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ABSTRACT

RBPmotif web server (http://www.rnamotif.org) im-
plements tools to identify binding preferences of
RNA-binding proteins (RBPs). Given a set of se-
quences that are known to be bound and unbound
by the RBP of interest, RBPmotif provides two types
of analysis: (i) de novo motif finding when there is no
a priori knowledge on RBP’s binding preferences
and (ii) analysis of structure preferences when
there is a previously identified sequence motif for
the RBP. De novo motif finding is performed with
the previously published RNAcontext algorithm
that learns discriminative motif models to identify
both sequence and structure preferences. The
results of this analysis include the inferred binding
preferences of the RBP and the added predictive
value of incorporating structure preferences.
Second type of analysis investigates whether the in-
stances of the previously identified sequence motif
are enriched in a particular structure context in
bound sequences, relative to its instances in
unbound sequences. On completion, the results
page shows the comparison of structure contexts
of the motif instances between bound and
unbound sequences and an assessment of statis-
tical significance of detected preferences. In
summary, RBPmotif web server enables the concur-
rent analysis of sequence and structure preferences
of RBPs through a user-friendly interface.

INTRODUCTION

Post-transcriptional regulation is carried out by RNA-
binding proteins (RBPs) that bind to specific mRNAs to
control their splicing, transport, localization, stability and

degradation. Eukaryotic cells encode hundreds of RBPs,
but binding specificities of most RBPs remain
uncharacterized. Recently developed high-throughput ex-
perimental methods promise to rapidly expand our know-
ledge by identifying the RNA targets of several RBPs
(1–3). However, because the locations of the binding
sites within the targets are unknown and because RBPs
can recognize both sequence and RNA secondary struc-
ture elements in their binding sites, identification of RBP
binding preferences from these data requires further
analysis with computational methods.

Motif models that are originally developed for DNA-
binding proteins are commonly used to infer RBP binding
preferences from high-throughput binding data. However,
because these models consider only the sequence content
of the binding sites, they can give inaccurate results when
the RBP has a non-trivial preference for RNA secondary
structure. For example, Vts1p is a yeast RBP that prefer-
entially binds CNGG sequences located in RNA hairpin
loops (4). Detecting Vts1p’s sequence specificity can be
difficult without consideration of its structural preference
[e.g. (5)]. This observation led to the development of RBP-
specific motif models that consider RNA secondary struc-
ture. Our previously published RNAcontext algorithm (6)
is one such model that can query preferences for multiple
structure contexts in addition to the sequence preferences.
RNAcontext uses a novel representation of RNA second-
ary structure that takes into account the uncertainty in the
secondary structure that an RNA sequence can assume.
We showed that RNAcontext can infer the RBP sequence
and structure binding preferences accurately by applying it
to several experimental binding data. However, the lack of
a web server implementation of RNAcontext has limited
its use by biologists.

RBPmotif web server provides two types of analysis
depending on the current knowledge of binding prefer-
ences of the RBP. If there is no a priori knowledge on
RBP binding preferences, the user can choose to run
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RNAcontext to identify sequence and structure prefer-
ences of the RBP. The required inputs for this analysis
are the set of bound and unbound sequences, range of
lengths of the motif and parameters specifying the repre-
sentation and prediction procedure of secondary struc-
ture. As a result, the user can obtain the predicted
sequence and structure preferences and can also assess
whether the incorporation of structure preferences has
an added predictive value on held-out data. In addition,
RBPs with similar sequence preferences to the predicted
sequence motif are identified by searching existing data-
bases of RBP binding sites. If there is a previously
identified sequence motif for the RBP, the user can
choose to apply the second type of analysis to investigate
whether the RBP has an additional preference for the
structure context of this motif. In addition to the set of
input sequences and parameters for secondary structure
prediction, the IUPAC representation of the previously
identified motif is required for this analysis. As output,
comparison of the secondary structure profiles of the in-
stances of this motif between bound and unbound se-
quences is shown with a bar graph. Also, results of
Wilcoxon rank sum test are provided to show the signifi-
cance of the identified structure preference(s). We have
previously used a similar type of analysis to investigate
the structure context of LIN28 binding sites identified by
CLIP-seq (7).

RBPMOTIF WEB SERVER

We will first describe how we predict secondary structures
of input sequences, a step common in both types of
analysis. Then, we will explain each type of analysis in
detail by explaining the required inputs, implementation
details and provided results.

RNA secondary structure prediction

Recent experimental techniques to determine the second-
ary structures of RNAs have been promising; however, to
allow the applicability of RBPmotif server with any set of
RNA sequences (i.e. including mRNAs without experi-
mental secondary structure information or designed
RNA sequences), we decided to use computational algo-
rithms to predict RNA secondary structure.

