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Prostate cancer is the second most frequently diagnosed cancer in men and several
therapeutic approaches are currently available for patient’s care. Although the androgen
receptor status represents a good predictor of response to androgen deprivation therapy,
prostate cancer frequently becomes resistant to this approach and spreads. The
molecular mechanisms that contribute to progression and drug-resistance of this
cancer remain still debated. However, few therapeutic options are available for patient’s
management, at this stage. Recent years have seen a great expansion of the studies
concerning the role of stromal-epithelial interactions and tumor microenvironment in
prostate cancer progression. The findings so far collected have provided new insights
into diagnostic and clinical management of prostate cancer patients. Further, new
fascinating aspects concerning the intersection of the androgen receptor with survival
factors as well as calcium channels have been reported in cultured prostate cancer cells
and mouse models. The results of these researches have opened the way for a better
understanding of the basic mechanisms involved in prostate cancer invasion and drug-
resistance. They have also significantly expanded the list of new biomarkers and
druggable targets in prostate cancer. The primary aim of this manuscript is to provide
an update of these issues, together with their translational aspects. Exploiting the power of
novel promising therapeutics would increase the success rate in the diagnostic path and
clinical management of patients with advanced disease.

Keywords: nerve growth factor signalling, calcium influx, cancer-associated fibroblasts, prostate cancer,
new drugs
Abbreviations: a-SMA, a-smooth muscle actin; ADT, androgen deprivation therapy; AR, androgen receptor; B2R, bradykinin
2 receptor; BDNF, brain-derived neurotrophic factor; BPH, benign prostatic hyperplasia; CAF, cancer associated fibroblast;
CHRM4, cholinergic receptor muscarinic 4; CRPC, castration resistant prostate cancer; CTD, C-terminal domain; EMT,
epithelial-to-mesenchymal transition; FAP, fibroblast activating protein; FlnA, filamin A; HER3, Receptor tyrosine-protein
kinase erbB-3; HIF-1a, hypoxia-induced factor 1 a; IFN-g, interferon-g; IHC, immunohistochemistry; M-CSF, macrophage
colony stimulating factor; MAPK, mitogen-activated protein kinase; MHR, melastatin homology region; MMP, matrix
metalloproteinase; NEPC, neuroendocrine prostate cancer; NGF, nerve growth factor; NGFR, nerve growth factor receptor;
NGS, next generation sequencing; NRG1, neuregulin-1; NT, neurotrophin; PC, prostate cancer; PGC1a, peroxisome
proliferator-activated receptor gamma coactivator 1-a; PI3-K, phosphatidylinositol 3-kinase; PIN, prostatic intraepithelial
neoplasia; PLCg, phospholipase C g; PSA, prostate specific antigen; RTK, receptor tyrosine-kinase; SIRT1, sirtuin 1; TGF-b,
transforming growth factor-b; TMD, transmembrane domain; TME, tumor microenvironment; TrkA/B/C, tropomyosin
receptor kinase A/B/C; TRPM8, transient receptor potential melastatin-8; VEGF-A, vascular endothelial growth factor-A.
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INTRODUCTION

Prostate cancer (PC) still remains the second most commonly
diagnosed neoplasia in men (1). Depending on the availability of
specific screenings, including the prostate-specific antigen (PSA)
assay, the lifestyle and environmental factors, PC incidence
varies among men of different ethnicities (2). Despite the
recent advances in early diagnosis and detection, the disease’s
onset is often asymptomatic, accounting for numerous late
diagnoses. Additionally, the prognosis can be favorable at early
stage’s disease, given the progresses of advanced radiotherapy
technology (3, 4 and refs therein). However, PC still represents
the second leading cause of cancer-related death in men, albeit its
mortality rate is relatively low (almost 20-30%), as compared
with other solid cancers (5). New therapeutic options are needed
for patients with advanced disease.

