
https://doi.org/10.1177/17588359211018026 
https://doi.org/10.1177/17588359211018026

Therapeutic Advances in Medical Oncology

journals.sagepub.com/home/tam 1

Ther Adv Med Oncol

2021, Vol. 13: 1–24

DOI: 10.1177/ 
17588359211018026

© The Author(s), 2021.  
Article reuse guidelines:  
sagepub.com/journals-
permissions

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License  
(https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission 
provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).

Special CollectionImmunotherapy in Hepatocellular Carcinoma:  
a New Kid on the Block

Introduction
Liver cancer is one of the most common cancers 
and the fourth leading cause of cancer death glob-
ally, and its burden continues to rise steadily.1,2 
Hepatocellular carcinoma (HCC) is the most 
common primary liver cancer, accounting for 
approximately 90% of all liver cancer cases.3 
Molecularly targeted therapies, rather than chem-
otherapy, play crucial roles in the systematic ther-
apy of unresectable HCC. The theory behind 
molecularly targeted therapies is that some 
molecular alterations function importantly during 
cancer development, growth, and metastasis, and 
may be potential targets for cancer treatment. For 
HCC, the most important molecular target is the 
vascular endothelial growth factor (VEGF) and 
its receptor (VEGFR). Despite the extensive 

attempts at new drug development for HCC, 
sorafenib [multikinase inhibitor (MKI) of 
VEGFR] remained the sole, effective systemic 
therapy for nearly a decade (2007–2016) since its 
approval.4 In 2017, the situation changed due to 
the approval of regorafenib (MKI of VEGFR) as 
a second-line treatment for HCC patients who 
progressed on sorafenib treatment.5 Since then, 
numerous clinical trials on MKIs of VEGFR have 
yielded positive results, leading to the approval of 
lenvatinib6 as first-line treatment and cabozan-
tinib7 and ramucirumab8 as subsequent-line 
treatments. In addition, there are many promis-
ing molecularly targeted agents currently being 
studied in clinical trials, such as transforming 
growth factor beta (TGF-β) inhibitors,9,10 MET 
inhibitors,11 fibroblast growth factor receptor 4 
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(FGFR4) inhibitors,12 and other similar molecu-
lar inhibitors.

Over the past decade, immune checkpoint blockade 
therapies targeting programmed cell death protein 1 
(PD-1), programmed cell death protein ligand 1 
(PD-L1), and cytotoxic T lymphocyte antigen 4 
(CTLA-4) have made tremendous breakthroughs 
that have revolutionized the treatment of various 
cancers. Anti-PD-1 monotherapy has been 
approved for the treatment of advanced HCC in 
both first- and second-line settings based on clinical 
study data.13–18 However, in HCC, the overall 
response rate (ORR) to anti-PD-1 monotherapy 
was only 15–20% and, more importantly, the over-
all survival (OS) did not significantly improve.13–18 
Given this data, researchers are currently making 
great efforts in improving the therapeutic efficacy of 
immune checkpoint inhibitors (ICIs) for HCC, 
including combining ICIs with other molecularly 
targeted therapies. Recently, on the basis of promis-
ing results of the IMbrave150 study, the combina-
tion of atezolizumab (anti-PD-L1 antibody) and 
bevacizumab (anti-VEGF monoclonal antibody) 
has been approved as a novel first-line treatment for 

advanced HCC.19 The final analysis of the clinical 
trial demonstrated that this combination resulted in 
significantly better OS and progression-free survival 
(PFS) than sorafenib monotherapy in patients with 
advanced HCC.19 This exciting result also suggests 
the promising future of combining molecularly tar-
geted therapies and immune checkpoint blockade 
therapies in the treatment of advanced HCC.

Currently, there are an increasing number of 
studies evaluating various combination strategies 
of molecularly targeted therapies and immune 
checkpoint therapies for HCC. Although most 
combination strategies lack robust evidence at 
present, some have shown promising efficacy in 
animal models or clinical studies. In this review, 
we focus on the current knowledge of combining 
molecularly targeted therapies and immune 
checkpoint therapies in HCC and provide an out-
look on the future of such combination therapies. 
For molecularly targeted therapies, we will mainly 
focus on VEGF/VEGFR inhibitors, TGF-β 
inhibitors, MET inhibitors, FGFR4 inhibitors, 
and epigenetic drugs, which have showed promis-
ing results in clinical studies (Figure 1; Table 1).

Figure 1. Molecularly targeted therapies and immune checkpoint inhibitors for hepatocellular carcinoma and 
their targets.
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Selection of clinical trials
To include clinical trials on the combination of 
molecularly targeted therapies and immune 
checkpoint therapies in HCC, we first searched 
the https://clinicaltrials.gov website by using the 
terms “hepatocellular carcinoma” and “drug.” A 
total of 1367 interventional trials were identified 
and further screened until February 2021. Trials 
were included only if they met the following crite-
ria: (1) included patients with advanced or unre-
sectable HCC; (2) included combination 
therapies of molecularly targeted therapies and 
immune checkpoint therapies; and (3) specific 
classes of molecularly targeted therapies, includ-
ing VEGF/VEGFR inhibitors, TGF-β inhibitors, 
MET inhibitors, FGFR4 inhibitors, and epige-
netic drugs. Studies were excluded if they met 
any of the following criteria: (1) combination 
therapies, such as neoadjuvant or adjuvant ther-
apy; (2) combinations of molecularly targeted 
therapies and immune checkpoint therapies with 
other therapies; (3) have already been terminated 
or withdrawn; and (4) contained insufficient 
required information. The included clinical trials 
are summarized in Table 1.

