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Antigen presentation is highly critical in adoptive immunity. Only by interacting with
antigens presented by major histocompatibility complex class II molecules, helper T cells
can be stimulated to fight infections or diseases. The degradation of a full protein into small
peptide fragments bound to class II molecules is a dynamic, lengthy process consisting
of many steps and chaperons. Deregulation in any step of antigen processing could lead
to the development of self-reactive T cells or defective immune response to pathogens.
Indeed, human leukocyte antigens class II genes are the predominant contributors to
susceptibility to autoimmune diseases. Conventional antigen-processing calls for inter-
nalization of extracellular antigens followed by processing and epitope selection within
antigen-processing subcellular compartments, enriched with all necessary accessory
molecules, processing enzymes, and proper pH and denaturing conditions. However,
recent data examining the temporal relationship between antigen uptakes, processing,
and epitope selection revealed unexpected characteristics for auto-antigenic epitopes,
which were not shared with antigenic epitopes from pathogens. This review provides a
discussion of the relevance of these findings to the mechanisms of autoimmunity.

Keywords: auto-antigens, immunodominance, HLA-DR antigens, cathepsin sensitivity, extracellular processing,
paralyzed DC, cell free antigen-processing system

Introduction

Conventional antigen presentation to CD4+ T cells by APCs begins by the uptake of exogenous
antigens and their processing that involves transfer through a series of endosomal compartments
containing suitable denaturing environment, accessory chaperones, and cathepsins (1). Antigen-
processing machinery involves several accessory molecules and chaperons coevolved with proteins
of major histocompatibility complex (MHC) molecules that each plays its part in epitope selection.
Thesemolecules are targeted to specialized vesicular compartments that also accommodate antigen-
processing enzymes called cathepsins (2). Within the antigen-processing compartments, highly
regulated pH gradient, and reducing conditions and enzymes necessary for denaturation of the
antigens are available and function to optimize processing of antigen and selection of the fittest for
transport to the cell membrane and presentation to T cells.

One such crucial accessory molecule/chaperon is the class II invariant chain (Ii). Newly synthe-
sized MHC II molecule associates with Ii, which targets it to specialized endosomal compartments
(MIIC) where the Ii is proteolysed by cathepsins until only a fragment known as the class II-
associated invariant chain peptide (CLIP) remains bound in the MHC II peptide-binding groove.
Efficient displacement ofCLIP from theMHCII groove requires the accessorymoleculeHLA-DMin
human (H2-M inmice to be calledDM fromnowon) (3). DM functions by inducing conformational
changes in pMHC II complexes, resulting in the release of the bound peptide and generation of a
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peptide-receptive MHC II (4, 5). A peptide-receptive MHC II
can quickly sample a large pool of peptides derived from exoge-
nously acquired proteins. Hence, in addition to removal of CLIP,
DM helps in shaping of epitope selection. Cathepsins present
in processing compartments contribute significantly by cutting
and trimming of the protein antigens (processing), and gamma
interferon-inducible lysosomal thiol reductase (GILT) reduces
disulfide bonds in protein antigens and helps denaturation of
antigen for further processing (6, 7).

Another non-classical MHC class II accessory molecule is
HLA-DO, H2-O in mice, and DO for short from now on. While
discovered years ago,DOhas recently been shown to play an active
role in peptide exchange (8–10). Of importance, DOhas restricted
tissue expression; it is mainly expressed in B cells and thymic
medullary epithelium, where thymic deletion takes place, and
certain subsets of DCs. DO cellular trafficking depends on DM.
The combined efforts of all the molecules discussed above and
perhaps others whose identity awaits to be discovered, leads to an
impeccable selection process for very few epitopes (immunodomi-
nant epitopes) that occupy theMHC II groove and are transported
to the APC external membrane for stimulation of CD4 T cells.

