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Abstract

Neuropsychological test is an essential tool in assessing cognitive and functional

changes associated with late-life neurocognitive disorders. Despite the utility of the

neuropsychological test, the brain-wide neural basis of the test performance remains

unclear. Using the predictive modeling approach, we aimed to identify the optimal

combination of functional connectivities that predicts neuropsychological test scores

of novel individuals. Resting-state functional connectivity and neuropsychological

tests included in the OASIS-3 dataset (n = 428) were used to train the predictive

models, and the identified models were iteratively applied to the holdout internal test

set (n = 216) and external test set (KSHAP, n = 151). We found that the connectivity-

based predicted score tracked the actual behavioral test scores (r = 0.08–0.44). The

predictive models utilizing most of the connectivity features showed better accuracy

than those composed of focal connectivity features, suggesting that its neural basis is

largely distributed across multiple brain systems. The discriminant and clinical validity

of the predictive models were further assessed. Our results suggest that late-life neu-

ropsychological test performance can be formally characterized with distributed

connectome-based predictive models, and further translational evidence is needed

when developing theoretically valid and clinically incremental predictive models.
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1 | INTRODUCTION

The neuropsychological test has a distinct role in detecting and moni-

toring cognitive and functional changes associated with dementia-

associated diseases (Fields, Ferman, Boeve, & Smith, 2011). Neuro-

psychological tests systematically describe the abilities to perform

given cognitive tasks and evaluate how an individual will cope with

daily-life functional activities (Donders, 2019; Fields et al., 2010).

Thus, neuropsychological tests not only detect the presence of clinical

impairment but also provide prognostically useful information in late-

life neurodegenerative disease (Belleville, Fouquet, Duchesne, Col-

lins, & Hudon, 2014).

Despite strong evidence of the clinical utility of neuropsychologi-

cal tests, however, it is unclear what neurobiological information the

test scores provide. While the progression of the pathophysiological

process of dementia strongly affects neuropsychological function

(Jack et al., 2019; Mortamais et al., 2017), a large amount of variance

is left unexplained even with multimodal biomarker information

(Arenaza-Urquijo & Vemuri, 2018; Habeck et al., 2016; Vemuri et al.,

2011). Moreover, it is hard to predict whether the presence of
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pathophysiological markers directly leads to neural dysfunction within

the behaviorally relevant regions (Hohman et al., 2016). These discor-

dances suggest the need for narrowing down the explanatory gap

between brain function and behavioral impairment that are relevant

to neuropsychological tests.

To elucidate the underlying neural basis of neuropsychological

tests, previous studies have examined the brain regional structures

and functions highly associated with behavioral performance (Bayram,

Caldwell, & Banks, 2018; Genon, Reid, Langner, Amunts, & Eickhoff,

2018; Mortamais et al., 2017). However, the previous studies typically

narrowed down the region of interest within a focal brain structure

(e.g., hippocampus) or averaged out overall brain measures features

into fewer predictors (Charroud et al., 2016; Duchek et al., 2013;

Shaw, Schultz, Sperling, & Hedden, 2015; Van Petten, 2004). While

pinpointing or averaging the candidate neural correlate makes the the-

oretical account succinct, it is hard to discern whether the focally

identified brain correlates are an optimal and exclusively relevant unit

in explaining individual differences of cognitive function. Moreover,

exploring multiple neural correlates with repetitive univariate tests

leads to excessively conservative thresholding, and selective reports

of focal correlates tend not to replicate in other datasets (Masouleh,

Eickhoff, Hoffstaedter, & Genon, 2019). Such a limited scope of neural

features may hinder the valid identification of replicable neural

correlate.

An advancement of individualized neuroimaging and machine

learning techniques has enabled characterizing the multivariate nature

of the brain–behavior relationship (Bzdok & Ioannidis, 2019; Dubois &

Adolphs, 2016; Jollans & Whelan, 2018). With the virtue of both

approaches, it became possible to find the optimal balance between

an overly simplified theory-driven model and a complex data-driven

model of the brain–behavior relationship. More specifically, individ-

uals' detailed profiles of functional connectivity (FC) patterns not only

can classify clinical diagnosis but also can predict continuously mea-

sured behavioral traits. Accumulating evidence suggests that behav-

ioral individual differences that are relevant in characterizing risks of

neuropsychiatric disorders including attention task performance, per-

sonality, intelligence, and neuropsychological performance can be

robustly predicted with functional connectivity patterns (Dubois,

Galdi, Paul, & Adolphs, 2018; Lin et al., 2018; Nostro et al., 2018;

Rosenberg, Hsu, Scheinost, Todd Constable, & Chun, 2018; Sui

et al., 2018). Moreover, with the advantage of feasibility, resting-state

FC has been highlighted as a promising approach in investigating the

neural basis of brain aging and preclinical dementia mechanisms

(Ferreira & Busatto, 2013; Sala-Llonch, Bartrés-Faz, & Junqué, 2015;

Sheline & Raichle, 2013). Brain functional features of FC may better

explain whether an individual will undergo significant behavioral

impairment when the location and presence of neuropathology can-

not fully account for such individual differences (Fox, 2018; Siegel

et al., 2016).

In the current study, we aimed to identify the underlying brain

connectivity basis of neuropsychological test performance in the older

adult population. Connectome-based predictive modeling combined

with a regularized regression technique was applied to examine the

optimal combinations of neural features required for accurate

prediction. We hypothesized that a widespread set of FC features are

predictive of neuropsychological performance in novel individuals. In

addition, we further tested whether the identified predictive models

generalize to an external dataset composed of heterogeneous demo-

graphic characteristics (Dwyer, Falkai, & Koutsouleris, 2018; Woo,

Chang, Lindquist, & Wager, 2017). While several studies have identi-

fied the predictive pattern of neuropsychological test performance,

previous attempts mostly lacked evidence of external validity. Most of

the reported prediction accuracies are confined to internal cross-vali-

dation, which tests the generalizability of a model only within a homo-

geneous dataset. If the predictive model captures a large amount of

variance unique to the given dataset (e.g., populational characteristics,

MRI protocols), the theoretical reliability of the predictive model will

be limited.

Finally, we further aimed to examine the discriminant and clinical

validity of the connectome-based predictive models. Although neuro-

psychological test performances are highly correlated with each other,

each test represents theoretically distinct domains of cognitive func-

tion (Park et al., 2012). The discriminant validity can be tested based

on how the predictive models are discriminantly correlated with the

specific construct of cognitive function (Habeck et al., 2015; Woo

et al., 2017). The predictive model of cognitive function can either be

confined to the targeted score or indistinctively generalize to other

test scores (Avery et al., 2019; Jangraw et al., 2018; Rosenberg

et al., 2015). The clinical validity, on the other hand, can be tested

whether neurally predicted scores from the connectome provide

incremental clinical information beyond the actual behavioral score

(Jollans & Whelan, 2016; Moons et al., 2012). If the connectome-

based prediction model only captures redundant information from the

original behavioral score, the neurally expected score will not addi-

tively explain the severity of functional impairment relevant to

dementia.

2 | METHODS AND MATERIALS

2.1 | Participants

Neuropsychological tests and neuroimaging datasets shared in Open

Access Series of Imaging Studies (OASIS-3) were used to test the

validity of the connectome-based predictive models. OASIS-3 dataset

shared clinical, neuropsychological, neuroimaging, and biomarker data

of 1,098 participants (age range: 42–95; www.oasis-brain.org; LaM-

ontagne et al., 2018). We analyzed the initial baseline data of 644 par-

ticipants who completed both neuropsychological tests and MRI

scans. Participants with incomplete MRI scans (without T1 structural

image and two sessions of resting fMRI) (n = 366), excessive head

movement (n = 37), incomplete neuropsychological tests at the base-

line (n = 51) were excluded from the analysis. Descriptive statistics are

provided based on the CDR score (Clinical Dementia Rating; Table 1).

