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Key hepatic signatures of
human and mouse nonalcoholic
steatohepatitis: A
transcriptome–proteome
data meta-analysis
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Gangneung, South Korea, 2Division of Bio-Medical Science & Technology, KIST School, Korea
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Background: Despite the global prevalence of nonalcoholic fatty liver disease

(NAFLD), its pathophysiology remains unclear. In this study, we established

highly confident nonalcoholic steatohepatitis (NASH) gene signatures and

evaluated the pathological mechanisms underlying NASH through a

systematic meta-analysis of transcriptome and proteome datasets obtained

from NASH patients and mouse models.

Methods:We analyzed NASH transcriptome datasets from 539 patients and 99

mice. A whole-liver tissue proteome dataset was used to confirm the protein

level dysregulation of NASH signatures significant in both humans and mice.

Results: In total, 254 human and 1,917 mouse NASH gene signatures were

established. Up-regulated genes of 254 human signatures were associated

with inflammation, steatosis, apoptosis, and extracellular matrix organization,

whereas down-regulated genes were associated with response to metal ions

and lipid and amino acid metabolism. When different mouse models were

compared against humans, models with high fat and high fructose diet most

closely resembled the genetic features of human NAFLD. Cross-species

analysis revealed 66 genes that were concordantly dysregulated between

human and mouse NASH. Among these, 14 genes were further validated to

be dysregulated at the protein level. The resulting 14 genes included some of

the well-established NASH associated genes and a promising NASH drug

target. Functional enrichment analysis revealed that dysregulation of amino

acid metabolism was the most significant hepatic perturbation in both human

and mouse NASH.

Conclusions:We established themost comprehensive hepatic gene signatures

for NASH in humans and mice to date. To the best of our knowledge, this is the
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first study to collectively analyze the common signatures between human and

mouse NASH on a transcriptome–proteome scale.
KEYWORDS

nonalcoholic fatty liver disease, nonalcoholic steatohepatitis, transcriptomics,
proteomics, cross-species analysis
Introduction

Nonalcoholic fatty liver disease (NAFLD), defined by the

presence of abnormal liver fat (steatosis in ≥ 5% of hepatocytes)

in the absence of secondary causes of fatty liver, is the most

common form of chronic liver disease worldwide (1). NAFLD

encompasses a spectrum of conditions, from the simple

nonalcoholic fatty liver (NAFL) to the more severe nonalcoholic

steatohepatitis (NASH), which is hallmarked by inflammation

and hepatocyte ballooning (1). The global prevalence of NAFLD is

rapidly increasing, concurrent to the global epidemics of obesity

and type 2 diabetes mellitus (T2DM) (2). It is estimated that 25%

and 5% of the general population have NAFLD and NASH,

respectively (2). Due to the high propensity of NASH to further

develop into cirrhosis and hepatocellular carcinoma (HCC),

NASH is becoming the leading cause of liver transplantation,

but approved therapies have not yet been developed (3).

The pathogenesis of NASH is a complex multi-etiological

process associated with genetic, epigenetic, metabolic, and

environmental factors (4). Two gene variants, patatin-like

phospholipase domain-containing protein 3 (PNPLA3) and

transmembrane 6 superfamily member 2 (TM6SF2), have been

validated to be strongly associated with NASH (4). Obesity and

insulin resistance are key pathogenic factors in NAFLD, and

T2DM is a well-established risk factor for the rapid progression

of NAFL to NASH, cirrhosis, or HCC (5). Recent studies revealed

an inverse correlation between diet quality and NAFLD

prevalence (6), and regular consumption of fructose promoted

hepatic de novo lipogenesis in a double-blind, randomized clinical

trial (7). Despite many efforts to understand the disease, the

complete pathophysiology of NASH remains unclear. Current

options for managing NAFLD include bariatric surgery or lifestyle

modification, such as exercise or diet control (1). These methods

have proven to be effective in resolving NASH or even mild

fibrosis, but are only applicable to a limited number of patients (1).

Thus, additional studies are urgently needed to understand the

pathogenesis of NASH for successful identification of therapeutic

NASH targets and the development of corresponding drugs.

Animal models, particularly those used to study human

diseases, offer valuable opportunities to researchers to

experimentally investigate the pathophysiology of diseases via
02
genetic or dietary interventions. NASH is regarded as a

metabolic syndrome, and various mouse diet models have been

developed to mimic human NASH. Although mouse models

cannot represent the full spectrum of human NASH due to the

genetic differences between the species, consistent dysregulation

patterns of orthologous genes or proteins across the species could

offer valuable insights into the disease pathogenesis. High-

throughput technologies, such as transcriptomics and

proteomics, are invaluable tools for providing a holistic view of

biological systems. Transcriptomics, with its high-resolution and

genome-wide capacity, has enabled researchers to query global

gene expression patterns and infer protein abundances from

mRNA abundances. Liquid chromatography-tandem mass

spectrometry-based proteomics can be used to directly measure

the abundance of proteins and identify post-translational

modifications. Combining these two approaches can better

depict biological dysregulations within cells or tissues (8).