PC pathogenesis and progression depend on androgen/
androgen-receptor (AR) circuit. As such, the mainstream
pharmacological approach relies on the androgen deprivation
therapy (ADT), which shows a satisfactory response in a
significant number of cases. However, many PC relapse and
progress towards a more aggressive phenotype, often
character ized by ADT insensit iv ity and androgen-
independence. Such phenotype, also called castrate-resistant
prostate cancer (CRPC), may be metastatic or not (6, 7).
Additionally, a subset of PC might further differentiate into
neuroendocrine phenotype, also called neuroendocrine PCs
(NEPCs). These cancers lose AR signaling, become more
aggressive and exhibit androgen-independence in a quite
scantly known molecular landscape (8). Among the various
factors elsewhere excellently discussed (9–11), PC progression
is often characterized by abnormal AR-mediated signaling
activation or AR variants (12), which might help the tumor to
achieve ADT unresponsiveness. However, emerging findings
have identified unexpected drivers of PC progression. Some of
them are implied in the survival response elicited by the receptor
tyrosine-kinase (RTK) signaling, such as the nerve growth factor
(NGF) and its high-affinity receptor, tropomyosin-related kinase
receptor A (TrkA; 13). Recent papers, including ours, have
investigated this issue in PC (14–18). Other findings have
identified the transient receptor potential melastatin-8 (TRPM-
8) as a playmaker in PC (19–21 and refs therein), likely because
of its role in connecting the androgen endocrine system with
intracellular calcium levels (22). At last, the role of cancer-
associated fibroblasts (CAFs) in PC progression is undeniable
(23). The finding that CAFs harbor significant amounts of AR
has opened new ways for a better understanding of the role of
tumor microenvironment in PC progression and more tailored
approaches of this cancer (23–29).

In search for a link between these three apparently unlinked
items, it might be argued that NGF and other neurotrophins
secreted from PC cells or CAFs sustain tumor survival and
aggressiveness through a paracrine loop, as it occurs in breast
cancer (30–33). However, NGF and calcium signaling might
intersect each other in PC, as it occurs in neurons (34) or
Schwann cells (35). In this manuscript, we will discuss these
emerging findings and their connections. The potential
Frontiers in Endocrinology | www.frontiersin.org 2
application of these data in diagnostic and therapeutic
guidance of PC will be outlined.
NERVE GROWTH FACTOR AND ITS
RECEPTORS IN PROSTATE CANCER

The action of neurotrophins is mediated by the binding to
membrane receptors, mainly the neurotrophin receptor
p75NTR (also called NGF receptor; NGFR) and the
neurotrophin tyrosine kinase receptor (Trk) family, which
consists of three members, TrkA, B and C, with a variable
affinity for the four identified neurotrophins (NGF; brain-
derived neurotrophic factor, BDNF; neurotrophin 3 and 4,
NT3 and NT4; Figure 1). Their dependent signaling mediates,
indeed, the activation of several downstream effectors, such as
MAPK, PI3-K, PLCg as well as the small GTP binding proteins
that strongly impact differentiation and survival, cytoskeletal
remodeling, receptor cross-talk and ion channels in various cell
types, other than neurons (13). Beyond their role in neuronal
cells, neurotrophic factors are emerging as potential drivers of
cancer progression, and therapies specifically affecting the
neurotrophin-mediated signaling might hold value for
innovative treatments of human cancers (36, 37).

PCs release NGF and express the neurotrophin receptors,
which undergo significant changes during PC progression, as
primary PC express both TrkA and NGFR, while losing NGFR
during the disease progression. This behavior has been linked
with PC onset and androgen-resistance development (38). At
last, NGFR is almost completely absent in metastatic PC, making
the TrkA receptor the lead driver of NGF signaling in aggressive
PC (16). Previous findings have reported that NGF triggers
mitogenesis and promotes PSA release through TrkA
activation in LNCaP cells, and this effect is additive to that
exerted by androgens (39). As such, it was thereafter found that
the tyrosine kinase inhibitor, CEP-701 blocks the TrkA-mediated
events, thereby reducing invasiveness of PC cultured cells (40).
Derangements of NGF and its dependent signaling can be often
detected in PC (41), where the neurotrophin might be released by
PC cells and/or the surrounding stromal cells. As such, a
paracrine loop between the two counterparts occurs (42). We
recently reported that a reciprocal cross-talk between AR and
TrkA fosters the mitogenesis or motility of LNCaP cells in
response to NGF or androgens (15). The obvious impact of
these findings is that combinatorial treatment with
antiandrogens and TrkA inhibitors might be explored in PC
patients. Consistent with the hypothesis that TrkA is involved in
PC motility and spreading, it has been shown that non-
proteolytic ubiquitination of TrkA by the ubiquitin-ligase
TRAF4 increases the kinase activity of the receptor and
mediates PC spreading. The finding that TRAF4 is
overexpressed in advanced PC specimens strongly supports the
involvement of this mechanism in PC aggressiveness (14). The
role of NGF in PC malignancy has been further highlighted by
the finding that NGF-elicited activation of TrkA increases
mitogenesis, epithelial-mesenchyme transition (EMT) and
February 2022 | Volume 13 | Article 840787
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invasion of various CRPC-derived cells through activation of the
downstream Ras- and PI3-K-dependent signaling cascades.
Chemical inhibitors of TrkA or siRNA approaches have
definitely indicated a role for this receptor in NGF-elicited
responses of CRPC-derived cells or spheroids (16). In addition
to suggesting the clinical benefit from TrkA inhibitor usage in PC
patients (37), the findings so far presented point to the role of
NGF axis in PC survival. This circuit might substitute the
androgens in controlling PC cell survival and lead to disease’s
progression towards the CRPC stage. As before stated, similar
findings have been reported in various ‘hormone-dependent’
cancers, including breast cancers. Thus NGF might intersect the
steroid endocrine system in various solid cancers.

