the left side of equation (2.5) yields the stochastic motion equation, as

dut − dxL
t × curlut + ∇(

dxL
t · ut

) = − gb ∇z dt − ∇dp − ∇
(

− 1
2
|ut|2 + 1

2
|uS(x)|2

)
dt. (2.6)

The SCL motion equation (2.6) includes all three of the velocities ut, uL
t and uS

t . Although the
velocities are mixed in this equation, it implies a compact version of the Kelvin circulation
theorem,

d
∮

c(dxL
t )

ut · dx = −g
∮

c(dxL
t )

b dz dt, (2.7)

where the closed loop c(dxL
t ) is transported by the stochastic vector field dxL

t in (1.7) and the
integral of gradients around the closed loop have vanished. As we have discussed, in the physical
understanding of the Kelvin circulation theorem, one should regard the velocity ut in the
integrand as an Eulerian quantity and the flow velocity dxL

t of the material loop as a Lagrangian
quantity.

Remark 2.1 (Determining the pressure semimartingale). To determine the pressure
semimartingale (dp) one imposes preservation of divut = 0 on the divergence of the motion
equation (2.6) to find a semimartingale Poisson equation for dp,

�

(
dp + dxL

t · ut +
(

− 1
2
|ut|2 + 1

2
|uS(x)|2

)
dt

)
= div

(
dxL

t × curlut − gb ∇z dt
)

, (2.8)

with Neumann boundary conditions obtained by preservation of the condition that ut have no
normal component on the fixed boundary of the flow domain. For an explanation of why the
pressure must be regarded as a semimartingale for dp to impose incompressibility on a stochastic
vector field, see [38].

Remark 2.2 (Completing the stochastic dynamical system). The SCL motion equation (2.6)
is completed by the auxiliary stochastic advection equations for b and D in equation (2.1). The
constraint D − 1 = 0 imposed by the Lagrange multiplier dp (the pressure semimartingale) in (2.4)

5The validity of the incompressibility relations of the Lagrangian mean and Eulerian mean velocities uL and uE, respectively,
is a recurring issue in both the CL and generalized Lagrangian mean (GLM) literatures. However, in the SCL analogue here
between the Itô correction velocity uS(x) (without overline) and the Stokes mean drift velocity uS(x) (with overline), we already
know the divergence of the Itô correction uS(x) in equation (1.9) when we need to impose div(uL

t ) = 0 to determine the pressure
semimartingale dp; in remark 2.1.
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ensures that the velocity uL
t is divergence free, provided the drift velocity uS(x) in (1.9) also has

no divergence.

Equation (2.6) may be equivalently written in terms of only uL
t and uS

t as

duL
t − dxL

t × curluL
t + ∇(

dxL
t · uL

t
) = −gb ∇z dt + dxL

t × curluS(x)

− ∇
(

dp + dxL
t · uS(x)

)
+ ∇

(1
2
|uL

t − uS(x)|2 − 1
2
|uS(x)|2

)
dt, (2.9)

where we have dropped the term duS(x) because uS(x) in equation (1.9) is time-independent. The
remaining terms involving uS(x) comprise a stochastic version of the ‘vortex force’ in DCL and
an added stochastic contribution to the pressure. This vortex force appears in the corresponding
Kelvin theorem as a source of circulation of the velocity uL

t , viz.,

d
∮

c(dxL
t )

(uL
t − uS(x)) · dx = −g

∮
c(dxL

t )
b dz dt. (2.10)

The ‘vortex force’ of the DCL theory was introduced to model the observed phenomenon
of Langmuir circulations arising physically from wave–current interaction (WCI), [7–11]. The
importance of including uS in the DCL equations is investigated for Kelvin–Helmholtz instability
in [12] and for symmetric and geostrophic instabilities in the wave-forced ocean mixed layer in
[13]. The results of having made the ‘vortex force’ of the SCL theory stochastic have yet to be
investigated in solutions of the 3D SEB equations.