VEGF/VEGFR inhibitors
HCC is a hypervascularized solid tumor in which 
angiogenesis plays a critical role in cancer devel-
opment, proliferation, and metastasis.20 VEGF/
VEGFR inhibitors that modulate angiogenesis, 
including sorafenib, regorafenib, lenvatinib, 
cabozantinib, and ramucirumab, currently domi-
nate the approved systemic therapies for advanced 
HCC. As for bevacizumab, a monoclonal anti-
VEGF antibody with a long history, there is also 
some evidence, from clinical trials, indicating its 
potential efficacy in HCC.21,22 With the encour-
aging results of ICIs in HCC and the mounting 
evidence supporting the synergic effects of anti-
angiogenesis and immunotherapy, the potential 
of combining anti-VEGF/VEGFR drugs and ICIs 
in the treatment of advanced HCC has been 
investigated by plenty of animal and clinical 
studies.

In addition to promoting angiogenesis and 
increasing vessel permeability, the VEGF signal-
ing pathway has also been found to play a crucial 
role in cancer immunity.20,23–25 In general, several 
mechanisms have been postulated for the immu-
nosuppressive activity of the activation of the 
VEGF signaling pathway. Pathological angiogen-
esis generates abnormal vessels that may restrict 
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the infiltration of immune cells into tumors.23 
The upregulated level of VEGF could also result 
in the immunosuppressive tumor microenviron-
ment (TME) by inhibiting the trafficking, prolif-
eration, and effector function of cytotoxic T 
lymphocytes (CTLs) as well as the maturation 
and antigen presentation of dendritic cells (DCs). 
This, in turn, promotes immunosuppressive cell 
recruitment and proliferation, leading to a hypoxic 
and low-pH TME.23 Thus, inhibition of the 
VEGF–VEGFR interaction could not only nor-
malize vasculature but also enhance antitumor 
immunity.20 The addition of ICIs could further 
prevent the immune evasion of tumors and has a 
potential synergic effect with VEGF/VEGFR 
inhibitors.20 Recently, Shigeta et al.26 tested dual 
anti-PD-1/VEGFR-2 therapy in orthotopic 
murine models of HCC. They found that an anti-
PD-1 antibody and an anti-VEGFR-2 antibody 
synergized in vessel normalization and immune 
microenvironment reprogramming, overcoming 
resistance to any of the individual treatments and 
thereby enhancing tumor elimination.26

Recently released data from the IMbrave150 
study demonstrated that atezolizumab plus beva-
cizumab resulted in higher ORR and prolonged 
OS and PFS when compared with sorafenib mon-
otherapy.19 There are a number of clinical trials 
focusing on various combination regimens of 
VEGFR inhibitors and ICIs currently underway 
(Table 1). Here we will review these clinical stud-
ies and mainly focus on those with preliminary 
results.

Bevacizumab
After bevacizumab treatment, CD8+ T-cell pro-
liferation is significantly increased while the pres-
ence of PD-L1+ tumor cells, PD-1+ cells, 
regulatory T (Treg) cells, and tumor-associated 
macrophages (TAMs) is significantly decreased 
in glioblastoma tissues.27 Bevacizumab could also 
increase CD8+ T-cell populations in tumor, 
reduce Treg cell populations in the blood, and 
sustain the circulation of the effector T cells.28–30 
In vitro and in vivo administration of bevacizumab 
was shown to inhibit VEGF-mediated increases 
in Treg cells.31 Bevacizumab treatment resulted 
in a significant reduction of myeloid-derived sup-
pressor cells (MDSCs), thereby restoring effec-
tive antitumor immunity.32–34 Previous studies 
also found that bevacizumab could abrogate the 
inhibition of monocytes differentiation into 
DCs.35–37 Bevacizumab was shown to enhance 

the maturation and number of DCs in the periph-
eral blood of patients with lung, breast, and colo-
rectal cancers.38 Moreover, atezolizumab in 
combination with bevacizumab enhanced anti-
gen-specific T-cell migration in metastatic renal 
cell carcinoma (RCC).39 Similarly, in patients 
with melanoma, a significant increases in circulat-
ing CD4+ and CD8+ T cells occurred with ipili-
mumab plus bevacizumab versus ipilimumab 
alone.40 To summarize, bevacizumab has signifi-
cant effects on a variety of immune cells and con-
tributes to the restoration of an immunosupportive 
TME.

These findings provide important rationales for the 
combination of bevacizumab and ICIs in cancer 
treatment. As previously mentioned, bevacizumab 
plus atezolizumab has recently become a new  
first-line treatment for advanced HCC 
(NCT03434379).19 Other clinical trials are also 
testing its efficacy (NCT02715531, NCT04180072, 
NCT04563338, NCT04487067, and 
NCT04732286).41 Other combinations of bevaci-
zumab and ICIs, for instance, bevacizumab plus 
nivolumab (NCT04393220), bevacizumab plus 
durvalumab (NCT02519348), bevacizumab plus 
toripalimab (NCT04605796, NCT04723004), 
and bevacizumab plus HX-008 (NCT04741165) 
are also under investigation in clinical trials.

