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The use of extracellular vesicles (EVs) as a potential therapy is currently explored for

different disease areas. When it comes to the treatment of joint diseases this approach is

still in its infancy. As in joint diseases both inflammation and the associated articular tissue

destruction are important factors, both the immune-suppressive and the regenerative

properties of EVs are potentially advantageous characteristics for future therapy. There

is, however, only limited knowledge on the basic features, such as numerical profile

and function, of EVs in joint articular tissues in general and their linking medium, the

synovial fluid, in particular. Further insight is urgently needed in order to appreciate the

full potential of EVs and to exploit these in EV-mediated therapies. Physiologic joint

homeostasis is a prerequisite for proper functioning of joints and we postulate that EVs

play a key role in the regulation of joint homeostasis and hence can have an important

function in re-establishing disturbed joint homeostasis, and, in parallel, in the regeneration

of articular tissues. In this mini-review EVs in the joint are explained from a historical

perspective in both health and disease, including the potential niche for EVs in articular

tissue regeneration. Furthermore, the translational potential of equine models for human

joint biology is discussed. Finally, the use of MSC-derived EVs that is recently gaining

ground is highlighted and recommendations are given for further EV research in this field.

Keywords: extracellular vesicle, joint, inflammation, immune suppression, cartilage, therapy, regeneration, joint

homeostasis

INTRODUCTION

Joint diseases, with rheumatoid arthritis (RA) and osteoarthritis (OA) as most prevalent ones,
represent a significant burden to human society, both in terms of loss of quality of life and as a
significant part of total healthcare costs. Current demographic and societal developments—i.e., the
rapid increase of life expectancy and the decreasing acceptance of disability—aggravate the problem
quickly (1). In veterinary medicine, a similar situation exists, especially in horses, a species kept for
its locomotor performance and in which joint disorders are, depending on equestrian discipline,
invariably ranking first or second (after tendon injuries) as cause of lameness, and thus of disability
to perform (2). Given the increasing burden joint diseases have on our society, new insights in joint
biology and disease in both species can facilitate the development of novel therapies.

With respect to joint homeostasis, synovial joints can be envisaged as complex organs in which
the articular tissues act as an entity: synovial membrane and cartilage stay in close contact via
the synovial fluid (SF). Together, these tissues maintain the joint in a healthy steady state in
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physiologic conditions (3). As a consequence, imbalance in one
of the tissues, due to trauma,infection or inflammation, will
ultimately have impact on the entire joint (4, 5). Communication
between tissues is of great importance to adequately stabilize
these impaired conditions. Responses to undesirable situations
are known to comprise production of catabolic cytokines,
enzymes and inflammatory mediators (6), and it has been
postulated that extracellular vesicles (EVs) can play a role as
intercellular communication vehicle for these mediators and
other biological signals in regulating immunologic processes
to maintain joint homeostasis. In addition to a role during
episodes of disease, EVs might also take part in the regulation
of healthy joint homeostasis. There is thus an urgent need for
comprehensive research of local and systemic EVs in healthy, as
well as diseased joints before EV-based therapies, which could
potentially assist in the resolution of inflammatory joint diseases
and support repair of articular tissues, can be designed. We
here outline the insights gained by recent research and the
opportunities that lay ahead of us.

EVS: COMPLEX AND MULTI-FACETTED
PARTICLES

Extracellular vesicles are small, lipid-bilayer enclosed,
cell-derived particles, specialized to facilitate cell-cell
communication (7, 8). Their membrane contains proteins
and lipids that mediate adherence to target cells, upon which
active interaction takes place by several routes (Figure 1).
In addition, soluble factors in the microenvironment
of EVs can bind to their membrane and use EVs as
shuttle vehicles for directed transport toward target cells
(9, 10).