Beyond the well described mechanism(s) responsible for PC
progression and drug-resistance, neuroendocrine differentiation
of PC is recently emerging as a process by which a subset of
CRPC escapes the ADT. These tumors acquire some signatures
(low or absent AR signaling, Rb and p53 loss, amplification of
Myc-N and epigenetic changes) which lead to a highly aggressive
phenotype and patient’s death within 2 years (8 and therein refs).
To date, no therapies are available for NEPC patients. Therefore,
the identification of NEPC drivers represents a major challenge.
Some years ago, it was shown that PC cells overexpress Myc-N
after a prolonged ADT. The oncogene activation correlated with
a low or absent AR expression. It was proposed that this feature
leads to development of undifferentiated, invasive PC cells that
exhibit characteristics similar to those of human NEPC (43).
Frontiers in Endocrinology | www.frontiersin.org 3
Subsequent reports have confirmed that a small fraction of PCs
differentiate into NEPCs upon protracted ADT. These cancers
lose the AR-dependent signaling and progress towards an
aggressive phenotype, whose molecular drivers are still under
investigation (44). Simultaneously, it was shown that ZBTB46
transcription factor might act as one of these key players. It
induces NGF expression upon a prolonged ADT treatment in PC
patients. Mechanistically, NGF interacts with the peripheral
nerve cholinergic receptor muscarinic 4 (CHRM4) to trigger
PC cell differentiation by AKT and Myc-N activation. These
events might finally lead to the development of neuroendocrine
phenotype and ADT-resistance (18). In addition to identifying
ZBTB46 as a signature for NEPC, these findings significantly
contribute to the understanding of unwanted effects caused by
prolonged ADT in PC patients.