A Cell Free System Antigen-Processing
System Provides Clues to Epitope
Selection

To directly address specific questions regarding steps in anti-
gen processing and the selection of immunodominant epitopes,
we have developed a reductionist antigen-processing system for
MHC II molecules that incorporates defined components and
accurately predicts immunodominant epitopes from protein anti-
gens (11). The system includes soluble purified HLA-DR (DR),
CatB, CatH, and CatS that process protein antigens into peptides,
and DM. Mass spectrometry is used for sequencing the unique
peptide peaks derived from each protein bound to the MHC II
groove after cell free processing. Once the candidate epitopes are
identified, their relevance to antigenicity is verified in human
MHC class II bearing transgenic mice (11). Due to the defined
molecular composition, this system lends itself to elucidating
steps involved in antigen processing and the roles individual
components play in epitope selection.

Using this minimalist system, we have discovered that the
immunodominant epitopes from different antigenic sources are
selected based on structural properties that allow them to form
pMHC II complexes in high-relative abundance for presentation
to T cells. Differential sensitivity to cathepsins and resistance to
DM-mediated dissociation, equally play important roles. Unfit
epitopes might be sensitive to DM-mediated peptide exchange,
which results in their dissociation from the groove of MHC
II, exposing them to the processing enzymes, cathepsins, and
destruction. Those epitopes that fit the groove well form pMHC
II complexes that are poor substrates for DM, and therefore, DM
does not bind to them and displace them from the groove. Those
pMHC II complexes remain intact and gain relative abundance
over other epitope that when in complex with MHC II are good
substrates for DM. Alternatively, a group of epitopes form com-
plexes with MHC II that while being good substrates for DM

and are displaced from the groove, are not digested away. Those
epitopes are chemically resistant to cathepsin digestion. They
may rebind to the MHC II groove, gain abundance, and become
immunodominant epitopes. We found that the non-dominant
epitopes are susceptible to bothDMand cathepsins. They are often
poor fits for the groove, and form DM-sensitive conformations,
causing their displacement by DM. They are also sensitive to the
cathepsins present in the environment, and are therefore digested
away rapidly as they are dissociated from MHC II. As such, the
non-dominant epitopes do not gain abundance, although they
might be displayed at low-copy numbers on antigen presenting
cell membranes.

Cathepsin Sensitivity and Auto-Antigens

In general, processing of antigens cannot take place without the
endocytic proteases or cathepsins. Cysteine proteases, aspartyl
proteases, and serine proteases are the threemajor types of cathep-
sins studied for their roles in antigen processing (12, 13). The
significance of cathepsins in antigen processing and the selection
of immunodominant epitopes lies in their regulated expression
levels and activity in different cell types and activation state, as
well as occurrence of specific inhibitors of cathepsin activities
in antigen presenting cells (14–16). Two main roles attributed to
cathepsins in antigen processing are (a) to cleave off invariant
chain and (b) to process antigens. Among the most extensively
studied cathepsins are cathepsin (Cat)B, CatD, CatL, CatS, and
asparagine endopeptidase (AEP) (17–19). CatS was reported to
be involved in Ii cleavage and antigen processing (20–23) as mice
deficient in CatL andCatS showed impairment of late stage invari-
ant chain degradation in thymus and periphery, respectively (24,
25). AEP has been shown to have some role in the initial invariant
chain cleavage (26), and it can either generate or destroy antigenic
epitopes (27). CatB and CatD knockout mice showed some but
not complete processing defect; and hence, their role in antigen
processing has been considered as dispensable (28).

Our recent studies (29) have shown that inclusion of only
three cathepsins, such as CatB, CatH, and CatS, was sufficient
to mimic the processing conditions necessary to produce the
immunodominant epitopes from several antigens. While CatB
and CatH are mainly exoproteases, they also have endopeptidase
activities, although the pH requirements might vary (19). We also
evaluated the need for CatB in processing of two antigens in cells
and observed a complete blockage of processing in the presence
of a cell-permeable CatB inhibitor, CA-074ME (29). Importantly,
we showed that inclusion of only CatB and CatH in our cell free
antigen-processing systemwas sufficient for successful processing
and editing of the dominant epitope of influenza HA1 epitopes,
but CatS alone failed to do so on its own. It has been suggested
that other groups of cathepsins, such as CatG and CatE, might
also play roles in regulating antigen processing (30, 31). However,
when pharmacological inhibitors of CatG or inhibitors of aspartic
protease CatD, and CatE were used during the processing and
presentation of type II collagen andH5N1-HA proteins in antigen
presentation cell culture, we observed some reducing effects in
presentation but the results were not as striking as blocking CatB
(29). Therefore, while CatS, CatB, and CatH are the minimum
number of processing enzymes, for a more comprehensive cell
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free processing system, one might benefit from further addition
of CatG and CatD.