The major biogenesis routes of EVs follow generally one
of two pathways (Figure 1): intraluminal vesicles (ILVs) can
be produced within endosomes of the donor cells, resulting
in multivesicular bodies (MVB). After subsequent fusion of
MVBs with the plasma membrane, ILVs are released in the
environment and are called “exosomes.” Alternatively, EVs
originate directly from budding from the plasma membrane,
referred to as “microvesicles” (7, 11). Often, the terms exosomes
and microvesicles are used as equivalents for small and larger
vesicles, respectively, but this classification is incorrect. Although
exosomes are indeed generally smaller (as there is a limiting size
for endosomal formation) andmicrovesicles are often detected as
larger particles, both exosomes (∼30–200 nm) and microvesicles
(∼50 nm−1µm) can either be very small or relatively large
(8). Vesicles shedding from apoptotic cells, including apoptotic
bodies, are even more heterogeneous with diameters up to 5µm.

The unique configuration of biologically active signaling
molecules packaged into one small vesicle makes EVs highly
efficient in bringing complex signals across (12, 13). Their lipid
bilayer protects proteins and nucleic acids from the degradative
extravesicular environment (i.e., the extracellular space), making
stable transfer of proteins, rRNA, tRNA, miRNA, lncRNA, and
(mitochondrial) DNA possible, over short and longer distances
(14, 15). Also, specialized enzymes can be carried by EVs, which

hence provide a tool to activate precursor molecules in the EV or
in the recipient cell (13).

Extracellular vesicles typically have specific protein and lipid
signatures of the cells of origin (16). In general, the EVmembrane
is composed of a bilayer of phospholipids, interspersed
with glyco(sphingo)lipids, cholesterol, sphingomyelin,
prostaglandins, integrins, tetraspanins, cell adhesion molecules
and growth factor receptors (10, 15, 17). These molecules
facilitate adhesion and/or fusion with recipient cells and may
serve in ligand-receptor signaling. The EV membrane can also
contain membrane transport proteins (e.g., sodium-dependent
inorganic phosphate transporters) (18) and ion channels
(e.g., annexins function as Ca2+ channels in matrix vesicles)
(19). These characteristics enable EVs to act as sites of active
processing of (signaling) molecules, in addition to being shuttling
vehicles for passive transport of biologically active factors.

All cell types tested up to date can produce EVs. Production
and release are tightly regulated processes which may vary
between physiological and pathologic conditions (10, 20). In
addition, the stimulation of cells by external stimuli can
drastically change the EV-production rate and EV content or
composition (21, 22). The pool of EVs found in biological fluids
represents vesicles from the various cell types which are in direct
contact with the fluid, or from infiltrating pathogens that also
shed EVs (23, 24). In some cases, EVs can even cross epithelial
and endothelial barriers, such as the blood brain barrier (25).
Thus, the EV pool in body fluids reflects the systemic activity
of the body as a whole or of specific organs and can be used as
a monitoring tool (“liquid biopsy”) for active disease processes
(26–28).

CARTILAGE MATRIX VESICLES: THE
ANCESTORS OF EV RESEARCH

The discovery of matrix vesicles is historically important for the
general recognition that cell-derived vesicles may be functional,
instead of only representing cell debris. Matrix vesicles, for
the first time described in independent parallel research by
Bonucci and Anderson in 1967 (29–31) are a specialized
type of EVs with diameters of 30–500 nm, known for their
function in endochondral ossification, the process during which
fetal growth cartilage is converted into bone. This process
takes place in the hypertrophic zone of the epiphyseal growth
plates and in the ossification front under the articular surface.
Here, matrix vesicles are formed by budding from the plasma
membrane of maturing chondrocytes and osteoblasts. These
vesicles subsequently collect calcium and phosphorus in their
lumina and increase the concentration of phosphate through the
action of alkaline phosphatase, which facilitates mineralization of
the tissue (32, 33) (Figure 2). Very uniquely, this process takes
place in a polarized fashion: vesicles pinch off from the lateral side
of growth plate chondrocytes and from the osteoid-facing surface
of osteoblasts, in the longitudinal direction of the bone (30, 36).

The cues for the very precisely timed matrix vesicle biogenesis
during endochondral ossification have not yet been completely
elucidated, but an increase in intracellular Ca2+ concentration
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FIGURE 1 | Major routes of EV biogenesis and communication with the target cell.

has been shown to induce matrix vesicle production in growth
plate-derived chondrocytes in vitro (41). Furthermore, matrix
vesicle production has been suggested to be the result of a
specific form of programmed cell death by which hypertrophic
chondrocytes are cleared from the growth plate and replaced by
osteoblasts, leading to events of vesiculation (42).