Although the role of NGF and its dependent signaling in PC
pathogenesis and progression is well established, genetic
aberrations of NGF receptors have not been so far reported in
PC (45). Thus, derangements of NGF-signaling caused by
deregulation of the NGF-RTK or excessive production of NGF
might be involved in PC progression. An increased expression
and/or release of NGF was firstly detected in human PC
specimens and PC-derived cell lines (46) and subsequently
confirmed by several labs. Neurotrophic factors can be
currently assayed in urine samples from PC patients (47), thus
indicating a reliable, non-invasive approach for detection of
novel PC biomarkers in body fluids. Extension of these
FIGURE 1 | Neurotrophin receptors and their structure. The three members of the Trk family share a common structure, encompassing a cysteine-rich cluster
(CRC), three leucine-rich repeats (LRR), a second cysteine cluster and two immunoglobulin-like domains (IG-Like), responsible for ligand binding, in their extracellular
domains. A transmembrane domain (TMD) anchors the receptor to the plasma membrane. The intracellular region consists of the tyrosine kinase domain (TKD). On
the left, the low-affinity neurotrophin receptor, p75NTR (called NGFR) is also depicted. It consists of four cysteine-rich clusters in the extracellular domain, a
transmembrane region and an intracellular region exhibiting a chopper domain (CD) and a death domain (DD). Shown beside each Trk member is reported the
corresponding high-affinity binding neurotrophin. p75NTR might bind all neurotrophins at low affinity. The indicated domains are colored as follows: CRC, green;
LRR, yellow; IG-Like, light blue; TMD, red; TKD, purple; CD, pink; DD, dark blue.
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findings to a large cohort of PC patients might expand the
current strategies for patient’s stratification. By contrast, RTK
derangements cannot be easily detected. Nevertheless, from the
findings previously discussed, it appears that some biomarkers,
such as TRAF4 or ZBTB46, emerge as predictors of TrkA
activation. Their overexpression correlates with aberrant TrkA
activation and metastatic events or would predict, as in the case
of ZBTB46, the increase in NGF levels with the subsequent
signaling derangement in PC patients. These findings, together
with the well-established role of neurotrophins for autonomic
innervation of PC into the tumor microenvironment, indicate
that NGF and their receptors are clinically actionable in PC (48
and therein refs). On the basis of preclinical findings (40, 49), the
RTK inhibitor, lestaurtinib (CEP-701) entered clinical trials
(NCT00081601) in PC patients, with promising data from
phase I studies. However, the drug failed to show a significant
PSA response in patients with localized hormone-refractory PC
(50). Subsequently, another small-molecule RTK inhibitor,
cabozantinib was approved for the treatment of metastatic PC.
Noteworthy, these and other currently used inhibitors, such as
NCT02219711, block a broad range of RTK and frequently
induce side-effects, mainly the drug-resistance. Thus, only in-
depth investigation in 3Dmodels from PC specimens or patient’s
derived xenografts might allow a more tailored therapy. In this
regard, the design and synthesis of small bioavailable peptides
specifically perturbing the key signaling functions of NGF
receptors can be envisaged. Similar approaches have been
successfully applied in our lab to disrupt the upstream
interactions of sex steroid receptors with signaling effectors in
quite different experimental settings (15, 29, 51–55).

Lastly, it cannot be neglected the role of NGF in PC-related
pain, which is the most common symptom of PC bone metastasis
(56). Anti-NGF blocking antibodies were firstly used to reduce
PC-related bone pain in mouse models. Interestingly, this
pharmacologic approach showed limited adverse effects, as
compared with nonselective non-steroidal drugs or opioids
(57). After many years of investigations, we are now aware that
neurotrophins control the autonomic innervation of tumor
microenvironment and, hence, PC progression. As such,
neurotrophic factor assays would predict the progression and
metastatic events in PC patients. Their pharmacologic
manipulation can be used to prevent PC progression, reduce
the PC-related bone pain and improve the quality of life in
patients (48).
THE ROLE OF TRANSIENT RECEPTOR
POTENTIAL MELASTATIN-8 (TRPM8) IN
PROSTATE CANCER

The calcium channels mediate activation of several intracellular
pathways by modulating the influx of cations (58 and therein
refs). Some of them have emerged in recent years as important
players in PC pathogenesis. As such, they represent ‘druggable’
targets in PC therapy (59, 60).
Frontiers in Endocrinology | www.frontiersin.org 4
The transient receptor potential melastatin-8 (TRPM8) is a
Ca2+-permeable cold-sensing channel, which has received
increasing attention for its role in a plethora of human solid
cancers, including PC (20, 61–63). TRPM8 belongs to a family of
eight members, classified from TRPM1 to TRPM8. They share a
common structure, including a N-terminal region of almost 700
amino-acids, which endows four Melastatin Homology Regions
(MHRs). MHRs are required for channel assembly and ion
trafficking. The channels also exhibit a trans-membrane
domain (TMD) with six helices, together with an additional
intracellular helix (TRP helix). The C-terminal coiled-coil
domain links the C-terminal domain (CTD) to the TRP helix
(64). Figure 2 illustrates the TRPM8 molecular organization.
Among the various members, TRPM8 is involved in ion’s
homeostasis and it is sensitive to redox-state and temperature
changes. Additionally, the channel can be activated by thermal
stimuli (cold), depolarization of cell membranes or chemical
compounds, such as the menthol and icilin (65).

TRPM8 expression was initially discovered in sensory
neurons (66, 67). Subsequent studies of genome wide
expression profiling showed that it is abundantly expressed in
prostate tissue and PC samples (68, 69). TRPM8 expression is
regulated by androgens, while ADT and the androgen-
independence status both reduce its expression in PC tissues
(69). Again, negligible levels of TRPM8 can be detected in PC3
and DU145 cells (22, 68, 70). These data highlight the
importance of the TRPM8 channel in PC progression and hint
at the usage of TRPM8 as a prognostic marker of PC progression.