The CDR is a semi-structured interview developed to provide a global

rating of dementia severity, and it is useful for staging and tracking

decline in AD (Fillenbaum, Peterson, & Morris, 1996; J. C. Morris

et al., 1997; J. C. Morris, 1997). Each CDR scores represented levels
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of functional impairment (0 = no impairment, 0.5 = questionable

impairment, 1 = mild impairment, 2 = moderate impairment) and sum-

marized estimate of dementia severity (Marcus et al., 2007;

J. Morris, 1993).

To examine whether the predictive model is robustly generalized

to the heterogeneous demographical dataset, participants subsampled

from Korean Social Life, Health, and Aging Project (KSHAP) were used

as an external validation dataset (J. Lee et al., 2014; Youm et al.,

2014). KSHAP participants who completed a neuropsychological

assessment, psychosocial surveys, and neuroimaging scans were

included in the study. The following exclusion criteria were applied:

the presence of psychiatric or neurological disorders, vision or hearing

problems, having metal in the body that cannot be removed, having a

history of losing consciousness due to head trauma, showed excessive

head movement during scans. Furthermore, older adults who were

highly suspected of dementia were screened out based on age and

education-stratified norm (< −1.5 SD) of Mini-Mental State Examina-

tion for Dementia Screening (MMSE-DS) (Han et al., 2010). The CDR

score ranged from 0 to 0.5, including seven participants with very mild

functional impairment (CDR = 0.5, n = 7). Among participants who

completed both neuropsychological tests and neuroimaging scans, the

final data were composed of 151 subjects who did not meet any of

the exclusion criteria (Table 1). The study was approved by the Institu-

tional Review Boards of Seoul National University and Yonsei Univer-

sity. All participants provided written informed consent to the

research procedures.

2.2 | Neuropsychological test

2.2.1 | OASIS-3 neuropsychological test

OASIS-3 consists of Neuropsychological Battery of the Uniform Data

Set (UDSNB) developed in Alzheimer's Disease Centers (ADC) to

establish unified and standardized data collection (Weintraub

et al., 2009). The dataset of 10 neuropsychological tests measuring

attention/working memory, executive function, processing speed, lan-

guage, and episodic memory are currently shared (https://central.

xnat.org).

Digit Span Forward (DIGI-F) and Digit Span Backward (DIGI-B)

were used to assess attention and working memory function with the

subtests included in the Wechsler Memory Scale (WMS-R) (Wechsler,

1987b). Total correct trials from 2 to 7 (backward) or 3 to 8 (forward)

length of digits were counted after a verbal presentation of digit num-

bers. Category fluency of animal (FLU-ANI) and vegetable (FLU-VEG)

were measured with a total number of words generated in 1 min

(Moms et al., 1989). Trail Making Test Part A (TRAIL-A) consisted of

consecutively numbered circles arranged randomly on a sheet of paper.

Participants were asked to draw a line between the circles in ascending

order as quickly as possible. In Trail Making Test Part B (TRAIL-B), par-

ticipants were asked to consecutively connect lines between the num-

ber (ascending order) and alphabet in an alternating way (1-A-2-B-…;

Reitan & Wolfson, 1993). If the subject cannot complete the sample

item for each part or exceeds the time limits, a maximum time score is

assigned (TRAIL-A: 150 s, TRAIL-B: 300 s). Total time (s) to complete

the lines were log-transformed and inversed to adjust high skewness

and indicate the same performance direction. Digit Symbol Coding

from WAIS-R (Wechsler, 1987a) was administered in the standard

way, with the total number of items completed correctly in 90 s as the

total score. Episodic memory function was assessed with Logical Mem-

ory (LOGI MEM) from WMS-R (Wechsler, 1987b). Total items of Story

A in the Immediate and Delayed Recall trial were used. The Boston

Naming Test score consisted of the total number of items named cor-

rectly named within the 20-s limit plus the number of items named cor-

rectly with a semantic cue (Kaplan et al., 1983). The tests represented

cognitive domains of attention (Digit Span), memory (Logical Memory),

language (Boston Naming, Fluency), executive, and speed (Trail Mak-

ing, Digit Symbol) (Hayden et al., 2011; Park et al., 2012).

TABLE 1 Descriptive statistics of OASIS-3 (internal validation set, n = 644) and KSHAP (external validation set, n = 151)

OASIS-3 internal validation dataset (n = 644)

KSHAP external validation

dataset (n = 151)

Not impaired
(n = 436)

Very mild impairment
(n = 169)

Mild–moderate
impairment (n = 39)

Mean ± SD (range)

Age 70.9 ± 6.52 (46–92) 72.2 ± 6.87 (50–88) 76.1 ± 8.79 (60–96) 71.7 ± 6.56 (59–93)

Sex (female: Male) 239:197 72:97 16:23 96:55

Years of education 15.8 ± 2.67 (8–29) 15.2 ± 2.85 (7–23) 14.8 ± 3.34 (8–20) 7.2 ± 4.12 (0–23)

MMSEa/MMSE-DS 28.9 ± 1.29 (21–30) 27.0 ± 2.72 (18–30) 24.0 ± 3.29 (18–30) 27.0 ± 2.14 (21–30)

CDR 0 0.5 1.04 ± 0.21 0.02 ± 0.11

CDR-SOBb 0.02 ± 0.12 1.73 ± 1.02 5.35 ± 1.54

Note: Descriptive statistics of OASIS-3 dataset were presented based on CDR global score (0 = no impairment, 0.5 = questionable impairment, 1 = mild

impairment, 2 = moderate impairment) which provide summarized estimate of dementia severity.

Abbreviations: CDR, Clinical Dementia Rating global score; CDR-SOB, Clinical Dementia Rating Sum of Boxes; MMSE, Mini-Mental Status Examination;

MMSE-DS, Mini-Mental Status Examination Dementia Screen.
aMissing value omitted (Not impaired: 1).
bMissing value omitted (Not impaired: 11, Very Mild Dementia: 7). MMSE- DS for external validation dataset.
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Among 732 participants who participated in both neuropsycho-

logical tests and MRI scans, we excluded participants who did not

complete any of the tests [Digit Span Forward, Category fluency, Log-

ical Memory score missing (n = 2); Digit Span Backward, Trail Making

Test Part A score missing (n = 3); Trail Making Test Part B missing

(n = 45)], leaving 644 final analysis set.

2.2.2 | KSHAP neuropsychological test

To test the generalizability of the predictive model, we identified eight

homologous neuropsychological tests included in the KSHAP dataset.

Similarity and correspondence of administration procedures and con-

tents were scrutinized. For the attention and working memory, Digit

Span Forward, and Digit Span Backward tests included in the Elderly

Memory disorder Scale (Chey, 2007) were available. The score was

the sum of all correct trials were counted from 2 to 8 lengths of digits.

The category fluency test asked participants to generate words from

the two semantic categories (i.e., animal and supermarket) each within

a minute (Kang, Chin, Na, Lee, & Park, 2000; Kang, Jang, & Na, 2012).

While interference condition of the original Trail Making Test in

UDSNB asks to alternate between numbers and alphabets (Reitan &

Wolfson, 1993), modified Trail Making Test (mTMT) asked to alter-

nate between numbers and symbols (triangle and rectangle) to mini-

mize the floor effect of illiterate elderly (M. Park & Chey, 2003; Seo

et al., 2006). The mTMT Part A (Trail A) consisted of 15 consecutively

numbered circles arranged randomly on a sheet of paper. Participants

were asked to draw a line between the circles in ascending order as

quickly as possible. In mTMT Part B, they were asked to draw

between triangles and squares alternately. In mTMT Part C (Trail C),

participants consecutively connected lines between 8 numbers

(ascending order) and 7 shapes (triangle and square) in an alternating

way (1 – 4 – 2 – □ – 3 – 4 …). Total time consumed to complete the

mTMT-A and mTMT-C were used in the analysis, and mTMT-B was

not used in the analysis due to the variability in the possible trail

options. A few participants exceeded the typical time limit of mTMT-A

(150 s, n = 1) and mTMT-C (300 s, n = 7), but a maximum of 300 and

600 s, respectively, were allowed to finish the task due to the partici-

pants' unskilled usage of pencil. Total time (s) to complete the lines

were log-transformed and inversed. The Story Recall Test included in

the Elderly Memory disorder Scale was used to assess episodic memory

function. The Story Recall Test consisted of one story modified from

the Logical Memory subtest in WMS-III into a more culturally familiar

content (An & Chey, 2004). The SRT required subjects to recall a para-

graph containing 24 semantic units and the delayed recall subtests were

administered 15–30 min after the immediate recall session.