Dysregulation of this matrix vesicle induced calcification of
tissue is a feature of several joint diseases (43). In OA for example,
prematurely differentiated chondrocytes are thought to release
increased amounts of alkaline phosphatase and BMP-loaded
matrix vesicles into the ECM, which may stimulate formation
of osteosclerosis in the subchondral bone and osteophyte
formation (33).

In addition to bone matrix vesicles, it is highly likely
that other EV types play a role in the development of the
musculoskeletal system, although direct evidence is lacking
thus far. Skeletogenesis and synovial joint formation are highly
orchestrated processes regulated by at least two important
signaling pathways, Wnt and Hedgehog (44). These pathways
steer chondrogenesis, osteoblast development and angiogenesis
in concert with other regulatory factors that are expressed in
the developing cartilage and perichondrium, such as BMPs,
fibroblast growth factors (FGFs), TGFβ, and VEGF (45–47).
These factors also have a role in homeostasis of the mature joint
and all of them have been related to EVs, or found to be involved
in (the regulation of) EV production and function (48, 49). It is,
for example, known for Wnt signaling molecules that these are
expressed on EVs derived from both Drosophila and human cells
(50), indicating an evolutionary conserved process. The same
holds true for Notch signaling. Notch modulates endochondral
ossification (51), is required for articular cartilage and joint
maintenance (52), and has been reported inmultiple studies to be

regulated in an EV-dependent manner (53, 54). The investigation
of the role of these EVs during joint development is hence a
new interesting avenue for joint biology research with potential
benefits for regenerative medicine of the joint.

EVS: REGULATORS IN INFLAMMATORY
JOINT DISEASE?

So far, the knowledge about SF-derived EVs and their role in
articular (patho)physiology is limited to a number of descriptive
investigations that have revealed the presence of EVs in SF
and a small number of elegant studies pointing out specific
characteristics of EVs in human joint disease (55–72).

Joint diseases are in most cases associated with (chronic)
inflammation (73). In addition to the high concentrations of
cytokines, chemokines, catabolic enzymes and inflammatory
mediators that can be measured in the SF (74), also EVs are
present in substantial amounts in SF of patients with RA and
OA (55, 56, 63, 75, 76). So far, in these samples EVs have been
detected that originated from synovial fibroblasts (77), platelets
(60), erythrocytes (55), neutrophils (64), monocytes and T-cells
(63, 78). Apart from being produced by activated synoviocytes
or by infiltrating immune cells, which are a hallmark of joint
inflammation, EVs in SF can be derived from blood plasma of
which SF is an ultra-filtrate. Finally, chondrocytes could also be
a possible EV source, but chondrocyte-derived EVs have as far as
we know not been detected in SF.

Although the exact mode of action of EVs in inflammatory
joint diseases still has to be elucidated, several general
mechanisms that are related to inflammation have been suggested
(79, 80). These include the recognition of pathogen-derived
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FIGURE 2 | Matrix vesicles start cartilage calcification during endochondral ossification. Vesicles originating from maturing (hypertrophic) chondrocytes and

osteoblasts accumulate calcium and phosphate ions in their lumen for the formation of hydroxyapatite (HA) crystals. Deposition of HA crystals in the extracellular

matrix (ECM), together with calcification promoting proteins, leads to complete transformation of cartilage into bone. It is hypothesized that other factors found in

matrix vesicles, such as BMPs, VEGF, and MMPs, could be involved in chondrocyte and osteoblast differentiation, neovascularisation and ECM degradation,

respectively (34, 35). The electrophoretic profile of matrix vesicles is characterized by mineralisation promoting enzymes (TNAP, ATPases, etc.) that hydrolyze

adenosine triphosphate (ATP) and nucleoside triphosphate (NTP) into inorganic pyrophosphate (PPi ) and PPi into inorganic phosphate (Pi), thereby increasing

concentrations of Pi and decreasing concentrations of PPi in the vesicle lumen and its surrounding matrix (36, 37). Keeping PPi concentrations low at sites of active

mineralisation is critical, since PPi is the most important physiologic suppressor of hydroxyapatite crystal deposition (38). To further increase the pool of Pi in the

vesicle lumen, the enzyme PHOSPHO1 is suggested to hydrolyse luminal phosphoethanolamine and phosphocholine (derived from membrane phospholipids) in order

to produce Pi (37, 39, 40). Active phosphate transporters in the vesicle membrane facilitate further influx of Pi from the ECM (18).

