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Abstract. The gastrointestinal endocrine cells are essential 
for life. They regulate the gastrointestinal motility, secretion, 
visceral sensitivity, absorption, local immune defense, cell 
proliferation and appetite. These cells act as sensory cells with 
specialized microvilli that project into the lumen that sense 
the gut contents (mostly nutrients and/or bacteria byproducts), 
and respond to luminal stimuli by releasing hormones into the 
lamina propria. These released hormones exert their actions 
by entering the circulating blood and reaching distant targets 
(endocrine mode), nearby structures (paracrine mode) or via 
afferent and efferent synaptic transmission. The mature intes-
tinal endocrine cells are capable of expressing several hormones. 
A change in diet not only affects the release of gastrointestinal 
hormones, but also alters the densities of the gut endocrine 
cells. The interaction between ingested foodstuffs and the 
gastrointestinal endocrine cells can be utilized for the clinical 
management of gastrointestinal and metabolic diseases, such as 
irritable bowel syndrome, obesity and diabetes.
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1. Introduction

An intake of nutrients is essential for maintaining life, 
as they provide energy to the body, and also trigger other 

important body functions. The interaction between ingested 
foodstuffs and the gastrointestinal endocrine cells is a new 
emerging concept (1,2). Understanding this interaction is not 
only important for understanding the normal physiology and 
the role of ingested nutrients in gastrointestinal disorders 
and diseases, but also for managing certain gastrointestinal 
disorders (3‑6).

New data on the interaction between ingested nutrients 
and the gastrointestinal endocrine cells obtained from basic 
science and clinical research have accumulated in the last few 
years. The present review aimed to interpret the newly gained 
knowledge so as to understand the role of this interaction.

2. Gastrointestinal endocrine cells

General. The gastrointestinal endocrine cells are scattered 
between the mucosal epithelial cells facing the intestinal 
lumen (Fig. 1) (7,8). There are ≥10 types of endocrine cell, 
and they are found in the stomach and the small and large 
intestines  (8). Different segments of the gastrointestinal 
tract contain several different populations of gut endocrine 
cells (Fig. 2). Certain types of endocrine cells are located only 
in specific areas of the gastrointestinal tract. For example, sero-
tonin‑ and somatostatin‑secreting cells occur in the stomach 
and small and large intestines, while those producing ghrelin 
and gastrin are found only in the stomach, those producing 
secretin, cholecystokinin, gastric inhibitory peptide (GIP) and 
motilin are found only in the upper small intestine, and those 
producing polypeptide YY (PYY), pancreatic polypeptide and 
oxyntomodulin are located only in the lower small intestine 
and large intestine (7,9‑11). The densities of these cells vary in 
different sections of the gastrointestinal tract, with the density 
being highest in the duodenum (12‑16) (Fig. 3). The gastro-
intestinal endocrine cells regulate gastrointestinal motility, 
secretion, absorption, visceral sensitivity, local immune 
defence, cell proliferation and appetite (7,17‑31). These endo-
crine cells interact with each other and also with the enteric 
nervous system, and the afferent and efferent nerve fibers of 
the autonomic nervous system and the central nervous system 
(CNS) (7,18,22,32). Depletion of gastrointestinal endocrine 
cells as in congenital malabsorptive diarrhea caused by mutant 
neurogenin‑3 (33), or complete loss of these cells in mutant 
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mice with ablation of the transcript factor neurogenin‑3 (34) 
show that the gastrointestinal endocrine cells are essential for 
life.

Immunohistochemical studies have shown that two 
hormones can be colocalized in the same endocrine cell 
type, such as glucagon‑like peptide‑1 and GIP in the small 
intestine as well as PYY and oxyntomodulin in the large intes-
tine (34‑38). Recent studies have further found that mature 
intestinal endocrine cells are capable of expressing several 
hormones (39,40).

Gastrointestinal endocrine cells as sensory cells. The 
gastrointestinal endocrine cells have specialized microvilli 
that project into the lumen and function as sensors of the gut 
contents (mostly nutrients and/or bacteria byproducts), and 
respond to luminal stimuli by releasing their hormones into 
the lamina propria (41‑63). The gut intraluminal contents of 
carbohydrates, proteins and fats trigger the release of different 

Figure 1. Gastrointestinal endocrine cells are scattered between the epithelial 
cells lining the gastrointestinal lumen (black arrows). A basal cytoplasmic 
process can occasionally be observed (red arrow). Chromogranin A cells in 
human duodenum.

Figure 2. Distribution of different gastrointestinal endocrine cells in the 
gastrointestinal tract.

Figure 3. Densities of endocrine cells in different segments of the gas-
trointestinal tract as detected by chromogranin A. These segments were 
immunostained using the same method and the same antibody, and were 
quantified in the same way in the same laboratory by a single person (12‑16).