Sorafenib
Sorafenib can decrease suppressive immune cell 
populations, including Treg cells and MDSCs, 
and enhance functions of tumor-specific effector 
T cells.42–44 Sorafenib can also restore classical 
macrophage polarization in the TME of HCC, 
which correlates with a reduction in tumor bur-
den.45,46 Sorafenib may also inhibit macrophage-
induced hepatocarcinoma growth by acting on 
various targets.47,48 Similar to bevacizumab, 
sorafenib could abrogate the differentiation of 
human monocytes into DCs.35 In mouse models 
of various cancer types, sorafenib induced 
increased infiltration of CD4+ and CD8+ T cells 
into tumors.44,49–51 By contrast, in HCC mouse 
models or studies using peripheral blood mono-
nuclear cells (PBMCs), the number and function 
of CD4+ and CD8+ T cells may be depressed 
directly by sorafenib or indirectly by the elevation 
of MDSCs and Treg cells following sorafenib 
treatment.52,53 For natural killer (NK) cells, low-
dose sorafenib may enhance NK cell effector 
functions, such as interferon gamma (IFN-γ)/
tumor necrosis factor alpha (TNF-α) production, 
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degranulation, and lytic functions,46,54 whereas 
high-dose sorafenib generally inhibits NK cell 
proliferation and function.55–58 On experimental 
models of HCC, sorafenib in combination with 
nivolumab showed a stronger tumor growth inhi-
bition as opposed to sorafenib or nivolumab 
monotherapy.59

Therefore, it is reasonable to test the combination 
of sorafenib and ICIs in clinical studies. Clinical 
trials of combined efficacy of sorafenib plus pem-
brolizumab (NCT03211416), nivolumab 
(NCT03439891), PDR001 (NCT02988440), 
toripalimab (NCT04069949), and atezolizumab 
(NCT04770896) are now ongoing.

Lenvatinib
In murine models of diverse cancers, lenvatinib 
monotherapy was found to increase the popula-
tion of CD8+ T cells in TME and this effect was 
further enhanced when combined with an anti-
PD-1 antibody.60–62 Lenvatinib enhanced the 
antitumor activity of PD-1 blockade by upregu-
lating memory T-cell population and enhanced T 
helper type 1 (Th1) immune response.63,64 It was 
also found that the antitumor activity of lenvatinib 
was associated with enhanced tumor immune 
infiltration and activation of NK cells in HCC 
models.65 More importantly, lenvatinib may 
decrease TAMs in RCC, colon cancer, and thy-
roid cancer tumor models, and exhibited syner-
gistic antitumor effects in combination with 
anti-PD1 therapy.64,66–68

In a phase Ib clinical trial (NCT03006926), len-
vatinib plus pembrolizumab was assessed as a 
first-line treatment in advanced HCC.69 The 
combination therapy showed promising antitu-
mor activity with an ORR of 36.0% [95% confi-
dence interval (CI): 26.6–46.2%] and a tolerable 
safety profile.69 Another phase Ib clinical trial of 
lenvatinib plus nivolumab, in patients with unre-
sectable HCC, reported an ORR as high as 76.7% 
(95% CI: 57.7–90.1%) and manageable adverse 
events (NCT03418922).70 A phase II trial of len-
vatinib plus nivolumab in HCC is currently 
underway (NCT03841201).71 A phase III trial 
aiming to compare the efficacy of the combina-
tion of lenvatinib and pembrolizumab with len-
vatinib monotherapy, as first-line treatment for 
HCC, is also now underway (NCT03713593).72 
Other clinical trials on the combination of len-
vatinib and ICIs are listed in Table 1.

Regorafenib
Regorafenib was previously reported to decrease 
macrophage accumulation in several murine 
models of colorectal cancer.73,74 When adminis-
tered in mice, regorafenib suppressed melanoma 
progression in a CD8+ T-cell-dependent man-
ner.75 Recently, regorafenib was found to pro-
mote tumor immunity by targeting the RET–Src 
axis to further inhibit JAK1/2–STAT1 and 
MAPK signaling as well as attenuate IFN-γ-
induced PD-L1 and indoleamine 2,3-dioxyge-
nase 1 (IDO1) expression.76

For HCC, early stage clinical trials of regorafenib 
plus avelumab (NCT03475953), pembrolizumab 
(NCT03347292, NCT04696055), nivolumab 
(NCT04170556, NCT04310709), sintilimab 
(NCT04718909), and tislelizumab (NCT04 
183088) are ongoing at present.