Low levels of TRPM8 were detected at plasma membrane or
endoplasmic reticulum of the androgen-dependent LNCaP cells.
In these cells, the channel activation leads to mitogenesis by
regulating Ca2+ and Na+ homeostasis (70). Subsequent studies in
the same cells have shown that the trpm8 gene is responsive to
androgens, as its hormone regulation can be mediated by an
androgen response element (ARE). Beyond this transcriptional
regulation, a ligand-regulated degradation of TRPM8 has been
detected in LNCaP cells (71). These findings underline the
importance of hormone regulation in TRPM8 expression, at
both transcriptional or post-translational level. Such regulation
might impact the proliferation, survival and motility of PC cells.
However, TRPM8 can also be regulated by PSA. In PC3 cells
engineered to overexpress TRPM8, PSA acts as a channel
agonist, prompting the Ca2+ intake. As such, bradykinin 2
receptor (B2R) activation occurs, with the consequent
activation of protein kinase C pathway and inhibition of cell
migration (72). Thus, once released, PSA activates TRPM8 by an
autocrine loop, thereby impairing the invasive potential of PC
cells. These findings point to the protective role for TRPM8 in
PC. Recent findings have consistently shown that WS-12, a
selective TRPM8 agonist, sensitizes the locally advanced PC to
a sublethal dose of X-rays. These findings indicate that
pharmacologic manipulation of TRPM8 by agonists would
avoid the side effects correlated to high-dose ionizing radiation
approach in PC patients (63).

We have recently reported that androgen stimulation of
various PC-derived cells rapidly induces the complexation of
February 2022 | Volume 13 | Article 840787
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AR with TRPM8 at extra-nuclear level. Previous findings have
consistently shown that androgens trigger the AR/TRPM8
interaction within the lipid rafts microdomains of PC3 cells
engineered to express AR (73). Whatever the intracellular
localization of the complex, our data indicate that the
androgen-induced AR/TRPM8 complex assembly controls the
aggressive behaviour of PC cells through the increase in cytosolic
[Ca2+] levels. Newly synthesized TRPM8 antagonists revert these
effects, impair the mitogenesis and invasion of PC cells and
reduce the growth of PC cell-derived spheroids. Remarkably, the
designed antagonists impair the proliferation and invasion of
CRPC cells still expressing AR or the AR-V7 variant (22). As this
mutant confers the anti-androgen resistance to PC patients (74),
our recent study indicates that TRPM8 channel is clinically
actionable in CRPC patients. In summary, we posit that
TRPM8 acts as a molecular link between the androgen- and
calcium-dependent signaling in PC. Therefore, the discovery of
new selective TRPM8 antagonists hold promising results in PC
therapy, since the lead compounds we used combine the selective
modulation of AR-mediated rapid actions with the release of
intracellular calcium. This combinatorial approach may be more
effective than the currently used ADT. The arguments put
forward here, together with the recent identification of TRPM8
mRNA as a bloodstream signature for PC aggressiveness (75),
strongly encourage further studies in this direction.

The finding that TRPM8 regulates key features of PC cells call
for additional comments. Other members of the same family can
be regulated by sex steroids. TRPM4 and TRPM6, for instance,
Frontiers in Endocrinology | www.frontiersin.org 5
have been linked to non-transcriptional estrogen action in
various cell types (76, 77). Pregnenolone sulfate, the precursor
of steroid hormones, transiently activates TRPM3, thereby
increasing the calcium influx and the insulin secretion from
pancreatic islets (78). As such, the TRPM family members
connect the steroid endocrine system with calcium and insulin
pathways. Notably, NGF induces through TrkA signaling
activation the up-regulation of TRPM8 in neuronal cells. This
process requires the reversible activation of the Src tyrosine
kinase as well as PI3-K (79), the two mainstream effectors
activated by rapid actions mediated by AR in target cells. Thus,
it might be argued that an intricate network made up of TrkA/
TRPM8/AR components sustains the activation of pathways
triggered by NGF or androgens or calcium in PC. If that were
to happen, drug escape would easily occur. As such, ADT or
TrkA inhibitors or even TRPM8 antagonists might fail
in monotherapy.
THE ROLE OF CANCER ASSOCIATED
FIBROBLASTS IN PROSTATE CANCER
PATHOGENESIS AND PROGRESSION