The Relationship Between Resistance to
Proteases in Antigen Processing and
Autoimmune Epitopes

As discussed earlier, all auto-antigen-derived epitopes known as
targets for pathogenic autoreactive T cells we tested resisted diges-
tion by the cathepsins in the system. While some trimming of
the epitopes occurred upon long exposure to our cathepsin mix,
the core MHC II binding sequences remained intact. As such, we
speculate that these auto-antigens, rather than being destroyed by
the processing enzymes, are likely to rebindMHC II and presented
to specific T cells. By this criterion, one might hypothesize that
such epitopes would not be generated in the thymus, and T
cells reactive to them would be less likely to be deleted (32). In
the periphery, auto-antigens are generated in extracellular matrix
under inflammatory conditions where many proteases are already
at work. Specifically, there are studies demonstrating that cathep-
sins digest various components of the extracellular matrix (33)
and play an important role in the development of neurodegenera-
tive diseases (34). Consistent with this notion under pathological
conditions, such as later stages of arthritis, the pH of the local
microenviroment is often found to be acidic allowing cathepsins
to be active. As such, only those epitopes that survive such milieu
may get a chance for presentation by APCs [see Figure 1].

There are few known examples of auto-antigens that might fall
in this unusual antigen-processing pathway. First, a member of
the family of matrix metalloproteinases is gelatinase B (MMP-
9) that is known for its role in generating collagen II fragments
(35). It is fair to say that under inflammatory conditions generated
by infections or other causes, collagen fragments are generated
by MMP-9 and then picked up by the APCs, which process
and present them to the T cells. We have examined this epitope
and found out that it is sensitive to DM-mediated dissociation.
However, this epitope is resistant to the cathepsins, and as such,
collagen II epitope can rebind the MHC II groove and is pre-
sented to T cells. A second example is the dominant epitope of
thyroglobulin, which has been reported to induce autoimmune
thyroid diseases (AITD). It is documented that this epitope is
generated from thyroglobulin in the thyroid tissue by multiple
cathepsins at neutral pH and then is taken up by the APCs (36,
37). We showed that the DR3 binding core of this epitope is
resistant to further cleavage by the cathepsins. A third example is a
experimental autoimmune uveitis (EAU) inducing peptide, which
when exposed to CatS, CatB, and CatH mixture it does not lose
its effectiveness in inducing EAU in DR3 transgenic mice (38).
Both EAU and thyroglobulin dominant epitopes were resistant
to DM-mediated dissociation, suggesting that auto-antigens may
or may not be DM-sensitive. A forth example is a DR2 restricted
MBP(84–102) peptide, which follows the same trend as the other
auto-antigens tested. A report has shown that MBP can be cleaved
by CatS, although the major cutting sites fall outside the core
binding site of the immunodominant MBP(84–102) epitope (39).
A fifth example is in celiac disease, an autoimmune disease of
the small intestine caused by exposure to dietary gluten prevalent

FIGURE 1 | Schematic representation of auto-antigen-processing
pathways. Auto antigen-derived epitopes are resistant to cathepsins
degradation, and may or may not be sensitive to DM-mediated peptide
exchange. Auto-antigens may be processed extracellularly and bind MHC II
expressed on the surface of dendritic cells. Paralyzed DCs display a large
number of MHC II on their surface because of exhaustive processing that
occur under inflammatory conditions presumably associated with the initiation
of autoimmune diseases. Processing for pathogen-derived antigens occurs in
the MIIC shown as a giant pink vesicle within the DC. Cathepsins are shown
as scissors, peptides, and epitopes are depicted as part of the denatured
proteins, or in short stretches of sequences that carry a MHC II P1 fitting
anchor or no anchor. The selected pMHC complexes are transported to the
APC cell surface waiting for T cell stimulation. Small dots represent degraded
peptides. Cell sizes are not depicted correctly proportionally.