Cabozantinib
Cabozantinib rendered tumor cells more sensi-
tive to immune-mediated killing and contributed 
to a more permissive immune environment in 
experimental study.77 Cabozantinib treatment 
also resulted in a significant reduction of MDSCs 
in mouse models.34 In clinical trials, cancer 
patients treated with cabozantinib were found to 
have increased CD8+ T cells and decreased 
Treg cells and MDSCs.78,79 Furthermore, cabo-
zantinib was reported to trigger a neutrophil-
mediated anticancer innate immune response 
that resulted in tumor clearance.80 Cabozantinib 
could downregulate M1 macrophages to prevent 
bone metastasis of prostate carcinoma81 and 
reverse c-MET-induced immunosuppressive 
PD-L1 upregulation.82

In one cohort from the CheckMate 040 study, the 
triple combination of nivolumab, ipilimumab, 
and cabozantinib led to an ORR of 26% with tol-
erable toxicity.83 There are also ongoing clinical 
trials testing cabozantinib plus pembrolizumab 
(NCT04442581), nivolumab (NCT04514484), 
atezolizumab (NCT03170960, NCT03755791), 
and durvalumab (NCT03539822) for HCC 
patients.

Ramucirumab
Ramucirumab-containing therapies for gastric 
cancer (GC) patients displayed significantly 
increased CD8+ T-cell infiltration, decreased 
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Treg cell infiltration, and reduced PD-1 expres-
sion by CD8+ T cells.84

A phase Ib study (NCT02572687) showed that 
ramucirumab plus durvalumab yielded increased 
antitumor activity without unexpected toxicity in 
HCC patients, especially those with high PD-L1 
expression.85

Others
SHR-1210 (anti-PD-1 antibody) and apatinib 
combination therapy demonstrated an ORR of 
50.0% (95% CI: 24.7–75.4%) in advanced 
HCC patients (NCT02942329).86 A phase Ib 
trial (NCT03289533) evaluating avelumab 
plus axitinib in treatment-naive patients with 
HCC showed an ORR of 31.8% (95% CI: 
13.9–54.9%).87

As shown in Table 1, many other combinations of 
anti-VEGF/VEGFR antibodies and ICIs are now 
under investigation in clinical trials.

TGF-β inhibitors
The TGF-β pathway has miscellaneous functions 
in cancers, including regulating cell growth, dif-
ferentiation, apoptosis, motility and invasion, 
extracellular matrix production, angiogenesis, 
and immune response.88,89 In HCC, TGF-β sign-
aling has been demonstrated to be significant in a 
subset of patients based on gene expression pro-
filing.90 It is found that TGF-β1, an isoform of 
TGF-β, can stimulate α3-integrin expression in 
noninvasive HCC cells at the transcriptional 
level, transforming them into a motile and inva-
sive phenotype.91 In an experimental model of 
hepatocyte transmigration using hepatic sinusoi-
dal endothelial cells and malignant hepatocytes to 
mimic vascular invasion, TGF-β was shown to be 
crucially involved in blood vessel invasion of 
HCC cells. This suggests its key role in the dis-
semination and metastasis of HCC.92 In addition, 
TGF-β was found to contribute to HCC invasion 
and metastasis by inducing FGFR4 expression 
through the extracellular-signal-regulated kinase 
(ERK) pathway.93 TGF-β signaling also func-
tions as a master regulator for immune cell prolif-
eration, differentiation, development, and 
survival.94,95 In the liver, TGF-β signaling plays a 
crucial role in regulating immune cells to main-
tain a balance between immune tolerance and 
activation96–98 (Figure 2). TGF-β activity has 
been identified as essential for the pathogenesis of 

HCC, including the activation of cancer-associ-
ated fibroblasts (CAFs).96–98

The potent immunosuppressive function of Treg 
cells is a major hurdle in generating an effective 
antitumor response in HCC.99 Tumor cells and 
all stromal cells, including MDSCs, TAMs, DCs, 
CAFs, hepatic stellate cells (HSCs), and liver 
sinusoidal endothelial cells (LSECs) modulate 
Treg cell activity in HCC via the TGF-β path-
way. MDSCs play a critical role in tumor-induced 
liver immunosuppression by inhibiting NK cell 
functions through membrane-bound TGF-β and 
promoting Treg cell expansion.100,101 TGF-β, in 
the TME, promotes the expression of T-cell 
immunoglobulin mucin receptor 3 (TIM3) on 
macrophages and facilitates the alternative activa-
tion of macrophages via TIM3, thereby promot-
ing tumor growth via the nuclear factor-κB 
(NF-κB)-interleukin 6 (IL-6) axis.102 TGF-β pro-
motes the differentiation of M2 macrophages, 
which repress CD8+ T-cell, NK cell, and DC 
functions and increase Treg cell functions.103 A 
subset of DCs selectively promote the prolifera-
tion of Treg cells in a TGF-β dependent man-
ner.104 TGF-β expressed and activated by cancer 
cells, or other cells in the TME, promote cancer 
progression through its effects on CAFs.105 CAFs 
are important components of the HCC TME, 
generating cyclooxygenase-2 (COX2), IL-8, and 
other cytokines that, together, stimulate TAMs to 
release TNF-α and platelet-derived growth factor 
(PDGF).96–98 HSCs are activated by TGF-β and 
induce immune tolerance via enhancing the 
expansion of MDSCs, attenuation of effector 
T-cell functions, and augmentation of Treg 
cells.106,107 LSECs are the most efficient liver cell 
type in TGF-β-dependent Treg cell induction 
and produce the chemokine C-X-C motif 
chemokine ligand 16 (CXCL16) to control the 
accumulation of C-X-C motif chemokine recep-
tor 6 (CXCR6) + NKT cells.108,109