EVs by immune cells, EV-mediated shuttling of inflammatory
cytokines, lipid mediators, receptors and miRNA, and the ability
of EVs to carry proteolytic enzymes that cause tissue destruction
and further propagation of inflammation (8, 80–82). Also, a
role is claimed for EVs in autoimmune diseases, such as RA
(83, 84). Interestingly, whilst most studies so far have suggested
a pro-inflammatory function for SF-derived EVs, a recent study
has suggested that neutrophil-derived EVs from RA SF have
a protective phenotype (64, 85). Probably the most interesting
and urgent question at this moment is which role EVs take in
different types of joint inflammation and at different timings
during the disease process. Findings from these studies will not

only bring opportunities for using EVs as potential biomarkers

for early detection and categorization of joint inflammation, but

also guide future development of (EV-mediated) therapeutics,

targeting inflammation-inducing EV pathways or suppressing
inflammation, locally in the joint or at a systemic level.

EVS FOR ARTICULAR TISSUE
REGENERATION

Cartilage and bone destruction in joint disorders is essentially
irreversible and usually worsens progressively during the course
of the disease. The lack of repair capacity of mature articular
cartilage is notorious and has been signaled as early as the
mid-1700s by William Hunter in his famous publication on
cartilage structure and cartilage diseases (86). This problem has
not yet been solved and the quest for innovative strategies for
cartilage repair is more intense than ever, driven by societal and
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demographic stressors. An important development in this quest
is the introduction of scaffolds constructed from biomaterials
that serve as artificial matrix for the repair of (osteo)chondral
defects (87). Such scaffolds can be generated using 3-dimensional
(3D)-bioprinting technology (88, 89) and they can be seeded
with a combination of cells and growth factors of interest (90).
A comparable approach is the use of fibrin matrices containing
chondrons and mesenchymal stem cells (MSCs), which currently
shows promising results in a clinical trial of patients with cartilage
defects (91). It recently became clear that secreted EVs are
the important driving force of the bioactive capacity of these
treatments. Importantly, also the bioactivity of de-cellularized
ECM-derived constructs is associated with the presence of
residual EVs with regenerative effects, and ECM-derived EVs
are currently considered as vehicle for the functionalisation of
bioscaffolds (92).

The potential of EVs for (supporting) articular tissue
regeneration has already stimulated the development
of biodegradable EV-like microparticles (referred to as
microspheres) for controlled delivery in the joint. For example,
transforming growth factor beta-1, bone morphogenetic
protein 2 and insulin-like growth factor 1 have been
incorporated successfully into microspheres (93). Several
of these bioactive molecules have also been found as cargo
of EVs (34, 94). Hence, the use of nanovesicle-mediated
delivery is expected to be more efficient than using the
soluble form of the proteins, which are usually prone to fast
degradation after injection. In addition since several miRNAs
can support chondrogenesis and decrease inflammation,
incorporation of miRNAs into artificial vesicles is an interesting
option to assist in regenerative strategies. Currently, several
possibilities are being explored for EV-loaded scaffolds
(95–98).

MESENCHYMAL STEM CELL EVS FOR
JOINT REPAIR

Mesenchymal stem cells are seen as a promising cellular source
in cartilage tissue engineering (99). The supposed mechanism
through paracrine signaling is supported by several studies
showing that conditioned medium from MSCs alone (100, 101),
or even only the culture medium EV-fraction (102), is sufficient
to induce beneficial effects to harmed tissue or to prevent tissue
damage. This indicates that soluble biomolecules and possibly
EVs are the main effectors in the MSC-driven regeneration
cascade—not the capacity of these cells to differentiate into
several lineages, as was thought for long. In 2016 we and
others suggested the potential use of MSC-derived EVs as
an off-the-shelf autologous regenerative treatment for tissue
repair in the joint (79) and in the years that followed the first
studies on this topic have been performed and showed that
MSC-derived EVs indeed were able to promote osteochondral
regeneration in vivo (97, 103) and cartilage regeneration in
vitro (98). Recently, also the protective effect of MSC-derived
EVs against bone and cartilage degradation in OA has been
demonstrated (104).