2.3 | MRI acquisition and preprocessing

2.3.1 | OASIS-3 neuroimaging

Neuroimaging dataset in OASIS-3 was collected in a 16-channel head

coil of different scanners (Siemens TIM Trio 3T, Siemens BioGraph

mMR PET-MR 3T, Siemens BioGraph mMR PET-MR 3T, Siemens

Sonata 1.5T, Siemens Vision 1.5T). High resolution T1-weighted struc-

tural image (TR = 2.4 s, TE = 3.08 ms, FOV = 256 × 256 mm, FA = 8�,

voxel size 1 × 1 × 1 mm3) and resting-state functional image (EPI;

TR = 2.2 s, TE = 27 ms, FOV = 240 × 240 mm, FA = 90�, voxel size

4 × 4 × 4 mm, 36 slices) were used. Participants who completed both

structural and two consecutive runs of functional scans (6 min and

164 volumes per run) were analyzed.

Image preprocessing and denoising was performed using the

SPM12 software (Welcome Department of Imaging Neuroscience,

Institute of Neurology, London, UK) with the Conn toolbox 18.a

(http://www.nitrc.org/projects/conn) default preprocessing pipeline.

Functional images were corrected for motion and warped into MNI

standard space. Images were smoothed with a Gaussian kernel of

8 mm full-width half-maximum. In addition, the Artifact Detection

Tools (https://www.nitrc.org/projects/artifact_detect/) was used to

identify motion and signal intensity outlier images. Images with global

mean intensity Z-value >5 and movement >0.9 mm were identified as

outlier images. Estimated motion parameters and outlier images were

used as nuisance covariates in the time-series linear regression.

T1-weighted images were segmented into gray matter, white matter,

and cerebrospinal fluid and warped into MNI standard space. Signals

within white matter and CSF mask were regressed out to exclude

nongray matter BOLD signal. Band-pass temporal filtering (0.008–

0.09) was applied to exclude physiological noise signals. Participants

with excessive head motion were excluded (max motion >4.5, mean

motion >0.6, n = 51).

For each subject, mean time-series were extracted by averaging

all voxels composing each region for each time point from 227 regions

from the Shen et al. (2013) brain atlas (37 cerebellar regions were

excluded; Shen et al., 2013; Figure S1). Pearson correlation across

time-series was calculated between each pair of regions and trans-

formed to Fisher's Z scores. Therefore, 644 individuals’ whole-brain

connectivity matrices containing (227 × [227–1])/2 = 25,651 pairwise

functional connectivity (FC) values were constructed and vectorized

in the following analyses.

2.3.2 | KSHAP neuroimaging

T1-weighted magnetic prepared rapid gradient echo (MP-RAGE)

image and Resting-state fMRI data were acquired on a 3T Siemens

Trio 32channel scanner (T1: Sagittal slices, slice thickness 1 mm,

TR = 2,300 ms, TE = 2.36 ms, FOV = 256 × 256 mm, FA = 9�, voxel

size 1 × 1 × 1 mm3; Resting-state EPI: TR = 2000 ms, TE = 30 ms,

FOV = 240 × 240 mm, FA = 79�, voxel size 3 × 3 × 3 mm, gap =

1 mm, acquisition time = 5 min). During the scan, participants were

instructed to rest quietly with their eyes open and not to fall asleep.

We acquired two runs of 150 contiguous functional images. Thus, the

total length and the number of images were similar to the OASIS-3

dataset (OASIS-3:328 volumes, 12 min; KSHAP: 300 volumes,

10 min). To acquire high spatial resolution, cerebellar regions were

excluded from the acquisition. All of the preprocessing and functional

network construction were conducted with the same procedure,
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except for adding slice timing correction. Participants with excessive

head motion were excluded (max motion >4.5, mean motion >0.6,

n = 26). Constructing individuals’ FC matrix of each participant was

also the same as the procedures conducted with OASIS-3 data. There-

fore, 151 individuals’ 25,651 vectorized functional connectivities

were used in the following analyses.

2.4 | Connectome-based predictive modeling

2.4.1 | Internal validation: Prediction from
discovery to holdout sample

Due to the high dimensionality of whole-brain FC features, regulariza-

tion techniques are widely used to select an optimal set of predictive

features. Ridge regression develops a model that minimizes the sum

of both the mean prediction error and L2-norm regularization term

(sum of the squares of regression coefficients). Unlike the Ordinary

Least Square (OLS) method, this technique not only minimizes the

errors but also penalizes the total amount of explanatory weight in

the model. A regularization parameter λ is used to control the trade-

off between the prediction error in the training data and the size of

total regression coefficients, that is, model complexity. A large λ gives

a stronger penalty to the larger sum of beta coefficients and leads to a

model with more shrunk regression coefficients, while a small λ allows

large room for regression coefficients to explain the target variable.

The optimal value of λ that minimizes prediction error is tuned by the

cross-validation procedure. Previous studies have successfully

predicted individual differences in various behavioral phenotypes

using L2-norm regularization (ridge regression) (Cui & Gong, 2018;

Dadi et al., 2019; Gao, Greene, Constable, & Scheinost, 2019; Siegel

et al., 2016). L2-norm (sum of squared betas) penalizes irrelevant fea-

tures by reducing the size of weights.

Connectome-based predictive modeling was initially conducted

by randomly splitting the train set and the test set (Figure 1). The

training dataset was used to identify optimal predictive weights of the

connectivity that contributes to accurate prediction in the behavioral

scores, while the test dataset was used to evaluate how much the

identified FC pattern is expressed in the novel individuals. The pattern

expression score (i.e., FC-predicted score) was calculated with the dot

product (β × X) between predictive weights and the FC vector. The

dot product of all 25,651 features estimated the predicted behavioral

score based on the patterns of FC. The Pearson's correlation (r)

between the actual (observed) neuropsychological test score and the

FC-predicted score in the test dataset indicated the predictive

accuracy.

Connectome-based predictive models of neuropsychological test

scores were identified by utilizing a nested cross-validation procedure

(Varoquaux, 2018). Initially, the internal cross-validation was initially

conducted with the OASIS-3 dataset (Figure 2a). Dataset was ran-

domly split into the dataset for model training (discovery sample; 2/3,

n = 428) and the dataset for testing predictive accuracy (holdout sam-

ple; 1/3, n = 216). The target variable was scaled and mean-centered

within the training dataset.

In the discovery sample, hyperparameter (λ) which regulates the

complexity of the predictive model was tuned using three-fold cross-

validation. The grid range of λ was generated based on the automatic

algorithm implemented in the glmnet package. It generated 100 values

of λ linear on the log-scale starting from the maximum λ value that

converges all of the coefficients to zeros (Hastie et al., 2016). After

finding a λ value that minimizes the mean absolute error in the nested

cross-validation, the tuned λ is used to fit the prediction model and

F IGURE 1 Schematic overview of the connectome-based predictive modeling. Train set of individuals’ FC matrix (left) is used to identify
predictive weights across all connectivity features. The dot product between beta weights and the FC matrix of novel individuals estimates the
FC-predicted test scores
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was applied to the holdout sample. To account for the variability of

group splitting, the whole procedure was iterated 50 times. The itera-

tion of the loop showed a range of predictive accuracy and deviations

across iterations. When assessing the statistical significance of the

prediction accuracy, the nested iteration of 1,000 times estimated the

95% confidence interval of the precision.