TGF-β has been demonstrated to induce fork-
head box P3 (Foxp3), a transcriptional factor 
expressed predominantly on Treg cells, through a 
Smad2/3-dependent mechanism.110 Foxp3+ 
Treg cells are highly enriched in tumors of HCC 
patients and correspond to poorer clinical out-
comes.111 Treg cells also secrete TGF-β, as well 
as adenosine and IL-10, to suppress effector T 
cells, such as CD8+ CTLs,112 which play a criti-
cal role in the antitumor immune response by the 
production of various effector molecules includ-
ing IFN-γ, IL-2, and TNF-α.113 CD28 is a 
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co-stimulatory molecule that interacts with the 
CD80/CD86 complex on antigen-presenting cells 
(APCs). The immune checkpoint molecule 
expressed on Treg cells, CTLA4, can compete 
with CD28 to downregulate the CD80/CD86 
complex through CTLA-4-mediated trans-endo-
cytosis, thus inhibiting the antitumor immu-
nity.114,115 TGF-β has also been implicated in 
inducing Treg cell polarization.116 Accordingly, 
inhibition of the TGF-β signaling decreased Treg 
cell infiltration in tumor tissues and induced 
HCC tumor regression.116 Therefore, targeting 
Treg cells, such as by blocking the TGF-β signal-
ing or the membrane-bound receptor CTLA-4, 
may be a particularly effective immune-based 
approach for improving the immune response 
against HCC.

IFN-γ is a cytokine that supports the proliferation 
and differentiation of myeloid cells and CD8+ T 
cells. In numerous immune cell types, TGF-β sup-
presses IFN-γ expression via the Smad pathway, 
thereby inhibiting the antitumor activity of CD8+ 
T cells.117,118 Th1 and Th2 lineages produce 
cytokines that support the growth and functions of 
CD8+ cytotoxic T cells, B cells, and macrophages. 
TGF-β restricts the specification of Th1 and Th2 
cells by repressing T-bet expression and inducing 
MSC and Sox4 expression, respectively.118 
Additionally, TGF-β was demonstrated to promote 

a shift of Th1 toward Th2 cell differentiation, result-
ing in a less efficient antitumor immune response.119 
Th17 cells are a proinflammatory Th cell subtype 
that expresses IL-17 and contribute to non-alco-
holic steatohepatitis (NASH) and HCC.120,121 
Through the activation of Smad2/3, TGF-β coop-
erates with IL-6/IL-21 to positively regulate the 
generation of Th17 cells from naive CD4+ T 
cells.120,121 Intratumoral TGF-β suppresses NKT 
cells, which are responsible for recruiting effector 
immune cells to the tumor by producing large 
amounts of IFN-γ.122 NKG2D is one of the NK cell 
activating receptors. Active NKG2D can induce the 
activation, cytokine production, degranulation, and 
cytotoxic potential in NK cells.123 Downregulation 
of NKG2D or upregulation of the inhibitory recep-
tor NKG2A is associated with increased generation 
of immunosuppressive cytokines, such as TGF-β 
and IL-10, contributing to NK cell dysfunction in 
HCC.124–129 Although TGF-β promotes chemot-
axis of eosinophils and mast cells, it inhibits effector 
functions of NK cells and antigen presentation by 
DCs.95,130 During B-cell maturation, TGF-β stimu-
lates class switch recombination, which converts 
IgM-expressing B cells into IgA-expressing (IgA+) 
cells with regulatory activity.131 IgA+ cells are 
involved in nonalcoholic fatty liver disease 
(NAFLD)-associated HCC by co-expressing 
PD-L1 and IL-10 and by restraining cytotoxic 
CD8+ T lymphocytes.132

Figure 2. Interactions between TGF-β and immune cells in the tumor microenvironment of hepatocellular 
carcinoma.
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TGF-β enhances antigen-induced PD-1 expres-
sion on tumor-infiltrating lymphocytes (TILs) 
through Smad3-dependent transcriptional activa-
tion.133 And TGF-β induced epithelial–mesen-
chymal transition (EMT) increases PD-L1 
expression in tumor cells.134 The engagement of 
the co-inhibitory receptor PD-1 or its ligand 
PD-L1 blocks T-cell antigen receptor (TCR) 
signaling and inhibits T-cell proliferation and 
secretion of cytotoxic mediators, including gran-
zyme A (GZMA), granzyme B (GZMB), TNF-α, 
and IFN-γ, which all collectively lead to T-cell 
exhaustion.135,136 Thus, increased TGF-β signal-
ing may allow tumors to evade host immune 
responses by upregulating PD-1 expression, and 
inhibition of TGF-β signaling may directly 
enhance antitumor immunity.133 Tumors, partic-
ularly immune-excluded tumors that are intrinsi-
cally resistant to anti-PD-1/PD-L1 therapy, 
display elevated TGF-β signaling.137–139 Indeed, 
anti-PD-1 treatment can induce a competing 
TGF-β-driven immunosuppressive program in a 
mouse model.140 Together, these findings provide 
an important rationale for blocking the TGF-β 
signaling in order to circumvent the aggressive-
ness and resistance to therapies of HCC, espe-
cially in the era of immune-oncology.