among individuals expressing HLA-DQ2 or HLA-DQ8. Inges-
tion of gluten induces an inflammatory response leading to the
destruction of the villous structure of the intestine. The toxic
components of glutens are a family of closely related proline and
glutamine rich proteins called gliadin. Shan et al. identified the
dominant epitope of gliadin and showed its extreme resistance to
digestion by gastric and pancreatic enzymes (40, 41).

In all, it seems that unlike pathogen-derived epitopes, auto-
antigens rely on resistance to enzymatic digestion as key deter-
minant of immunodominance, and while DM resistance can be
an added as an advantage, it is not an absolute necessity. As such,
it is likely that during inflammation auto-antigens are processed
extracellularly, and binds MHC class II molecules displayed on
the surface of paralyzed DC known for displaying large numbers
of pMHC II on their surface (42).

Prevalence of Multiple Registers for
Autoimmune Epitopes and Resistance to
Cathepsins

Several well-characterized auto-antigens have been reported to
have multiple registers, i.e., peptide can fit the MHC II groove
using two or more sets of anchoring amino acids. An excellent
example is MBP(89–101) peptide that has two registers for bind-
ing to DR2a and DR2b (43, 44). When MBP(89–101) peptide was
tested for cathepsin sensitivity in our cell free antigen-processing
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system, although some cutting occurred, the resulting new pep-
tides could fit in the two registers defined and demonstrated by
crystal structures of DR2a or DR2b. Interestingly, in agreement
with our model for immunodominance, MBP(89–101) epitope is
sensitive to DM-mediated dissociation (45), and as per our own
experimental data, it is insensitive to cathepsins (29). Accordingly,
it is likely that MBP dominant epitope that is the target of MBP-
specific autoreactive T cells binds some empty DR2 molecules
expressed on APCs.

Similar to MBP(89–101) epitope, digestion of insulin B7–23
epitope by the cathepsins mixture did not result in its destruction
(29). The only other fragment detected post digestion of insulin
B7–23 was a previously described I–Ag7 binding epitope (32,
46–48). Of interest is that insulin B7–23 peptide has also been
reported to have at least two registers for binding to I–Ag7. In one
register, insulin B7–23/I–Ag7 complex can only be recognized by
Type-AT cells, which can recognize epitopes processed within the
conventional antigen-processing pathway, i.e., peptide binding
should occur in the presence of DM. The type-A T cell I–Ag7

binding register is resistant to DM-mediated peptide exchange.
The other peptide register forms complexes with MHC II that
readily dissociate by DM, and hence, they are DM-sensitive. In
the absence of DM resistance, such complexes stimulate Type-
B T cells and trigger their autoreactivity causing type I diabetes,
as suggested by Unanue and colleagues (49, 50). While we have

discussed only two well-studied peptides known for induction of
autoreactivity and for having more than a single registers, other
peptides that cause autoimmune diseases are likely to fit this
criterion.

Conclusion

We have discussed molecular mechanisms that foster the induc-
tion and development of autoimmune diseases using a minimalist
cell free antigen-processing system. Abundant quantities of auto-
antigens released due to tissue insults during inflammation, as
well as the presence of a variety of proteolytic enzymes lead to
generation of epitope fragments extracellularly. Insensitivity to
further degradation by the processing enzymes appears as the key
characteristic of auto-antigens. Inflammatory conditions and con-
tinuous processing of self-antigens by tissues resident dendritic
cells may lead to their paralysis. Paralyzed DCs display large num-
bers of pMHC II on their surface some of which might exchange
their peptides with the extracellularly processed epitopes from
auto-antigens and emerge as targets for autoreactive T cells.
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