We conducted the same analysis when controlling for age and

education effect. Before conducting predictive modeling, we regressed

out the effect of age or education (years) on the cognitive test score,

respectively in the test set. We compared how predictive accuracy

(correlation coefficient) decreases when residualizing the effect of age

or education. An identical analysis was conducted adjusting for the

effect of sex and head motion as a nuisance variable.

While the main predictive accuracy was evaluated with the iteration

of the nested cross-validation procedure, the distributive relationship

between the FC-predicted score and the observed behavioral score in the

scatter plots are presented for visualization purpose. The predicted scores

calculated based on nested three-fold cross-validation were plotted. The

training and testing dataset folds are randomly split. Each predicted score

of 1/3 of the data fold was allotted using the predictive model trained

within the rest of 2/3 data folds. In the case of the whole dataset within

the internal cross-validation procedure, the p values of the empirical corre-

lation values, based on their corresponding null distribution, were com-

puted by the following formula: (1 + the number of permutated r values

greater than or equal to the empirical r)/1,001. The permutation test

results revealed significant p values for the empirical r values.

2.4.2 | External validation: Prediction in external
sample

After identifying eight homologous neuropsychological tests, the same

prediction procedure was applied to test whether each test model

generalizes to external study with different populations and protocols

(KSHAP dataset, n = 151; Figure 2b). Using the predictive model

trained in the OASIS-3 discovery sample (n = 428), the dot product

between predictive weights and FC vectors of KSHAP dataset esti-

mated the FC-predicted score (pattern expression score). The training

procedure identical to internal validation was applied and iterated

50 times using ridge regression. When assessing the statistical signifi-

cance of the prediction accuracy, the nested iteration of 1,000 times

estimated the 95% confidence interval of the precision.

Since clinical status and educational attainment widely differed

between internal validation (OASIS-3) and external validation dataset

(KSHAP), we additionally examined whether the predictive model

trained with a more homogeneous population (clinically normal,

lower-educated) shows better predictive accuracy.

2.5 | Spatial pattern of predictive model

The predictive accuracy can differ according to the range and extent

to which features are considered. In this study, we examined how fea-

ture thresholding, feature sparsity, or pre-defined network shows sys-

tematically different levels of predictability and exhibit optimally

distributed predictive models.

2.5.1 | Feature filtering

To pinpoint the necessary range of brain predictors and infer the opti-

mal sparsity of the model, we examined the systematic effect of the

feature selection threshold on the predictive accuracy. Since using

every FC feature in training can introduce noisy information which

does not contribute to prediction, the filtering method may provide

optimal precision of the predictive model. The filtering method

F IGURE 2 Schematic overview of nested cross-validation. Internal validation (left): Threefold cross-validation identifies lambda-tuned
predictive weights in the train set. The trained predictive model is applied to test set FC. The FC-predicted score (pattern expression) was
calculated by the dot product between predictive weights and an individual's FC. Correlation between FC-predicted score and the actual
neuropsychological test score indicated predictive accuracy. External validation (right): Same iterative prediction was applied to KSHAP dataset
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excludes the predictors which are not strongly or weakly associated

with the target variable (i.e., test score) by conducting univariate tests

on each feature. This method can reduce dimensionality into a fewer

set of predictors that are relevant to the outcome variable. Previous

studies have shown that the extent of feature selection threshold may

systematically influence the predictive performance (Gao et al., 2019;

Greene, Gao, Scheinost, & Constable, 2018; Jangraw et al., 2018).

The spatial distributedness was examined in the OASIS-3 dataset

which was used in the internal cross-validation. In the training set, FC

features that are not correlated with the target test score above the

specified threshold (Pearson's correlation jrj < .01, .02,…, .18) were

excluded in the predictive modeling. The same features selected in

the training set were also applied to the testing dataset. As the feature

selection threshold increases, the features of the predictive model will

be constructed with focally correlating features. If the individual dif-

ference of neuropsychological test score is based on the connectivi-

ties of broad brain regions, thresholding of features will lead to a

significant decrease in the predictive performance. We identified the

threshold point of maximum prediction accuracy and the inflection

point was considered optimal sparsity of the prediction model.

2.5.2 | Feature regularization type

To evaluate whether neuropsychological test performance is driven

by selective features of functional connections, we additionally exam-

ined the prediction result across hyperparameter (α) that affects the

sparsity of the predictive model. The mixing hyperparameter α (pro-

portion of L2-regularization term) defines the tendency of predictive

weights to shrink into zero as shown in the following formula.

X
yi−xi

Tβi
� �2

+ γ
X

α βi +
1
2

1−αð Þβi2
����

�����
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The current study will examine the sparsity of the features across the

α values and infer the effect of feature sparsity (Gao et al., 2019). We

examined whether predictive models with weak and distributed fea-

tures (low-α elastic net or ridge regression) more accurately predict

neuropsychological performance than models with a selective number

of features (high-α elastic net or LASSO). The same predictive model-

ing procedure was iterated across the 21 grid values of α ([0.00,

0.05,…, 1.00]2). The systematic effect of the increased model sparsity

on the predictive accuracy was examined.

2.5.3 | Brain functional network composition of
predictive model

In the previous study, brain regions are parcellated and clustered into

eight functional networks (frontoparietal, medial frontal, default mode,

subcortical/salience, motor/auditory, Visual I, Visual II, and visual

association; Shen et al., 2013; Figure S1). The functional networks

indicate a coherent set of regions that activates together and forms

modular communities (Laird et al., 2013; Power et al., 2011). In order

to interpret the relative importance of specific functional networks in

predictive models, we assessed how much predictive accuracy

decreases when excluding each functional network in conducting the

same predictive analysis (Dubois et al., 2018; Whelan et al., 2014). If a

particular test score requires unique neural information from a specific

functional network, excluding the network connectivity information

will deteriorate the original predictive performance. On the contrary,

a minimal change will indicate that the neural basis of test perfor-

mance is not confined to the excluded functional network.

2.6 | Discriminant validity of predictive model

We examined whether the connectome-based predictive model can rep-

resent a specific cognitive construct with discriminant validity. If the pre-

dictive model distinctively predicts the cognitive test that has trained the

model, the predictive model may have captured a specific cognitive con-

struct that was attempted to measure (Woo et al., 2017). On the con-

trary, if a specific FC-predicted score is correlated not only with the test

score used to train the very model but also with the other test scores

representing distinct cognitive construct, it is more likely that the predic-

tive model captures general and common component of cognitive func-

tion (Habeck et al., 2015; Rosenberg et al., 2015). The predictive models

were trained with the OASIS-3 discovery sample (n = 428), and the FC-

predicted score was estimated using the FC expression of the internal

holdout sample (OASIS-3, n = 216) and KSHAP sample (n = 151). In this

way, we generated eight FC-predicted scores of each dataset. The

8-by-8 correlation matrix between the actual behavioral scores and FC-

predicted scores of the eight cognitive tests was averaged across itera-

tions of 1,000 times predictions. A higher correlation in the diagonal ele-

ments than off-diagonal elements indicated convergent and discriminant

characteristics of the predictive model.

2.7 | Clinical validity of predictive model

To examine the clinical validity of the predictive model, we tested

Spearman's rank correlation between neuropsychological test score

(observed or predicted) and clinician-rated functional impairment

score across each pair of the eight homologous tests. The Clinical

Dementia Rating scale–sum of boxes (CDR–SOB) was used to evalu-

ate the ecological relevance of the predictive models. The CDR-SOB

provides levels of functional impairment across six domains of func-

tion (memory, orientation, judgment, community affairs, home and

hobbies, personal care) (Lynch et al., 2005; J. C. Morris, 1997).

The FC-predicted score in the OASIS-3 dataset was estimated

using the predictive models constructed with the homologous tests

included in the KSHAP external dataset. Using three-fold cross-valida-

tion, optimal hyperparameter (λ) that minimizes mean absolute error

(MAE) was identified in ridge regression (α = 0). Then the fitted regres-

sion model was applied to FCs of OASIS-3 and estimated each of the

eight FC-predicted scores. The partial rank correlation between the

neuropsychological score (observed or predicted) and CDR-SOB con-

trolling for the counterpart score (either the predicted or observed
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score) was tested to examine the incremental value of the FC-

predicted score. The remaining correlation even after adjusting the

effect of the actual behavior score indicated the incremental informa-

tion provided from the FC-predicted score. Partial rank correlation

analysis was conducted using ppcor package (Kim, 2015).