Pharmacological agents targeting the TGF-β 
pathway, including receptor kinase inhibitors and 
neutralizing antibodies that inhibit the interac-
tions of TGF-β ligands with their receptors, have 
already demonstrated promising antitumor effi-
cacy in early clinical trials with an acceptable 
safety profile in a variety of cancers, including 
HCC.141 Dual blockade of TGF-β signaling and 
PD-1/PD-L1 checkpoint successfully reduced 
TGF-β signaling in stromal cells, promoted T-cell 
infiltration into tumor centers, elicited vigorous 
antitumor immunity, and contributed to tumor 
regression in mouse models.137,140,142–144 In addi-
tion, M7824, a bifunctional fusion protein con-
sisting of an α-PD-L1 antibody moiety, based on 
avelumab linked to the extracellular domain of 
TGF-β receptor II, was developed.145,146 This 
novel agent blocked signaling from the immune 
checkpoint PD-L1 surface protein and reduced 
TGF-β signaling within the TME by binding to 
all three TGF-β isoforms.145,146 Its dual anti-
immunosuppressive function led to the activation 
of the innate and adaptive immune systems, 
upregulation of PD-L1 levels in tumor cells, and 
induction of tumor regression in mouse mod-
els.145,146 Another bifunctional fusion protein that 
blocks both TGF-β and CTLA-4 has also been 

developed, which was more effective in reducing 
tumor-infiltrating Tregs and inhibiting tumor 
progression compared with CTLA-4 antibody.147 
Early clinical trials of M7824 in patients with 
metastatic or locally advanced solid tumors, 
including HCC, have shown encouraging efficacy 
and a manageable safety profile (NCT02517398, 
NCT02699515) (Table 1).148,149 A clinical trial 
of galunisertib (a systemic TGF-β receptor 1 
inhibitor) in combination with nivolumab for 
HCC is ongoing (NCT02423343) (Table 1). 
Other clinical trials testing BCA101 (EGFR/
TGF-β fusion monoclonal antibody) plus pem-
brolizumab (NCT04429542) or NIS793 (TGF-β 
inhibitor) plus PDR001 (spartalizumab, PD-1 
inhibitor) (NCT02947165) are also ongoing 
(Table 1).

MET inhibitors
c-MET (MET) is a tyrosine kinase receptor with a 
single known ligand, hepatocyte growth factor 
(HGF). In HCC, overexpression of c-MET and 
HGF was noted in 20% and 33% of human sam-
ples, respectively.150 The MET/HGF axis is 
involved in HCC progression by promoting cellu-
lar proliferation, survival, and invasion.151,152 The 
MET/HGF signaling pathway is also associated 
with tyrosine kinase inhibitor resistance,153,154 as 
patients with plasma HGF concentrations above 
3279.1 pg/ml derived no obvious benefit from 
sorafenib compared with placebo in the pivotal 
phase III SHARP trial.155 Therefore, the MET/
HGF pathway may be used as a potential thera-
peutic target for the treatment of HCC. Moreover, 
the MET/HGF pathway has complex immu-
nomodulatory effects (Figure 3). It can act as an 
immunosuppressive stimulus by negatively affect-
ing DCs and T lymphocytes, or as an immune-
positive stimulus by promoting the recruitment of 
DCs, B cells, and T lymphocytes.156–161

To date, the potential interplay between the 
HGF/MET pathway and DCs has been exten-
sively investigated. It is well known that DCs are 
involved in the presentation of tumor-associated 
antigens (TAAs) and the activation of CD4+ 
Treg cells that control CD8+ cytotoxic T-cell 
activity. Several studies have found that HGF is 
able to enhance this function and plays a positive 
role in the immune response.156,162–164 However, 
it has also been shown that HGF can act as a 
potent negative regulator of DC function and can 
induce an increase of Treg cells, a decrease of 
IL-17-producing T cells,156 and an increase in 
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IL-10 and TGF-β, which are known for their 
immunosuppressive effects.157 The inhibition of 
DC functions, together with the decrease of 
CD8+ T cells and the increase of Treg cells, 
leads to a decline of anticancer immunity.156 
Moreover, HGF favors the differentiation of 
monocytes into IL-10+ regulatory DCs. This 
inhibitory effect has also been demonstrated in 
monocytes, particularly with an induction toward 
differentiation into IL-10+ regulatory DCs.165

Besides APCs, the impact of HGF/MET signal-
ing on granulocytes has also been highlighted in 
previous studies. MET is required for neutrophil 
chemoattraction and cytotoxicity, while its dele-
tion in mouse neutrophils enhances tumor growth 
and metastasis.166 This phenotype is associated 
with reduced neutrophil infiltration to both pri-
mary and metastatic tumors in clinical samples.166 
Mechanistically, tumor-derived TNF-α or other 
inflammatory stimuli can induce MET in neutro-
phils, which results in neutrophil transmigration 
across an activated endothelium and inducible 
nitric oxide synthase production, thereby pro-
moting cancer cell killing and abating tumor pro-
gression.166 This mechanism may partially explain 
the resistance to MET inhibitors in some patients, 
which is an important issue for clinicians in devel-
oping treatment strategies.166 This example 
reveals the complex role of MET in tumors 
regarding its immunomodulatory effects, which is 
of great importance when testing its combination 
with immunotherapy. In HCC, tumor neutro-
phils actively enhanced the metastasis of 