A large class of RNA secondary structure prediction
methods uses empirically derived thermodynamic param-
eters to calculate the free energy of a secondary structure.
These algorithms often predict the structure with the
minimum free energy. However, as thermodynamic par-
ameters have substantial inaccuracies and an RNA
sequence can fold into multiple structures during its
lifetime, the predicted minimum free energy structure
may not be representative of the typical interactions
occurring in the structure. As such, a number of
methods have considered the distribution of possible
structures that an RNA sequence can form. For
instance, Sfold (8), the structure prediction method that
we used in the original RNAcontext article, draws a rep-
resentative sample of structures from the Boltzmann
ensemble of secondary structures. The secondary

structures in this sample are then parsed to calculate, for
each position, the distribution over structural contexts
such as being paired, being in a hairpin loop, etc.
RNAplfold (9) is another ensemble-based method that
computes base pair probabilities directly from the
Boltzmann equilibrium distribution of all possible struc-
tures, rather than a set of structures sampled from this
distribution. RNAplfold differs from Sfold also by its
local folding strategy where only base pairs within a
certain window are considered possible. In this method,
mean base pair probabilities are calculated by averaging
over all windows that contain the pair. RNAplfold’s local
folding approach has been shown to produce more
accurate results for mRNA sequences when compared
with the global approach (i.e. folding the entire mRNA
sequence at once, as in Sfold) (10). Also, RNAplfold’s
running time is much shorter than the global folding
approaches, as the number of possible structures increases
exponentially with the length of the mRNA. To enable the
analysis of long mRNA sequences on RBPmotif server, we
chose to use RNAplfold to predict RNA secondary struc-
tures. We modified the original source code of RNAplfold
to obtain separate probabilities for each position of a
sequence to be in a hairpin loop (H), external loop (E),
internal loop (I), multiloop (M) or to be paired (P).
Figure 1 illustrates how multiple possible structures of
an RNA sequence are taken into account to calculate
these probabilities. In this toy example, we assume that
the RNA sequence can fold into five possible structures
with equal free energies. Probability of a base at a specific
position to be in a particular structural context, such as
being in paired region, is calculated as the proportion of
times that base appears in that structural context.

De novo motif discovery with RNAcontext

This part of the web server implements the RNAcontext
algorithm for de novo discovery of binding preferences
when there is no a priori knowledge on the binding pref-
erences of the RBP of interest. RNAcontext infers the
sequence and structure preferences of RBPs by
maximizing the agreement between provided input labels
(i.e. bound or unbound) and RNAcontext predicted
scores.

Inputs and analysis
The user is required to provide the following inputs:

. two sets of sequences: (i) a set of sequences that are
likely to contain binding sites (i.e. bound sequences)
and (ii) a set of sequences that are unlikely to contain
binding sites (i.e. unbound sequences). These sequences
can be input by either pasting them to text boxes or by
uploading as FASTA files.

. range of lengths of the binding site (allowed range is
4–12 nts)

. type of the secondary structure representation (allowed
options are PU, PLE, PHTE and PHIME)

. RNAplfold parameters to specify the prediction of
RNA secondary structure
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In addition to the set of bound and unbound sequences,
users are required to provide the range of lengths of the
hypothesized binding site. The length of the motif can
range between 4 and 12 nts. Remaining inputs are related
to the prediction of secondary structure. Users can choose
between four different types of secondary structure repre-
sentation: PU, PLE, PHTE and PHIME. If the ‘PU’
option is selected as the type of the secondary structure
representation, the resulting profile matrix consists of two
values for each position: the probabilities of the base to be
paired and to be unpaired. ‘PLE’ option considers three
structural contexts: paired (P), the union of hairpin,
internal and multiloops (L) and external loop (E).
‘PHTE’ option considers four structural contexts: paired
(P), hairpin loop (H), internal and multiloop (T) and
external loop (E). If the ‘PHIME’ option is selected
instead, the resulting profile matrix consists of five
values for each position: the probabilities of the base to
be paired (P), to be in a hairpin loop (H), in an internal
loop (I), in a multiloop (M) and in an external region (E).
We compute the secondary structure profiles of the

input sequences with RNAplfold program. Users can
choose between local and global folding techniques.
When local folding is chosen, users have to provide two
additional arguments of RNAplfold: the length of the
local windows (-W) and the length of the maximum base
pair span (-L). When global folding is chosen, we assign -
W and -L parameters equal to the length of the sequence.
Lastly, RNAplfold’s -u option is fixed to 1 so that
probabilities of occurrence in structural contexts are
determined for each position.
Once the prediction of secondary structures is

completed, the set of bound and unbound sequences
together with their associated secondary structure
profiles are input to the RNAcontext algorithm to
search for motifs of specified range of lengths. The

discriminative learning strategy of RNAcontext searches
for motifs that are enriched in bound sequences in com-
parison with unbound sequences. To do this, each k-mer
(i.e. subsequence of length k) of the sequence is scored
with the model parameters, and these k-mer scores are
combined to obtain the score of the entire sequence. The
noisy-or function that we used to combine k-mer scores in
the original RNAcontext article saturates for long RNA
sequences. To avoid this problem, here, we switch to
summing the k-mer scores to calculate the score of the
entire sequence. To optimize RNAcontext parameters,
we use the L-BFGS-B package (11) with three random
initializations. The model that gives the minimum
training error is displayed on the results page.