3 | RESULTS

3.1 | Internal cross-validation

We first examined the correlation between observed behavioral test

scores and FC-predicted scores. The three-fold cross-validation

yielded prediction results in OASIS-3 total dataset (Figure 3). The

ridge regression was used to regularize prediction coefficients in each

iteration. The permutation testing also confirmed a significant correla-

tion (p < 0.001) between the predicted and observed scores except

for the marginal significance in the Digit Span Forward test (p = .049).

For the main predictive analysis using nested cross-validation,

prediction accuracy ranged from r = 0.08–0.44 (Figure 4). We addi-

tionally examined prediction results after adjusting the effect of age

and education in both the training set and test set. Age-adjustment

resulted in a large decrease in prediction accuracy whereas education-

adjusted results showed a minimal decrease in the accuracy, indicating

the age-related attributes of the predictive model (no covariate mean

correlation = 0.253, education-adjustment mean correlation = 0.254,

F IGURE 3 Internal cross-validated prediction result. Correlation between FC-predicted score and observed behavioral score in OASIS-3
(n = 644). The predicted scores were calculated based on three-fold cross-validation. Each of the folded datapoints (1/3) was calculated with the
FC prediction model tuned and constructed within the other two folds of data (2/3). The permutation results are shown as the null distribution
and the true predicted coefficient (dashed red line)
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age-adjusted mean correlation = 0.179). The results also remained

largely unchanged when adjusting for the effect of sex (mean

correlation = 0.252) and head motion (mean correlation = 0.247). The

confidence interval of the iterated prediction showed statistically sig-

nificant predictability except for Digit Span tests (Figure S2).

3.2 | External cross-validation

We identified eight homologous neuropsychological tests that can be

tested as an external dataset (Table 2). When conducting nested

cross-validation (Figure 2) across both internal (OASIS-3) and external

(KSHAP) dataset showed a range of iterated prediction results

(Figure 5). The result showed that internal cross-validation produced

higher accuracy (mean r = 0.226) than external cross-validation (mean

r = 0.159). Most of the correlation decreased whereas fluency (vege-

table/supermarket) and Trail Making Test (A) showed preserved inter-

nal cross-validation's accuracy.

3.3 | Feature filtering

To examine the extent to which focal brain regions are attributable

to the prediction result, we tested the effect of the feature filtering

threshold on the prediction accuracy. By applying univariate tests to

each connectivity feature, we filtered the features that correlated

positively or negatively with the test scores higher than the thresh-

old. We confirmed that increasing the filtering threshold resulted in

a decrease in the features utilized in the training set (Figure S3).

When examining the optimal filter threshold, we found that exclud-

ing features with a light threshold (jrj < 0.06) or applying no thresh-

old (jrj = 0.00) showed the highest predictive accuracy in the test

set (Figure 6). Therefore, maintaining a large proportion of the fea-

tures (10,831–25,651 edges, 42–100%) in the ridge regression

models produced the most accurate prediction. In contrast, how-

ever, several tests preserved their original accuracy even when the

relatively strong threshold was applied. Excluding features with a

high threshold (jrj < 0.14) minimally changed the predictive accuracy

with the smaller number of features. We also confirmed a consistent

result with the other accuracy metric (mean absolute error;

Figure S4).

3.4 | Feature regularization

Similar to the feature filtering, we additionally examined the effect of

the mixing parameter (α, proportion of L1-norm) that affects the

F IGURE 4 Prediction accuracy (correlation between FC-predicted
score and observed NP score) in the test set (n = 216) when age and
education effects are adjusted. The adjustments are conducted by
residualizing age and education effect on the scores of the testing
dataset. Mean correlation coefficients of 50 iterated prediction
procedures are plotted. Digit_F, digit span forward; Digit_B, digit span
backward; Flu_Ani/Veg, category fluency (animal/vegetable); Trail_A,
Trail Making Test Part A; Trail_B, Trail Making Test Part B;
LogiMem_imm, WMS-R Logical Memory I immediate recall;
LogiMem_del, WMS-R Logical Memory II delayed recall; Boston,
Boston Naming Test

TABLE 2 Descriptive statistics of neuropsychological test performance in internal (OASIS-3) and external (KSHAP) validation dataset

Internal validation set OASIS-3 (n = 644) External validation set KSHAP (n = 151)

Mean SD Range Mean SD Range

Digit span forward 8.31 2.01 3–12 Digit span forward 7.64 2.16 4–14

Digit span backward 6.16 2.15 0–12 Digit span backward 4.39 2.12 1–14

Fluency animal 19.14 6.03 2–37 Fluency animal 13.72 4.21 3–30

Fluency vegetable 13.25 4.55 0–30 Fluency supermarket 15.76 6.41 3–34

Trail making test A 37.51 19.05 13–180 Modified Trail making test A 34.21 19.13 7–157

Trail making test B 106.43 63.95 20–300 Modified Trail making test C 132.64 79.37 25–522

Digit symbol coding 50.22 13.48 4–93

Logical memory immediate 11.72 4.68 0–25 Story recall test immediate 13.44 6.76 0–28

Logical memory delayed 10.29 5.34 0–25 Story recall test delayed 11.48 6.89 0–28

Boston naming test 26.70 3.61 4–30
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model sparsity. If the α parameter increases, the penalized model pro-

duces highly sparse features with fewer predictors, whereas the low-

est α parameter (ridge regression) leaves highly distributed weights of

features. We initially confirmed that setting higher α left fewer sets of

predictors (Figure S5). Consistent with feature filtering results, penal-

izing regression coefficients with increased α resulted in lower predic-

tive accuracy.

3.5 | Leave-network-out prediction

To identify the brain functional networks that are critical to the pre-

diction, we conducted a leave-network-out analysis. Similar to virtual

lesion analysis, the predictive analysis was conducted after the con-

nectivities of the designated functional network (features of within

and between network) were excluded. The result showed that exclud-

ing specific functional networks (frontoparietal, default mode, subcor-

tical/salience) showed a larger decrease than other networks, but

excluding a single network minimally affected the prediction accuracy

in general (Figure 7).

3.6 | Single network prediction

When a single functional network was separately used as predictors,

several functional networks achieved prediction accuracy similar to that

of the full model (Figure S6). Digit Span Forward and Logical Memory-

immediate tests were highly predictable when using frontal modules

(medial frontal, default mode, or frontoparietal networks). On the other

hand, Fluency-Vegetable, Digit Symbol Coding, Logical Memory-del-

ayed, and Boston Naming tests were especially predictable using a rela-

tively central part of the brain (Subcortical/Salience and Sensorimotor).

The posterior part (Visual, Visual Association) played a role especially in

tests requiring motor and visuospatial speed (Trail Making Test A/B,

Digit Symbol Coding), whereas Digit Span Forward, Logical Memory

tests were minimally predictable with the posterior networks.