malignant cells in vitro and in vivo via HGF/c-
MET interaction.167

c-MET inhibition promoted perforin expression 
in CD8+ T cells and contributes to the activation 
of the immune system.168 c-MET inhibition 
impaired the reactive mobilization and recruit-
ment of neutrophils into tumors and draining 
lymph nodes, potentiating T-cell antitumor 
immunity.169 Furthermore, in immunocompetent 
mice, the addition of MET inhibitors to immuno-
therapy increased the number of active T cells 
and changed their phenotype by reducing the 
proportion of exhausted T cells.169 These results 
were independent of MET expression in the 
tumor models used, suggesting that c-MET 
inhibitor co-treatment may improve the response 
to cancer immunotherapy in settings beyond 
c-MET-dependent tumors.169

MET was identified as a broadly expressed TAA 
that can be recognized by CD8+ cytotoxic T cells, 
which then triggered activation of the immune 
system against cancer cells overexpressing 
MET.170 Similarly, Kumai et  al.171 showed that 
MET expression itself behaves as a TAA, which 
was able to activate CD4+ T cells and to induce 
tumor cell killing in NK/T-cell lymphoma 
(NKTCL) cell lines. Particularly, in this model, 
MET elicited a specific antitumor immune 
response with three newly identified MET-
induced T-cell epitopes. The activation of T cells 
was stronger in the presence of MET inhibitors 
since it caused a reduction of the synthesis of 

Figure 3. Immunomodulatory effects of HGF/MET signaling.
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TGF-β from tumor cells. Additionally, the pres-
entation of MET-derived peptides by major histo-
compatibility complex class II (MHCII) to CD4+ 
T cells was influenced by chaperon processing and 
autophagy, thus proposing an innovative potential 
role of autophagy inducers as immune activators. 
Finally, since HGF/MET stimulation increases 
the proliferation of NKTCL cells in vitro, MET 
inhibition again displayed a dual role: direct tumor 
killing for MET-dependent cell survival and anti-
tumor immune activation.171

PDL-1/2 expression was found to correlate signifi-
cantly with c-MET expression in GC patients.172 
c-MET was shown to upregulate PD-L1 expres-
sion, contributing to immune escape of tumor cells 
in various cancers including GC, non small cell 
lung cancer (NSCLC), RCC, and HCC.82,173–179 
However, there are also some preclinical studies 
showing the opposite effect of c-MET in terms of 
the regulation of PD-L1 expression. MET-
mediated phosphorylation and activated glycogen 
synthase kinase 3β (GSK3B) can lead to decreased 
expression of PD-L1.180 Exposure of liver cancer 
cell lines to MET inhibitors increased their expres-
sion of PD-L1 and inactivated co-cultured T 
cells.180 In combination with a MET inhibitor, 
anti-PD-1 and anti-PD-L1 produced additive 
effects to slow the growth of HCCs in mice.180 
Similarly, exposure of NCSLC cell lines to the 
c-MET inhibitor, tivantinib, increased their PD-L1 
expression, which in turn caused cells to become 
more resistant to T-cell killing. This provides a 
rationale for the use of the combination therapy of 
c-MET inhibitors and ICIs in NSCLC.181 
Moreover, a novel bispecific antibody targeting 
both MET and PD-1 was developed and studied in 
multiple cancer cell-type models.182,183 The anti-
body exhibited strong anti-proliferative and anti-
metastatic effects in vitro and in vivo and reduced 
the production of inflammatory chemokines such 
as IL-6 and TNF-α, thus suggesting an important 
therapeutic potential, although it is still in the pre-
clinical model stage.182,183 Besides, clinical trial of 
APL-101 (c-MET inhibitor) plus nivolumab or 
APL-501 (PD-1 inhibitor) (NCT03655613) and 
capmatanib (MET inhibitor) plus PDR001 
(NCT02795429) are recruiting patients (Table 1).

FGFR4 inhibitors
FGFR4 is the predominant FGFR expressed in the 
liver and has been identified as a promising target 
in HCC.184 Fibroblast growth factor 19 (FGF19) 
can bind to and activate FGFR4 to induce 

hepatocyte proliferation.185 The activation of the 
FGF19/FGFR4 pathway suppresses E-cadherin 
expression and hence promotes EMT, contributing 
to the aggressiveness of HCC.186 FGF19 was sig-
nificantly overexpressed in HCC specimens and 
was independently associated with tumor progres-
sion and poor prognosis in HCC patients.187,188 
Additionally, FGF19 was found to be strongly 
associated with the immune checkpoint signature 
(CD274, PDCD1, BTLA, CTLA4, HAVCR2, 
IDO1, and LAG3) in lymphoepithelioma-like 
HCC (LEL-HCC).189 As previously described, 
FGFR4 expression was upregulated by TGF-β 
through the ERK pathway, in HCC cell lines, 
which contributed to the metastatic dissemination 
of HCC in vivo.93 More importantly, FGF19/
FGFR4 signaling plays an important role in the 
resistance of HCC to sorafenib,190,191 making it of 
particular interest given the current widespread use 
of MKIs in HCC patients. A clinical trial testing 
FGF401 (FGFR4 inhibitor) plus PDR001 
(NCT02325739), and another clinical trial testing 
fisogatinib (FGFR4 inhibitor) plus CS1001 (PD-1 
inhibitor) (NCT04194801), in HCC, are both cur-
rently ongoing (Table 1).