Equation (2.9) with ut := uL
t − uS is an example of our earlier discussion after equations (1.3)

and (1.4) in which the acceleration figures in the Kelvin-Newton relation, because the specific
momentum ut(x) is linear in the fluid transport velocity uL

t (x) at fixed points in Eulerian
coordinates and with time-independent coefficients. In this case, equations (2.9) and (2.10)
exemplify the a = F/m version of Newton’s law which arises in this special case. Thus, the
stochastic ‘vortex force’ in equation (2.10) is a non-inertial force which arises from insisting on
writing the acceleration of the relative velocity instead of the rate of change of momentum
in Newton’s force law. The stochastic motion equation (2.6) has no non-inertial ‘vortex force’,
because it is written entirely in the Eulerian data frame. The non-inertial ‘vortex force’ arises in
equation (2.9) upon replacing rate of change of Eulerian specific momentum ut in (2.6) with rate
of change of the Lagrangian transport velocity (Lagrangian acceleration) uL

t in equation (2.9).

(b) Vorticity and PV dynamics
The curl of the SCL motion equation (2.9) yields the dynamics for the total vorticity

ωt := curl(uL
t − uS) = curl ut, (2.11)

which is given by

dωt − curl
(
dxL

t × ωt
) = −g∇b × ∇z. (2.12)

The total vorticity dynamics (2.12), in turn, yields a stochastic advection law for the total potential
vorticity, defined by q := ωt · ∇b; namely,

dq + dxL
t · ∇q = 0. (2.13)

In turn, this implies preservation of spatial integrals

CΦ =
∫
D

Φ(q, b) d3x, (2.14)

for arbitrary differentiable functions Φ, provided dxL
t has no normal component at the boundary

∂D of the flow domain D.
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3. Conclusion
The central theorem for fluid dynamics (the Kelvin theorem) involves two frames in which
velocities are measured. As we have seen, one velocity is a vector and the other is a co-vector.
The integrand is in a fixed inertial frame and the circulation loop is in the moving frame of the
Lagrangian fluid parcels. The frame of the specific momentum in the integrand is Eulerian and
the frame of the moving loop is Lagrangian. Likewise the data observation frame and the fluid
motion frame will differ, if one is modelled as Itô and the other as Stratonovich. Thus, it makes
sense that the shifts between frames which occur in transforming a Lagrangian trajectory from
Itô to Stratonovich form would introduce non-inertial forces in the motion equations. This was
already clear from the Coriolis force and the CL vortex force in the deterministic modelling of
fluid dynamics.

Similarly, waves are Eulerian while fluid motion is Lagrangian: waves move relative to fixed
space through the moving fluid, while the motion of the fluid Doppler shifts the wave frequency.
In the CL model, the Eulerian velocity (defined as the total specific momentum) is given by ut =
uL

t − uS(x). This is the difference between the Lagrangian fluid transport velocity uL
t and another

velocity uS(x) called the Stokes drift velocity due to the waves, which must be prescribed from
observed wave conditions. The CL non-inertial vortex force arises as in (2.9) for the same reason
as the Coriolis force arises in equations (1.3) and (1.4), except that one replaces R(x) → − uS(x).
Namely, the acceleration (i.e. the time rate of change of the circulation of uL

t (x) the fluid velocity
relative to the moving frame) equals the sum of the force in the inertial frame F, plus the non-
inertial force FCoriolis.

(a) Conclusion: does the Itô correction make a difference? Answer: No, for total specific
momentum, Yes, for relative velocity

What does all this mean for the original problem of comparing Itô data with Stratonovich
equations of motion derived from Hamilton’s principle for stochastic fluid equations in the
Euler-Poincaré form (2.2)? It means that no non-inertial forces due to changes of frame by
the Itô correction need to be considered for the dynamics of the total specific momentum,
ut = uL

t − 1
2 (ξ (xt) · ∇)ξ (xt), which lives naturally in the Eulerian data frame. However, if one

seeks the dynamics of the Lagrangian relative transport velocity, uL
t , instead of the Eulerian

specific momentum, ut, then non-inertial forces will arise due to the Itô-Stokes correction,
uS(xt) = − 1

2 (ξ (xt) · ∇)ξ (xt).
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