3.7 | Discriminant validity of predictive model

We also further examined whether the connectome-based predictive

models specifically represent predictive information of the trained

F IGURE 5 Prediction accuracy (correlation r between FC-predicted score and observed NP score) of corresponding neuropsychological test
across internal (OASIS-3) and external (KSHAP) testing set. Model training: OASIS-3 (n = 428); Internal cross-validation: Holdout test dataset in
OASIS-3 (n = 216). External cross-validation: KSHAP dataset (n = 151). Each dot indicates 50 times iterated results. DIGI_F/digi_f, digit span
forward; DIGI_B/digi_b, digit span backward; FLU_ANI/flu_ani, category fluency (animal); FLU_VEG/flu_sto, category fluency (vegetable/
supermarket); TRAIL_A/trail_a, Trail Making Test A; TRAIL_B/trail_c, Trail Making Test B/C; LOGIMEM_IMM/story_imm, Logical Memory/Story
Recall Test immediate recall; LOGIMEM_DEL/story_del, Logical Memory/Story Recall Test delayed recall
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F IGURE 7 Prediction performance (averaged 50 times iteration) after excluding each functional network. Within (network-to-network) and
between (network-to-all others) connectivities were excluded one at a time, and the same predictive modeling procedure was conducted. Red
dashed line indicates full model performance using all of the functional networks (25,651 features). DMN, default mode network (3,915 edges);
FP, frontoparietal (5,950 edges); LVis, lateral visual 2 (1,341 edges); MedF, medial frontal (6,148 edges); Mot/Aud, sensorimotor/auditory (9,898
edges);MVis, medial visual 1 (3,915 edges); Sub/Sal, subcortical/salience (12,121 edges); VisA, dorsal attention; visual association (3,706 edges)

F IGURE 6 Predictive accuracy across feature filtering threshold (jrj > .00, .01,…, .17, 0.18). Error bar indicates SD of 50 times iteration results
across thresholds. The highest peak accuracy points (red dots, dashed lines) and the number of connectivities that survived after filtering
(averaged across iterations) are noted. Increasing the filter threshold left fewer features and produced lower predictive accuracy
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test. Based on the predictive models constructed with the OASIS-3

training dataset (n = 428), FC-predicted scores were calculated in the

OASIS-3 testing set and KSHAP. The correlations between eight of

the predicted scores and eight corresponding behavioral scores were

presented with the OASIS-3 dataset (n = 216; Figure 8, left, identical

test) and KSHAP dataset (n = 151; Figure 8, right, homologous test).

The result showed that some FC models (trained with Fluency – vege-

table/supermarket and Trail Making Test A) were the most predictable

to the corresponding test, whereas other test models were not specif-

ically predictable to the corresponding tests. Rather, predictive models

with generally high accuracy also tended to predict scores of other

cognitive domains.

3.8 | Clinical validity of predictive model

Finally, we examined whether the brain predictive modeling approach

captures clinically relevant information. We trained the predictive

models in the KSHAP dataset (n = 151), and the models were applied

to the OASIS-3 total dataset (n = 644). The prediction from the

KSHAP model to the OASIS-3 dataset achieved a predictability pat-

tern similar to the aforementioned analysis. Using these FC-predicted

scores, we conducted a rank correlation analysis between dementia

functional impairment score (CDR-SOB) and the neuropsychological

performance (actual behavior score or FC-predicted score). Since the

original measures of the cognitive test are highly predictive of the

clinical impairment, a unique association of the predicted- or observed

scores are assessed with partial correlation. The result showed that

the FC-predicted score of Fluency (Supermarket) and Story/Logical

Memory test (delayed) provided additive information when explaining

the severity of clinical impairment (Table 3). Although FC-predicted

scores based on Fluency (Animal) and Trail Making Test (A) models

were associated with the levels of clinical impairment, the other pre-

diction scores did not remain statistically significant after adjusting for

the effect of the actual behavioral performance score.

3.9 | Clinical and demographic stratification

We additionally examined whether inconsistent clinical status

across training and testing samples was associated with prediction

accuracy. When the same prediction analysis was confined within

the clinically unimpaired group (CDR score = 0; training data:

OASIS-3, n = 288), the prediction accuracy decreased both in the

internal holdout sample (OASIS-3, n = 148) and external KSHAP

sample (n = 151; Figure S7). This result shows that training a predic-

tive model only with the clinically normal and homogeneous popula-

tion did not enhance the predictive accuracy. Rather the

predictability overall decreased, indicating relevance to the clinically

impaired population in the predictive model.

We also examined how heterogeneity of educational attainment

across internal (OASIS-3, mean education = 15.56) and external

dataset (KSHAP, mean education = 7.17) systematically affects the

prediction accuracy. We conducted an identical analysis procedure

after stratifying the education group in the OASIS-3 sample. By train-

ing the predictive models with different education groups, we tested

whether the model trained with similar educational attainment more

accurately predicts neuropsychological performance in the external

KSHAP dataset. Our result showed, however, that while the model

trained with lower-educated older adults (7–12 years) showed rela-

tively higher accuracy in Trail Making Test (A) and Logical Memory

tests, the other tests did not show such tendencies (Figure S8).

F IGURE 8 Discriminant validity of connectome-based prediction (averaged 50 times iteration). Correlation between FC-predicted and
observed scores across eight subtests. X-axis: Specific test used to train predictive model and its predicted score in the test set. Y-axis: Observed
neuropsychological test score in the test set. Diagonal elements within the dashed-box indicate prediction with the same (internal) or homologous
(external) test models (e.g., First column: FC model trained with Digit Span Forward [DIGI_F] is used to test the correlation between FC-model
predicted score and 8 behavioral scores)
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4 | DISCUSSION

In this study, we identified patterns of brain connectivities that are

predictive of neuropsychological test performances in older adults.

The identified predictive model across functional networks and the

best prediction model required most of the connectivity features (39–

100%). In addition, the predictive models trained with cognitive tests

were generalized to the external dataset with heterogeneous demo-

graphic features. The evidence of discriminant validity was unclear,

suggesting that the predictive models were not distinctively predictive

of the corresponding tests. Also, scores estimated from connectome-

based models provided marginally additive information in explaining

clinically relevant functional impairment. Our results demonstrate that

late-life neuropsychological test performance can be formally charac-

terized by multivariate connectome-based predictive models, and fur-

ther translational evidence is needed when developing theoretically

valid and clinically incremental predictive models.

In the current connectome-based predictive modeling, tests mainly

representing executive function and processing speed (Fluency, Trail

Making Test, and Digit Symbol Coding) showed relatively high predic-

tive accuracy. Notably, these neuropsychological tests have consis-

tently shown prognostic value in predicting the progression of

dementia alongside episodic memory function (Amieva et al., 2014;

Ewers et al., 2012; Mortamais et al., 2017; Younes et al., 2019). The

tests that assess executive and processing speed function sensitively

respond to subcortical and vascular lesions and subtle cognitive decline

in these domains may reflect increased dementia risk through a some-

what independent source of typical Alzheimer's pathophysiology

(Chouiter et al., 2016; Hedden et al., 2012; Jiang et al., 2018; Parks

et al., 2011; Rabin et al., 2019). Accordingly, the decrease in the predic-

tive accuracy was most prominent when excluding the subcortical net-

work, especially in predicting vegetable fluency, Trail Making Test (B),

and Digit Symbol Coding tests. These results indicate that some portion

of test performance requires necessary neural information from the

subcortical network connectivities.

The tests representing attention and working memory function

were less predictable with the connectome-based models. Possible

reasons for low predictability can be discussed. First, contrary to the

previous studies that measured attentional performance with exten-

sive trials, the Digit Span test included in the battery may have lacked

reliable information from only 12 trials. Second, Digit Span tests are

relatively less sensitive to vascular or Alzheimer's diseases’ patho-

physiological processes (Belleville et al., 2014; Petersen et al., 2010;

Ramirez-Gomez et al., 2017). It is possible that the reliability of predic-

tive neural correlates may be largely driven by the test's relevance to

the pathological process of late-life neurocognitive disorders.