Epigenetic drugs
Epigenetic events play a crucial role in tumor 
development, progression, and metastasis, provid-
ing another potential target for cancer treat-
ment.192–194 Owing to their effect on immune 
response and cancer immunity,195 there are strong 
rationales for the potential combination of epige-
netic drugs and ICIs in cancers. Epigenetic modi-
fiers function importantly in priming and 
enhancing the therapeutic effect of the host 
immune system against cancer.196,197 PBMCs and 
T-cell DNA methylation in HCC suggested that a 
broad molecular signature was involved in tumor 
progression, which was highly enriched in immune 
function-related genes such as PD-1.198 Another 
study also found that highly upregulated DNA 
methyltransferases (DNMTs) were positively cor-
related with PD-L1 overexpression in sorafenib-
resistant HCC cells.199 Knockdown of PD-L1 
induced DNMT1-dependent DNA hypomethyla-
tion and restored the expression of methylation-
silenced Cadherin 1, a metastasis suppressor in 
HCC.199

Epigenetic drugs, such as DNMT inhibitors 
(DNMTi) and histone deacetylase inhibitors 
(HDACi), were found to upregulate the expres-
sion of inhibitory immune checkpoints in either 
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immune or cancer cells, which enhance the 
response to immune checkpoint ther-
apy.196,197,200–207 DNMTi enhanced the therapeu-
tic efficacy of PD-L1 blockade and increased 
tumor-infiltrating CD8+ T cells and Th1-type 
chemokine expression in ovarian cancer in C57/
BL6 mice.106 In a mouse model of fibrosis-associ-
ated HCC, the combination of i-BET762 (BET 
inhibitor) and anti-PD-L1 therapy was found to 
be able to repress monocytic MDSCs, enhance 
TILs, and lead to tumor eradication and pro-
longed survival.208 The therapeutic effect of a 
HDACi belinostat in combination with immune 
checkpoint blockades (ICBs) was highlighted in a 
murine model of HCC, which was associated with 
enhanced IFN-γ production by antitumor T cells 
and a decrease in Treg cells.209 Hong et al.210 dem-
onstrated that epigenetic therapy targeting EZH2 
and DNMT1 could be a potential strategy to aug-
ment immunotherapy for HCC by stimulating 
T-cell trafficking into the TME. Guadecitabine, a 
second-generation DNMTi, showed synergic 
antitumor effects with immune checkpoint ther-
apy and provided a rationale for such combination 
treatment.211 As a result, a clinical trial of dur-
valumab plus guadecitabine (NCT03257761) for 
HCC patients is currently ongoing (Table 1).

Others
A phase I study (NCT02476123) of the anti-
CCR4 antibody mogamulizumab in combination 
with nivolumab in patients with advanced or met-
astatic solid tumors, including HCC, demon-
strated acceptable antitumor activity and safety 
profile.212

There are now also a lot of combination therapies 
of other molecular targeted therapies and immune 
checkpoint therapies for HCC under investiga-
tion, such as pembrolizumab plus bavituximab 
(NCT03519997), nivolumab plus SF1126 [phos-
phatidylinositol 3-kinase (PI3K) inhibitor] 
(NCT03059147), nivolumab plus copanlisib 
(PI3K inhibitor) (NCT03735628), nivolumab 
plus abemaciclib [cyclin-dependent kinase 4 
(CDK4) inhibitor] (NCT03781960), nivolumab 
plus cabiralizumab [colony-stimulating factor 1 
receptor (CSF1R) antagonist] (NCT04050462), 
nivolumab plus BMS-986253 (IL-8 inhibitor) 
(NCT04050462, NCT04123379), pembroli-
zumab/nivolumab/atezolizumab/avelumab plus 
ALT-803 [IL-15 receptor (IL-15R) agonist] 
(NCT03228667), nivolumab plus BMS-813160 

(CCR2 antagonist) (NCT04123379), nivolumab 
plus CC-122 (NCT02859324), etc.

Conclusion
Plenty of novel agents are under development 
and investigation in the post-sorafenib era of 
advanced HCC treatment. Among them, molec-
ular targeted drugs and ICIs are by far the most 
promising. Various combination strategies of 
molecular targeted therapies and immune check-
point therapies are being tested and have gener-
ated some encouraging preliminary data. We are 
continuing to experiment with various therapeu-
tic approaches to improve the clinical outcome of 
advanced HCC. One of the biggest challenges in 
order to optimize treatment outcomes is the 
development of predictive biomarkers for both 
monotherapies and combination therapies to 
accurately identify patients most likely to respond 
to particular treatments. In HCC, MKIs have 
been used for more than a decade and ICIs have 
been approved for several years, yet there are still 
no satisfactory biomarkers for these two thera-
pies. For combination therapies, a better under-
standing of the mechanisms of synergistic 
therapeutic effects would aid in the design of 
more effective treatment regimens, such as dosing 
and sequencing strategies. Finally, the prevention 
and management of toxicities of combination 
therapies should be taken seriously in clinical 
practice.
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