CAFs represent the most important component of the tumor
microenvironment (TME), which surrounds the neoplastic
tissue. Together with the extracellular matrix (ECM), blood
vessels and immune cells, CAFs have emerged as key
regulators of cancer cell proliferation and metastasis. They
FIGURE 2 | TRPM8 structure. A schematic representation of the TRPM8 channel shows all the common structures between TRPM members. The cytosolic N-
terminal region is connected to four Melastatin Homology Regions (MHRs), which are required for channel assembly and ion trafficking. The MHRs are connected to
six helices within the plasma membrane, which constitute the trans-membrane domain (TMD). At last, the intracellular TRP helix is connected via a coiled-coil domain
to the C-terminal domain (CTD). The indicated domains are colored as follows: MHR, orange; TMD helices: green; TRP helix: purple. As indicated in Figure, TRPM8
channel activation leads to an increase in cytosolic calcium levels.
February 2022 | Volume 13 | Article 840787
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respond to the tumor-released growth factors or cytokines and
secrete cytokines, chemokines and growth factors of their own.
Again, by depositing or degrading ECM proteins, CAFs also
influence the TME architecture, thus creating a favorable or a
disadvantageous environment for the onset and progression of
several tumors. The study of CAFs origin and analysis of their
actions have emerged during the last years as a main road for a
better understanding of cancer pathogenesis and progression, as
well as the design of novel strategies for diagnostic and
therapeutic guidance in patients (reviewed in 80, 81).

In normal tissues, fibroblasts contribute to the production of
ECM and are major players in restoring the tissue integrity upon
injury or chronic damage. Under such conditions, they acquire
an activated phenotype, characterized by the expression of a
subset of mesenchymal markers, including a-smooth muscle
actin (a-SMA), fibroblast activating protein (FAP) and vimentin
(82, 83). At this stage, they become myofibroblasts, contribute to
the tissue recovery by releasing cytokines, chemokines and
growth factors, such as the TGF-b and the vascular endothelial
growth factor A (VEGF-A), and also recruit immune cells. CAFs
derived from neoplastic tissues lack the markers for epithelial/
endothelial lineages, show a decrease in CD36 expression and
exhibit few genetic mutations, in the presence of an elongated cell
morphology. They can be detected before the onset of a proper
neoplasia, as a consequence of a tissue injury or damage.
However, CAFs may also arise from a population of fibroblasts
surrounding primitive lesions, with the initial aim to suppress
the tumor growth. Additional events might switch this function,
addressing them towards a tumor-supporting activity. Other
studies have also indicated a possible, though less likely, origin
of CAFs from mesenchymal stem cells, pericytes or adipocytes in
different tumor types. Finally, CAF activation typically depends
on soluble molecules, including interleukins and growth factors,
which activate several intracellular signaling pathways, such as
the TGF-b, Notch and NF-kB ones. Direct contact between
cancer cells and fibroblasts could be also responsible for their
activation, even if only in some cancer types. Simultaneously,
other TME components could induce fibroblasts activation,
regardless of cancer cells presence (81, 84).