Another possible explanation for the low predictive accuracy

especially in Digit Span tests may be due to the nonordinal brain–

behavior relationship. Unlike other neuropsychological tests that

require homogeneous and repetitive trials, Digit Span test trials are

incrementally ordered in terms of task loads. Although working mem-

ory tasks induce a parametric increase in neural response as a function

of task load (i.e., the length of digits to maintain or manipulate), older

adults undergoing age-related brain changes fail to show a typical

parametric increase, indicating early arrival to their maximum neural

capacity (Nagel et al., 2009; Schneider-Garces et al., 2010; Seghier &

Price, 2018). As older adults utilize idiographic brain regions to com-

pensate for the decreased neural inefficiency, the cognitive process

during Digit Span tests may require neural features that are not uni-

form and ordinal (Carp, Gmeindl, & Reuter-Lorenz, 2010). In other

words, the corresponding neural correlates that each trial reflects may

qualitatively differ across span lengths (e.g., 4–5 vs 7–8). These com-

plications have also been referred to as Simpson's paradox, suggesting

that the brain–behavior correlation can even be reversed across the

subgroups or the individuals composing the population (Cabeza

et al., 2018; Kievit, Frankenhuis, Waldorp, & Borsboom, 2013). For

TABLE 3 Incremental value as a clinical correlate

Partial correlation between [observed score] and
[CDR-SOB] (FC-predicted score controlled)

Partial correlation between [FC-predicted score] and
[CDR-SOB] (observed score controlled)

Rho p value Rho p value

Digit span forward −0.156 7 × 10−5 −0.012 .76

Digit span backward −0.217 3 × 10−8 −0.025 .53

Fluency (animal) −0.368 5 × 10−22 −0.077 .05

Fluency (vegetable/supermarket) −0.418 1 × 10−28 −0.128 1 × 10−3

Trail making test A −0.237 1 × 10−9 −0.044 .26

Trail making test B/C −0.379 2 × 10−23 0.032 .42

Logical memory immediate −0.438 2 × 10−31 −0.048 .22

Logical memory delayed −0.501 4 × 10−42 −0.027 .50

Note: Spearman's rank partial correlation (rho) between the Observed score (real neuropsychological test performance), FC-Predicted score (scores

estimated based on the connectivity-trained model), and clinical severity of dementia (CDR-SOB) in OASIS-3 total dataset (n = 643, missing = 1). Either the

FC-predicted or observed score was controlled when examining the counterpart score's association. The FC-predicted score was estimated with the

models trained with KSHAP homologous tests. A higher observed score indicates better behavioral performance. Higher CDR-SOB indicates a poorer

clinical function. Bold value has significance threshold ( p < 5*10-2)
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example, increased activity of the frontal cortex is one of the distinct

features when comparing young adults and old adults, and it appear

to be a beneficial sign for those who already underwent age-related

changes (Cabeza, Anderson, Locantore, & McIntosh, 2002; Davis,

Kragel, Madden, & Cabeza, 2012). Interestingly, our study showed

that the predictive model of the Digit Span Forward test predicted

the worse performance of Trail Making Test A in the external dataset

(r = −0.21). This result suggests that the behavioral relevance of neu-

ral correlates can be easily reversed, and more fine-grained decompo-

sition of individual differences is required in the future (Borsboom

et al., 2016; Michell, 2012).

In the practice of connectome-based predictive modeling, identi-

fying which brain regions constitute the models has been a challeng-

ing issue. By conducting a leave-network-out analysis, logically similar

to hierarchical regression, we examined whether the necessary predic-

tive information is embedded in the specific units of brain predictor

(Yarkoni & Westfall, 2017). Consistent with the previous attempt to

specify regional specificity of predictive models, excluding a large por-

tion of functional networks (5–47% of edges) minimally affected the

predictive performance, indicating that the individual difference of

neuropsychological functions is not solely based on a specific func-

tional network (Nielsen, Barch, Petersen, Schlaggar, & Greene, 2019;

Rosenberg, Finn, Scheinost, Constable, & Chun, 2017). One notable

previous study also had shown that cognitive impairment of associa-

tive domains (attention and memory function) could be better

predicted with diverse contributions of functional networks. In con-

trast, less-associative domains (visual, somatomotor) can be better

predicted with the locational information of stroke lesions (Siegel

et al., 2016). In other words, if the neuropsychological test requires a

collaboration of multiple cognitive modules, it becomes more unlikely

to find a unitary neural predictor. In general, appears that neural dis-

ruption in multiple units of information processing modules

(i.e., functional networks) combinatorially leads to behavioral impair-

ment in the neuropsychological tests.

Moreover, when examining the optimal sparsity of the model, our

results showed that utilizing a large proportion of the connectivity

predictors in the model showed optimal predictive accuracy. Most of

the test models required more than half of the total connectivities

(r > .01– .06; 10,071–25,651 features) in order to achieve the best

accuracy. While some tests (Digit Span backward, Digit Symbol Cod-

ing) largely maintained the original predictability even when applying

a stronger filter threshold, the decreasing tendency was consistent

across all tests. This result indicates that previous studies capturing

focal neural correlate with conservative multiple comparison correc-

tions (i.e., familywise error rate) may have omitted behaviorally rele-

vant neural features (Masouleh et al., 2019). If a researcher identifies

neural correlates by applying a relatively strong univariate test thresh-

old, such focal models may not fully represent the highly distributed

nature of the neuropsychological functions. Also, the predictive model

that selects sparse features (higher α regularization) showed poorer

predictive accuracy. Consistent with previous studies, accurate indi-

vidualized prediction of test performance requires a fine-grained

combination of neural features rather than highly selective neural fea-

tures (Cui & Gong, 2018; Gao et al., 2019; Hatoum et al., 2019).

This viewpoint may seem to run counter with the extensive dis-

cussions that have been made on the highly specified functional roles

of the brain networks (Buckner, Krienen, & Yeo, 2013; Fox &

Raichle, 2007; Vaidya, Pujara, Petrides, Murray, & Fellows, 2019). If

functional neuroimaging reflects available regional neural resources, it

is plausible that the inter-individual difference mainly stems from the

relevant brain areas (Lebreton, Bavard, Daunizeau, & Palminteri, 2019;

Navon & Gopher, 1979; Poldrack, 2015). However, our brain-wide

predictive models suggest that inter-individual difference in cognitive

function is not only reflective of the focal brain characteristics but also

of the distributed network systems (Fox, 2018; Sutterer &

Tranel, 2017). This may be due to the high interdependency of func-

tional connectivities. Even with small and focal brain lesions, the

effect may result in the neural changes extending to adjacent connec-

tivities (Fornito, Zalesky, & Breakspear, 2015; Gratton, Nomura,

Pérez, & D'Esposito, 2012). This emergent property of the network

may result in highly dispersed neural correlate of cognitive functions

(Alstott, Breakspear, Hagmann, Cammoun, & Sporns, 2009; Stam,

2014). A growing body of research using other neuroimaging modali-

ties also suggest that previously identified regional specificity of

neurocognitive function (i.e., frontal lobe task), in fact, reflects distrib-

uted effects of inter-dependent neural systems (Burgess &

Stuss, 2017; Cole, Yarkoni, Repovš, Anticevic, & Braver, 2012). Future

work is needed to bridge the explanatory gap between functional con-

nectivity and dynamic reorganization of neural states in performing

cognitive tasks (Barbey, 2018; Gu et al., 2015; Shine et al., 2015). Our

result suggests that only a single sensory modality, especially visual

modal, is less predictive of the cognitive tests compared to the higher-

order association system.

It should be noted, however, that focally selected connectivities

also showed comparable predictive accuracies. For example, thres-

holding connectivities into a set of highly selective features showed pre-

served prediction accuracy, to some degree, in several tests (i.e., Digit

Span Backward, Fluency, Trail Making A). This tendency was also

described when a single functional network was used in the prediction.

These results indicate that most of the individual differences can be rep-

resented with a relatively small proportion of important connectivities,

and taking account for every other neural feature minimally adds to the

total predictability. It is possible that neurodegenerative pathology is

typically characterized by changes in brain regions with hub properties,

and individual differences in topologically important regions may play a

more significant role in predicting neuropsychological performance,

especially in the early stage (Fischer, Wolf, & Fellgiebel, 2019).

In this study, we cross-validated the predictive model in both

internal (holdout) and external (KSHAP) test dataset. We found that

some neuropsychological tests (Trail Making Test A, Fluency – vegeta-

ble/supermarket) maintained similar predictive accuracy even when

applied to the external study population. In contrast, most of the tests

showed decreased predictive accuracy in the external dataset. This

study provides novel evidence that the extent to which a brain–
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behavior predictive model is replicable differs across specific tests.