Once RNAcontext results are ready, we query the pre-
dicted sequence motif to identify similar motifs in RBPDB
database (12) and RNAcompete compendium (Ray et al.
2013, Nature, in press) using the TomTom tool with
Pearson distance metric (13). RBPs that have similar
sequence preferences are displayed together with the
associated TomTom P-values and links to the correspond-
ing entries in the original database.

Outputs
Figure 2 shows an example results page where we input
two sets of sequences (500 sequences in each set) that are
known to be bound and unbound by Vts1p (1). The
sequence parameters inferred by RNAcontext correspond
to free energy values. These energy values are converted
into probabilities using the Boltzmann distribution, and
the resulting Position Frequency Matrix (PFM) is dis-
played as a motif logo [generated by EnoLOGOS
software (14)]. The PFM that is used to plot this
logo can be downloaded when the image is clicked
(Figure 2a). The secondary structure parameters are dis-
played as a bar graph where y-axis shows the relative
affinities to different structural contexts (Figure 2b).

Figure 1. Calculation of secondary structure profiles. In this toy example, the RNA sequence is assumed to fold into five equally probable secondary
structures. These structures can be represented by annotating each base according to the secondary structure element (e.g. paired, hairpin loop) that
it participates in. The distribution of annotation for each base can then be calculated by recording the proportion of times that the base appears in
the particular structure context. An example calculation is shown for bases in positions 14–17.
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(a)

(c)

(d)

(b)

Figure 2. Result page of the first type of analysis that involves de novo motif finding with RNAcontext. (a) Inferred sequence preferences are
converted into a PFM and plotted as a motif logos using EnoLOGOS (14). (b) Structure parameters are scaled so that the most preferred context
gets a value of 1. Resulting relative structure preferences are shown as a bar graph. (c) To assess the added predictive value of inferred structure
preferences, the AU-ROCs of the full RNAcontext model and a simpler version of it that only includes the sequence preferences on held-out data are
compared for each cross-validation run. AU-ROCs and their associated P-values are displayed as a table. (d) The top 5 RBPs with most similar
binding motifs [identified with TomTom (13)] to the predicted sequence motif (shown in a) are displayed as a table. The columns of this table show
the name of the RBP, name of the gene, P-value, q-value, local id and link to the original database entry, respectively.
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To asses whether the inferred structure preferences have
an added predictive value over the sequence preferences,
we use 5-fold cross-validation. We train RNAcontext
models on four folds and score the sequences in the
other fold in two ways: using the full RNAcontext
model or using a simpler model that does not include
the structure parameters. We calculate the area under
the receiver-operator characteristic curve (AU-ROC) to
evaluate the predictions, and compare average AU-ROC
values between the two models for each of the cross-val-
idation runs (Figure 2c). The table shown in Figure 2c also
includes P-values showing the significance of AU-ROCs
[P-value calculation is based on (15)]. The motifs dis-
played on the results page are learned from the whole
input data, and not a subset of it.
Lastly, RBPs that are found to have similar sequence

preferences are displayed in a table (Figure 2d). This table
shows the name of the RBP, name of the gene, P-value
and q-value calculated by TomTom and link to the cor-
responding entry in the original database.

Analyzing the secondary structure context of a previously
identified motif

This analysis is applicable when the sequence specificity of
the RBP of interest is already known. Given a set of
bound and unbound sequences, RBP’s structure prefer-
ences can be queried by comparing the secondary struc-
ture profiles of the instances of the motif between bound
and unbound sequences.

Inputs and analysis
The user is required to provide the following inputs:

. a set of bound and unbound sequences, as explained in
the previous section

. type of the secondary structure representation (allowed
options are PU, PLE, PHTE and PHIME)

. RNAplfold parameters to specify the prediction of
RNA secondary structure

. IUPAC representation of the previously identified
sequence motif

The secondary structure profiles of the input sequences
are computed with RNAplfold, as described in the
previous section. The occurrences of the input motif are
found by scanning the bound and unbound sequences
with the IUPAC motif. The structure profiles of instances
in bound and unbound sequences are represented as two
matrices, where rows correspond to motif instances and
columns correspond to structural contexts. An entry of the
profile matrix shows the average probability of the motif
to appear in a particular structural context. This value is
calculated by taking the average of single nucleotide
probabilities across the positions of the motif. Pairs of
columns from the two profile matrices are compared
using Wilcoxon’s rank sum test (two-sided) with
Bonferroni multiple testing correction. In other words, if
the RBP has a preference for a particular structure
context, the distribution of probabilities for that structure
context among the motif instances should be different
between bound and unbound sets.