In addition to MSCs, synovial membrane-derived cells with
similar pluripotent characteristics as MSCs can sometimes be
detected in SF or isolated from the synovial lining and their use
for treatment of cartilage defects has already shown promising
results (105–108). Also, specific chondrogenic progenitor cells
have been found in articular cartilage and are seen as a
potentially good cell source for cartilage repair (109, 110).
These cells are therefore interesting EV donors for treatment
of cartilage damage. Although their natural low abundance
in the joint may be not sufficient for endogenous repair
of cartilage defects, in vitro expansion of these cells and
collection of the EVs they produce would allow for intra-
articular administration of high concentrations of biologically
active EVs.

Finally, lasting repair of joint defects can only be successful
if the disturbed joint homeostasis is targeted in parallel.
When joint disease presents with auto-immunity or (chronic)
inflammation, immune downregulation can be achieved by using
MSC-derived EVs (104). Together with the immunotherapeutic
potential of other EV types (111) from different cellular
sources, EV-mediated restoration of joint homeostasis can be
effectuated, which is, as said, a prerequisite for durable joint
repair.

EQUINE MODEL FOR ORTHOPEDIC EV
RESEARCH

The use of animal models is under debate and efforts are made
to develop alternatives by using advanced (bio)technology and in
silicomodeling. Currently, there is consensus that animal models
are still necessary for various purposes, which includes setting up
translational studies focussing on EVs. The choice of the animal
model herein is critical. The overall role and functionality of EVs
is most likely conserved in the system biology of most mammals
or even vertebrates (112), albeit specific EV functions can be
dependent on external cues, e.g., dietary and environmental
factors (113). Larger animals are more convenient than the classic
laboratory species with regard to sample size for the recovery of
sufficient EVs and repeated harvesting is easier, but these larger
animal species come with the disadvantage that many research
tools, especially antibodies and genomic sequences, are not (yet)
available.

For orthopedic research the horse is one of the optimal
models because of the strong similarities between equine and
human joints with respect to cartilage thickness and cellular
and biochemical composition of the cartilage extracellular matrix
(114). For this reason, results from fundamental studies on EVs
in the equine joint can—with certain caution—be extrapolated to
the human situation. Since the horse is a target species in itself
with a clear clinical need for improved care for joint disorders,
also equine medicine will benefit from the results of these studies.

So far, the horse has been used for studying joint biology on
the EV level with the purpose of unraveling fundamental EV-
mediated processes (115). Possibly in the near future, the horse
can also serve as animal model for testing EV-mediated treatment
of joint disease, for example by using (inducible) synovitis as a
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model for human arthritis (116–120) or for the assessment of
repair of cartilage and bone lesions with EV-mediated therapies.

CONCLUSION

The interpretation of data from the relatively few studies
performed so far, both for the analysis of EVs from SF and
for the testing of EV-inspired drug delivery systems and EV-
mediated therapies in joint disease and articular tissue repair, is
hampered by the lack of consistent and standardized isolation
and processing protocols (79). This is now recognized within the
EV community and the International Society for Extracellular
Vesicles (ISEV), and the development of experimental guidelines
and requirements for standardized sample processing and EV
isolation has become a high priority area in EV-research. These
activities will also fuel the elucidation of the role of EVs
in articular homeostasis and pathology. From this, the step
toward potential use of EVs as biomarkers and even targeting
or modification of specific EVs for therapeutic applications
may come into reach. Given the observed anti-inflammatory
and immune modulatory activity of certain EV subsets, the

application of EVs for modulation of joint inflammation may be
the first EV-application in joint diseases. The potential use of EVs
as (decisive) stimulators of the regeneration of articular tissues in
general and of hyaline cartilage in particular seems further away,
as the roles of EVs in these processes are still elusive.
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