Pioneering studies have pointed to the fundamental role of
CAFs in supporting the onset of PC (85). Currently available data
indicate that prostate CAFs establish a reciprocal, paracrine
interaction with PC cells, resulting in EMT of the latter.
Interleukin-6 (IL-6) produced by PC3 cells activates fibroblasts
derived from patients with benign prostatic hyperplasia (BPH).
Interestingly, different markers of fibroblast activation can be
detected in these conditions, as compared with those expressed
upon TGF-b-mediated activation (86). At the same time, CAFs
activated by IL-6 promote EMT of PC3 cells and increase
invasiveness in a similar fashion to that achieved by TGF-b-
activated fibroblasts. Interestingly, only transformed prostate
cells trigger CAFs activation, and such skill strictly depends on
cell aggressiveness. Unlike PC3 or DU145, androgen-sensitive
LNCaP cells seem, indeed, unable to activate CAFs. The
mechanism by which PC cells acquire invasive phenotype,
together with the EMT, depends on secretion of matrix
Frontiers in Endocrinology | www.frontiersin.org 6
metalloproteinases 2 and 9 (MMP2, MMP9) by CAFs. This
response can be only detected on IL-6 stimulation and is
reversed by MMPs inhibitors, thus indicating a role for MMPs
in the observed findings. Additionally, CAFs are required for PC
onset and metastatic spreading in mouse xenograft models, since
their absence impairs the PC3 cell ability to generate
subcutaneous tumors. Again, CAF-induced EMT of PC cells
contributes to the formation of PC stem cells, thus enhancing
cancer stemness (87). CAFs also play an energy-supporting role
in PC, since prolonged exposure of PC3 and DU145 cells to
CAF-conditioned media increases PC cell mitochondrial activity
through sirtuin 1/peroxisome proliferator-activated receptor
gamma coactivator 1-a (SIRT1/PGC-1a) axis. SIRT1 or PGC-
1a silencing impairs the CAF-induced EMT in PC3 cells.
Moreover, metabolic deregulation of PC cells by CAFs
ultimately increases PC cells invasive potential by stabilization
of hypoxia-induced factor 1a (HIF-1a), a reported feature of
enhanced PC cell malignancy. Additionally, CAFs are also able to
transfer horizontally and unidirectionally their dispensable,
functional mitochondria to PC cells, thus contributing to their
increased metabolic capacity, both directly or through activation
of the SIRT1/PGC-1a pathway. By this mechanism, CAFs
establish a symbiotic interaction with PC cells, which sustains
their proliferative and metastatic behavior through metabolic
regulation, production of high-energy metabolites and
mitochondria supply (88). Recent findings have also indicated
a role for CAFs in the development of castration-resistance.
Accordingly, PC resistance to the 2nd generation antiandrogen,
enzalutamide, would depend on CAFs, as shown in a PC mouse
model progressing from castration-sensitive to castration-
resistant state. The process seems mediated by the activation of
the specific NRG1 receptor, HER3, by CAFs-secreted
neuregulin-1 (NRG-1). Altogether, the proposed findings
identify the NRG1/HER3 axis as a main candidate in the
antiandrogen resistance. In support of this concept, high levels
of NRG1, together with an enhanced NRG1 mRNA expression,
can be detected in CAFs from ADT-treated PC patients (17).
These results suggest that targeting of the NRG1/HER3 axis may
be beneficial in CRPC patients. Figure 3 schematically depicts
the interplay between CAFs and PC cells.

However, the findings so far presented raise an important
question. It concerns the expression of AR in CAFs. Previous
findings from prostate CAFs have shown that the receptor is
expressed at lower levels, as compared with LNCaP cells. Its
somatic knockdown reduced the proliferative and migratory
potential of PC3 cells, suggesting a role for stromal AR in
sustaining the growth and invasion of PC cells (24). By
contrast, subsequent studies reported that inhibition of AR in
murine CAFs increases the expression of stemness markers in
co-cultured PC cells. This effect was attributed to the release of
interferon-g (IFN-g) and macrophage colony stimulating factor
(M-CSF) by AR-depleted murine CAFs (25). Consistent with a
protective role for stromal AR, it has been reported that
expression of the receptor reduces the release of CCL2 and
CXCL8 by CAFs, thereby inhibiting PC cell motility (89).
These findings further corroborate the idea that PC
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progression might be paradoxically fostered by ADT or AR
blocking therapies. Additional findings have supported an
inverse correlation between stromal AR and disease’s
malignancy. Immunohistochemistry (IHC) analysis has shown,
indeed, that expression of AR is more abundant in non-
malignant stroma, as compared with PC-related stroma,
further suggesting a protective and antioncogenic role for
stromal AR (90–92). In contrast with these findings, our recent
study in short-term primary culture of CAFs derived from PC
specimens has revealed low, but appreciable AR levels in almost
all the CAFs analyzed, even in about 30% of CAFs from PC
patients at high Gleason’s score (29). The conflicting findings so
far reported might be explained by different considerations.
Firstly, the IHC approach for detection of sex steroid receptors
often exhibits pitfalls because of the type of cell permeabilization
or the primary antibody used (93). Again, AR might be lost in
stromal cells as a consequence of CAF selection and/or cell
culture manipulation. Additionally, the receptor might
undergo degradation as a consequence of ubiquitin-
proteasome pathway activation (94) or epigenetic changes
(95). Whatever the case, many studies support an oncogenic
role for stromal AR, whichmight induce prostatic intraepithelial
neoplasia (PIN; 96) or even metastatic events (97). We have
Frontiers in Endocrinology | www.frontiersin.org 7
consistently reported that stromal AR directs CAFs towards PC
epithelial cells. This process requires AR complexation with
filamin A (FlnA) and is strongly stimulated by androgens in 2
and 3D cell culture models. As such, a significant increase in PC-
derived organoid’s size can be detected (29). A similar process
might occur in vivowhen the local androgen levels increase, as it
frequently occurs in PC (98). Nevertheless, the role of other
factors, including NGF, cannot be neglected. In such a way,
stromal AR might change the TME composition and allow
metastatic events. In support of a role for stromal AR in cancer
aggressiveness, it has been shown that AR targeting in CAFs
reduces skin cancer aggressiveness traits (26) or even inhibit the
development of chemo-resistant skin cancers (27). Thus, AR-
directed therapies in CAFs might help the therapeutic approach
of different cancer types. We designed and successfully used a
small modified peptide that perturbs the androgen-induced AR/
FlnA complex assembly (53). By thisway, the peptide inhibits the
androgen-induced invasion of CAFs in 2D models and reduces
the overall tumor size in androgen-treated 3D co-culture (29).
Our translational findings identify the AR/FlnA complex as a
new ‘druggable’ biomarker in prostate CAFs. The strategy we
propose might be profitably used for a more efficient
PC treatment.
FIGURE 3 | CAFs and PC cells as signal exchangers. CAFs or PC cells release neurotrophins, growth factors, cytokines and chemokines. These signals are
exchanged by the cells to foster a plethora of responses that lead to PC progression and drug-resistance.
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CONCLUDING REMARKS