Figure 4. Human duodenal secretin cells. Some of these cells possess a basal 
cytoplasmic process parallel to the basement membrane (arrow).

Figure 5. Polypeptide YY cells in the colon of a rat. These cells possess a 
cytoplasmic process (arrow) similar to that observed in the human small 
intestine.
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signaling substances (such as hormones) from the gut endo-
crine cells (Table I) (41‑53).

Mode of action of gastrointestinal endocrine cells. The 
signaling substances (hormones) released from the gastro-
intestinal endocrine cells may exert their actions locally on 
nearby cells or neurons (paracrine mode) or by entering the 
circulating blood and reaching distant targets (endocrine 
mode) (64‑67).

The gastrointestinal endocrine cells possess a basal 
cytoplasmic process, which is believed to facilitate the 
paracrine mode of action (Figs. 4 and 5) (68‑72). This cyto-
plasmic process extends ≤70 µm, compared with the base of 
the endocrine cells being only 10 µm in diameter (70). This 
process has certain similarities to neuronal axons, and has 
been named a neuropod (70,73‑75). The neuropod has other 
axon‑like characteristics, such as containing neurofilaments, 
being escorted by enteric glia cells, and expressing receptors 
for neurotrophins (74). Furthermore, gut endocrine cells have 
small clear synaptic vesicles, express several genes encoding 
for presynaptic proteins (synapsin 1, piccolo, bassoon, 
MUNC13B, regulating synaptic membrane exocytosis  2, 
latrophilin and transsynaptic neurexin), and also express post-
synaptic genes (transsynaptic neuroligins 2 and 3, homer 3 
and postsynaptic density 95) (75). Based on these data, it was 
concluded that the gut endocrine cells have the necessary 
elements for afferent and efferent synaptic transmission (75). 
Therefore, it appears that the gastrointestinal endocrine cells 
exert their effects via three modes of action: Endocrine, para-
crine and synaptic (Fig. 6).

The recent findings of gastrointestinal endocrine cells 
exhibiting endocrine and neuron‑like characteristics support 
and revive the old hypothesis on the evolution of the neuro-
endocrine system of the gut (76). The observation that the 
mammalian gastrointestinal hormonal peptides occur in the 
CNS, but not in the gut of invertebrates (77‑79), led to the 
hypothesis that the gastrointestinal endocrine cells of verte-
brates originated in the nervous system of a common ancestor, 
and migrated during a later stage of evolution into the gut as 
scattered endocrine cells (76).

Table I. Hormones released from the gastrointestinal endocrine cells depending on the gastrointestinal luminal contents of car-
bohydrates, proteins and fats.

	 Gastrointestinal nutrients
	 ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Process	 Carbohydrates	 Proteins	 Fats

Hormones released	 Gastric inhibitory polypeptide	 Pancreatic polypeptide, neuropeptide Y,	 Peptide YY, oxyntomodulin,
	 and oxyntomodulin	 motilin, ghrelin, and cholecystokinin (CCK)	 motilin, ghrelin, and CCK

Figure 6. Gastrointestinal endocrine cells may exert their effects via three modes of action: 1, By entering the circulating blood and reaching distant targets 
(endocrine mode); 2, by acting locally on nearby structures (paracrine mode); or 3, via synaptic activity.

Figure 7. Schematic illustration of the possible ways by which a change in 
diet could affect the density of gastrointestinal cells.
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3. Interaction between diet and gastrointestinal cells

As aforementioned, the composition of the diet with different 
proportions of carbohydrates, proteins and fats is a trigger for 
the release of different gut hormones into the lamina propria. 
Furthermore, the ingested foodstuffs act as prebiotics for the 
intestinal microbiota, and the byproducts of the bacteria trigger 
also the release of hormones from the gut endocrine cells.

It has been shown recently that a change in diet is 
accompanied by a change in the density of gastrointestinal 
cells (3‑6). This could be due to an ingested foodstuff acting 
as a prebiotic for the intestinal bacteria with the associated 
bacterial byproducts. These bacterial byproducts may act on 
the stem cells and/or differentiation progenitors, resulting in 
changes in the stem cell clonogenic activity and/or differentia-
tion progeny. Alternatively, these bacterial byproducts could 
act on mature gastrointestinal cells to favor the expression of 
specific hormones (Fig. 7). Thus, the change in the density of 
a certain endocrine cell type could be caused by switching to 
the expression of a different hormone.

4. Conclusion

The diet is important for regulating the functions of gastro-
intestinal endocrine cells. It not only regulates the release of 
hormones from these cells, but also affects their densities. The 
interaction between nutrients and gastrointestinal endocrine 
cells could be useful for the clinical management of several 
diseases, such as irritable bowel syndrome, obesity and 
diabetes (17,80‑85).
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