Outputs
Figure 3 shows an example results page where the bound
and unbound sequences that we previously prepared for
Vts1p are scanned with the motif CUGG. For each struc-
tural context, average profile value across the motif in-
stances (across the rows of the profile matrix) is
calculated. These values together with the standard error
of the mean are displayed with a bar graph. The data used
to plot the bar graph can be downloaded when the figure is
clicked (Figure 3a). Additionally, the results of Wilcoxon’s
rank sum test are displayed as a table where the statistic-
ally significant differences are shown (Figure 3b).

Implementation

The server is implemented in HTML, PHP, Javascript,
Python and R. The web service is run on a Red Hat
Enterprise Linux 6 with 4� AMD Opteron 6164HE
1.7GHz 12 core processor and 64 GB memory. To
provide results in a reasonable amount of time, we apply
a set of limits on the number and length of input se-
quences. These limits are summarized on the main page.
The source code for RNAcontext is also available to
download from the help page of RBPmotif web server.

OTHER PROGRAMS FOR IDENTIFYING THE
BINDING PREFERENCES OF RBPS

Other methods to identify RBP binding preferences
include MEMERIS (16), StructRED (17), CMfinder
(18), RNApromo (19), PARalyzer (20) and Aptamotif
(21). MEMERIS extends the popular DNA motif-
finding algorithm MEME (22) by preferentially searching
for single-stranded regions. MEMERIS performs much
better than MEME when predicting the binding sites of
a number of RBPs. However, MEMERIS lacks a web
server and can only assess a single pre-defined structural
context. StructRED extends the MatrixREDUCE (23) al-
gorithm to identify stem-loop motifs that explain post-
transcriptional events. StructRED lacks a web server im-
plementation and only searches for stem-loop motifs.

Another class of methods that can learn RNAmotifs has
originated from covariance models (CMs) (24). The applic-
ability of these methods for inferring RBP binding prefer-
ences is disputable. For example, CMfinder, also
implemented as a web server, is one such model that had
promising results in discovering RNA motifs from families
of noncoding RNAs. CMfinder preferentially searches for
motifs represented as secondary structures and cannot rep-
resent the preference of RBPs that bind unpaired, single-
stranded RNA, as many RBPs do. Also, the minimum
allowed length for a motif is much longer than the typical
length of RBP binding sites. Therefore, CMfinder is not
suitable for discovering short motifs in a set of long un-
aligned RNA sequences. RNApromo (available as a web
server) is another CM-based method designed to discover
local RNA motifs. Like CMfinder, RNApromo is unable
to detect a preference for binding unpaired RNA.
Aptamotif finds sequence-structure motifs in SELEX
(Systematic Evolution of Ligands by EXponential
Enrichment)-derived aptamers by adapting the iterative
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learning procedure of CMs. PARalyzer, not available as a
web server, uses a kernel density estimate classifier to
identify RBP–RNA interactions sites in photoactivatable-
ribonucleoside-enhanced crosslinking and immunopre-
cipitation (PAR-CLIP) (25) data. The interactions sites
determined by PARalyzer are further analyzed with a
motif-finding algorithm that ignores RNA secondary
structure.

CONCLUSION

Most studies investigating the binding preferences of
RBPs have ignored the secondary structure preferences
of RBPs owing to lack of computational tools.

RBPmotif fills this gap by providing user-friendly tools
to infer binding preferences of RBPs. Users can either
run the de novo motif discovery algorithm RNAcontext
to identify sequence and structure preferences of the
RBP or, as an alternative, they can analyze the structure
context of a previously identified sequence motif (when
available) to investigate RBP’s structure preferences.
RBPmotif uses a representation of secondary structure
that can detect preferences to multiple structure
contexts. Also, the provided results include an assess-
ment of the added predictive value of inferred structure
preferences. We think that RBPmotif will be a useful
tool for researchers investigating RBP binding
specificities.
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Figure 3. Result page of the second type of analysis. (a)The bar graph compares the mean profile values of motif instances between bound and
unbound sequences. The standard errors of the mean are also shown as error bars. (b) The table shows the results of Wilcoxon’s rank sum test to
compare the distribution of structure profiles of motif instances among bound and unbound sequences. The significance threshold for P-values is 0.05
after Bonferroni multiple testing correction.
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