PC still represents the second leading cause of cancer death in
men inWestern society. In most cases (~70%), PC has a slow and
symptom-free growth, whereas it is more aggressive in the
remaining patients. Current therapies for advanced PC remain
unsatisfactory and new inhibitors of androgen synthesis and AR
activation have been designed to improve patient survival.
Despite these therapies, PC often progress towards a metastatic
and/or CRPC phenotype. Preclinical and clinical studies
currently aim at identifying the molecular basis for PC
spreading and drug-resistance. Nevertheless, few biomarkers
predictive of metastatic phenotype have as yet been identified
and few efficient therapeutic options are available for advanced
PC. Recent years, have seen important advances in large scale –
omics approaches to identify novel biomarkers of PC malignancy
and ameliorate patients’ stratification as well as clinical
management of the disease. The combination of next
generation sequencing (NGS) approaches with proteomic
profiling has revealed important differences between malignant
and benign specimens, together with the identification of
clinically actionable biomarkers. Additionally, tools for
transcriptional expression classification have allowed the PCs
characterization based on their pathological features, thereby
addressing the patients towards a proper care (99). Several
epigenetic modifications have been also identified and linked
to altered gene expression, resulting in increased PC risk.
Transcriptome-wide association studies confirmed the
correlation with the expression of several predicted genes
(100). Similar tools have been also applied to prostate CAFs to
show that increased expression of ECM remodelling proteins is
linked to cancer-supporting properties (101) or that specific
epigenetic alterations are correlated to PC malignancy (102).
These approaches might further provide important information
on PC molecular landscape.

In this review, we aimed to address novel aspects of PC
biology, which impinge on the interconnections between AR and
other key intracellular signalling regulated by NGF or calcium
Frontiers in Endocrinology | www.frontiersin.org 8
channels. Communications between these partners seem
relevant, since their breakdown might underly PC pathogenesis
and progression. Current PC therapies prevalently target
proliferative functions of AR and may only be effective within
a short time frame. Primary PC show, instead, a marked
heterogeneity and tumor cells may rapidly change as a
consequence of pressures exerted by CAFs. Thus, further
analysis of tumor microenvironment, identification of its
molecular signatures, including the AR expression and its main
partners, together with in depth study of signals delivered by PC-
or CAF-derived exosomes (103), would provide additional
information for patient’s stratification, avoiding expensive
therapies with considerable side effects. In this context, the
synthesis of new biologically active molecules, such as the new
calcium-channel antagonists or the small bioavailable peptides,
specifically perturbing the extranuclear AR functions in TME or
PC cells, should improve the pharmacologic response in patients
and ameliorate their quality of life.
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