Although the matched sets of tests are highly homologous, even

minor differences in test elements (e.g., digit number orders, semantic

category, trail interference component, and story contents) may have

significantly affected the qualitative attribute of the tests. This point

warrants caution in developing replicable and generalizable brain pre-

dictive models. Although previous studies have verified predictive

models with the internal cross-validation, they may not guarantee pre-

dictability in the novel dataset, and recent studies including both

internal and external validation of connectome-based models have

noted weak generalizability (Boeke, Holmes, & Phelps, 2019; Dinga

et al., 2019; Fountain-Zaragoza, Samimy, Rosenberg, & Prakash, 2019;

Yoo et al., 2018). Another possible factor that affects the generaliz-

ability is demographic heterogeneity. It has been well-documented

that psychometric quality and the construct representativeness of the

neuropsychological tests may differ across demographics and clinical

status of the study population (Bertola et al., 2019; Mungas,

Widaman, Reed, & Tomaszewski Farias, 2011; Siedlecki et al., 2010;

Siedlecki, Honig, & Stern, 2008). Also, lifespan intellectual experience

including educational attainment may alter brain-behavior relation

(Franzmeier et al., 2016; O'Shea et al., 2018; Resende et al., 2018;

Steffener et al., 2014). Further examination is needed to account for

the modifiers of connectome-based models across stratified demo-

graphic characteristics (e.g., age range, years of education, and socio-

economic status).

In the previous studies, meaningful attempts were made using a

similar predictive modeling approach (Lin et al., 2018; Meskaldji

et al., 2016; Moradi, Hallikainen, Hänninen, & Tohka, 2017; Shim

et al., 2017). While predictive patterns of neuropsychological test per-

formance were often identified, studies typically summed various

domains of functions into a total score or only examined a single

domain (i.e., episodic memory function). Thus, the differential predict-

abilities across theoretically distinct cognitive domains were mostly

unexamined. Identifying the generalizability or specificity of the pre-

dictive models will be crucial in developing formal theories of inter-

subject neuromarker of cognitive functions (Jangraw et al., 2018;

Rosenberg et al., 2015, 2018; Woo et al., 2017).

In examining the correlation between the predicted scores and

the behavioral scores, the evidence of convergent and discriminant

validity (i.e., the distinctiveness of model predictability) was unclear.

While we hypothesized that each of the predictive models represents

individual differences of the corresponding cognitive test that trained

the model, we observed several scores that showed generally stronger

predictability across other tests. This result may be due to the fact

that a large proportion of neural correlate is based on the individual

differences shared across cognitive domains. The latent factor struc-

ture of neuropsychological tests typically shows high correlations

between distinct cognitive domains (Greenaway, Smith, Tangalos,

Geda, & Ivnik, 2009; Park et al., 2012), and a relatively small portion

of variance may be uniquely attributable to each cognitive test. It has

been suggested that age-related decline in diverse domains of cogni-

tive function are primarily driven by preceding changes in processing

speed function (Salthouse, 1996a,1996b), due to major late-life

neuropathological changes that are typically observed across diffuse

brain areas (Fjell et al., 2014; Habes, Erus, et al., 2016). Accordingly,

most of the identified brain-behavior relationship seems to be com-

posed of common cognitive factors (S. Lee, Habeck, Razlighi,

Salthouse, & Stern, 2016; Salthouse et al., 2015). Previous studies

have shown that multivariate functional connectivity patterns tend to

capture a strong covarying latent structure that commonly explains

the variance of multiple cognitive functions (Perry et al., 2017; Smith

et al., 2015). Although predictive modeling captures neural correlates

of general cognitive functions, unique correlates of each domain can

be masked if the given study population does not include subgroups

that show heterogeneous cognitive impairment profiles (Delis,

Jacobson, Bondi, Hamilton, & Salmon, 2003). The inclusion of various

clinical subgroups may sharpen the unique specificity of each neuro-

psychological test (Corbetta et al., 2015; Sachdev et al., 2014).

This study also adds to a growing literature proposing that neuro-

imaging measures should be adaptable to translational goals

(Arbabshirani, Plis, Sui, & Calhoun, 2017; Kapur, Phillips, & Insel,

2012; Woo et al., 2017). Regression models are suitable when neuro-

psychiatric disorders are essentially characterized by continuous

dimensions of behavioral symptoms. In this way, the model can obtain

subtle individual differences that would have been masked with

binarized classification (Altman & Royston, 2006). Neurobehaviorally

translated scores of the cognitive impairment may validly characterize

behavioral significance and prognostic meaning of the preceding path-

ophysiological process of interest and play an important role in for-

malizing the dimensional construct of neurocognitive disorders

(Bilder & Reise, 2019; Cuthbert & Insel, 2013). In the future, the pre-

dictive models will be able to gauge relative behavioral risk scores of

dementia in generalized contexts similar to previously developed brain

pathology risk scores (Habes, Erus, et al., 2016; Habes, Janowitz,

et al., 2016). Nevertheless, our study result requires caution in apply-

ing predictive models to clinical usage. In the current study, while pre-

dictive models of category fluency and long-term episodic memory

test captured incremental clinical information that the original score

did not provide, the explanatory size was minimal and far smaller than

behavioral scores. Despite the promising remarks of neuroimaging-

based biomarkers in classifying diagnosis and prognosis of neuropsy-

chiatric disorders (Orrù, Pettersson-Yeo, Marquand, Sartori, &

Mechelli, 2012; Pellegrini et al., 2018; Rathore, Habes, Iftikhar,

Shacklett, & Davatzikos, 2017), more evidence is needed to conclude

that the identified neurobehavioral marker provides incrementally

useful information (Jollans & Whelan, 2016; Moons et al., 2012).

There are several limitations to the current study that should be

noted. First, it is mostly unknown whether the FC modality can com-

prehensively represent various neural processes. Although FC is

advantageous in bridging the theoretical gap between dynamic cogni-

tive process and pathophysiology (Brier, Thomas, & Ances, 2014;

Fox, 2018; Mill, Ito, & Cole, 2017; Tavor et al., 2016), its macroscale

approach should be further specified with more direct and pathophys-

iological processes relevant to the current and future neuropsycholog-

ical function. Combining other modalities and imaging biomarkers in

the predictive model will clarify how much shared and unique
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behavioral features are ingrained in each modality (Hedden, Schultz,

Rieckmann, Mormino, & Buckner, 2016; Pellegrini et al., 2018; Sui

et al., 2018). Second, resting-state FC based on low-frequency fluctu-

ation may not be an optimal modality that purely captures the focal

neural phenomenon. Initial regional change may induce a cascade of

FC responses (Fornito et al., 2015), and both increased and decreased

functional connectivities may be a result of secondary compensatory

reorganization processes (Chiesa et al., 2019; Reijmer et al., 2015;

Schultz et al., 2017). Combining the primary neuropathological signs

in the predictive models will significantly enhance the interpretation

of predictive models (Siegel et al., 2016). Finally, the current method

only utilizes the brain regional definition as a group-norm atlas, rather

than a personalized topology. However, recent studies underscore the

individual difference in functional parcellation and its relevance to the

behavioral traits (Cui et al., 2020). Future studies are necessary for

delineating whether the prediction results are due to the strength of

connectivities rather than the individual differences in functional

topography.

We also note the cautious implication of our approach with

regards to the validity of behavioral test measures. While we critically

evaluated the possible reasons why some test performances are not

accurately represented in the patterns of functional connectivities,

the predictability of a brain model itself does not ensure the validity

of behavioral measures. Reliable and robust correspondence to neural

correlate may indicate what biological properties the test measures,

but the specific and focal correspondence of neural correlate may

instead compromise the comprehensive utility of the cognitive test to

describe the real-world activities (i.e., ecological validity; Bilder &

Reise, 2019; Kessels, 2019). Both the neuroscientific correspondence

and ecological validity of the recently developed neurobehavioral

markers need to be assessed alongside existing behavioral instruments.
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