Although several previous studies have individually reported

transcriptomic or proteomic changes in NASH, none of them

have collectively analyzed the common signatures between human

and mouse NASH on a transcriptome–proteome scale.

Therefore, in this study, we established comprehensive gene

signatures of human and mouse NASH and profiled significantly

aberrant genes to better understand the pathological mechanisms

underlying NASH. To this end, we performed a systematic meta-

analysis of publicly available transcriptome and proteome datasets

from liver tissues of patients with NASH and mouse models.
Methods

This meta-analysis was performed according to the PRISMA

(Preferred Reporting Items for Systematic Reviews and Meta-

Analyses) guidelines (9). A detailed checklist is provided in the

Supplementary Materials.
Data sources and search strategies

A systematic dataset search was conducted up to March

2021. To obtain transcriptome study datasets, publicly available
frontiersin.org

https://doi.org/10.3389/fendo.2022.934847
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Pyo and Choi 10.3389/fendo.2022.934847
databases ArrayExpress (https://www.ebi.ac.uk/arrayexpress)

and Gene Expression Omnibus (GEO) (https://www.ncbi.nlm.

nih.gov/geo) were utilized. The following keywords were used to

search human NASH transcriptome datasets: “Homo sapiens,”

“RNA assay,” “Expression profiling,” “Nonalcoholic fatty liver

disease,” “Nonalcoholic steatohepatitis,” “NAFLD,” and

“NASH.” After removing duplicates, 9 datasets from

ArrayExpress and 78 datasets from GEO were identified. Two

additional datasets were identified through a reference search.

When searching mouse NASH model datasets, the following

keywords were used: “Mus musculus,” “RNA assay,”

“Expression profiling,” “Nonalcoholic fatty liver disease,”

“Nonalcoholic steatohepatitis,” “NAFLD,” and “NASH.” After

removing duplicates, 7 datasets from ArrayExpress and 187

datasets from GEO were identified.

Proteome study datasets were searched using the publicly

avai lab le ProteomeXchange database (ht tp : / /www.

proteomexchange.org). The keywords “NAFLD” or “NASH”

were first used to search the datasets, and the results were

subsequently filtered according to species. After removing

duplicates, 8 human datasets and 10 mouse model datasets

were identified.
Dataset selection process and
eligibility criteria

After systematic dataset identification, the datasets were

further screened and excluded according to the following

criteria. For human NASH studies, datasets were excluded

when they corresponded to: (a) in vitro/cell line studies; (b)

ambiguous disease classification; (c) studies involving other liver

diseases (such as hepatitis, cirrhosis or HCC); (d) unavailability

of raw data; (e) unclear sample annotation; and (f) total sample
Frontiers in Endocrinology 03
size ≤ 15. For the NASH mouse model studies, datasets were

excluded when they corresponded to: (a) genetically intervened

mouse studies; (b) in vitro/cell line studies; (c) NASH irrelevant

model studies; (e) unavailability of raw data; (f) studies with

mouse strains other than C57BL/6; and (g) single-cell

transcriptome studies (Figure 1).

For human NASH proteome studies, datasets were excluded

when they corresponded to: (a) in vitro/cell line studies; (b)

studies with samples other than liver tissue (e.g., plasma); and (c)

enriched peptide studies. NASH mouse model proteome study

datasets were excluded when they corresponded to: (a)

genetically intervened mouse studies; (b) in vitro/cell line

studies; (c) studies with samples other than liver tissue; and

(d) enriched peptide studies (Supplementary Figure 1).
Transcriptome dataset processing

Nine human (GSE33814 (10), GSE37031 (11), GSE48452

(12), GSE49541 (13), GSE61260 (14), GSE63067 (15), GSE66676

(16), GSE126848 (17), E-MEXP-3291 (18)) and 10 murine

(GSE35961 (19), GSE43106 (20), GSE52748 (21), GSE93819

(22), GSE94593 (23), GSE119340 (24), GSE120977 (25),

GSE137449 (26), GSE145665 (27), GSE148849 (28))

transcriptome datasets were subjected to further analysis. The

raw data or processed data from each study were downloaded

from the respective data repositories. The analysis platform for

each dataset was heterogeneous and consisted of microarray and

RNA sequencing data from multiple vendors. Due to the

variability of platforms and discrepancies in sample handling

or disease assessment of each study cohort, each dataset was

analyzed separately. Affymetrix microarray raw data (.CEL files)

were downloaded, and gene expression values were processed

using Affymetrix Expression Console software (Affymetrix,
FIGURE 1

Flow diagram on the selection process of human and mouse NASH transcriptome datasets.
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Santa Clara, CA, USA) with robust multiarray averaging (RMA)

or microarray analysis suite 5.0 (MAS5) normalization.

Processed Illumina BeadChip data were downloaded from

NCBI GEO and probeset intensity normalization was

performed using the ACTB and GAPDH genes as internal

controls. In most cases, RNA sequencing read counts raw data

were provided by NCBI GEO or the authors who published the

studies. Normalization of the read counts and differentially

expressed gene (DEG) selection were performed as

downstream analyses if necessary. If raw counts were not

available, RAW data were retrieved from Sequence Read

Archive and further processed using the Galaxy platform.

Detailed information on the acquisition, processing,

normalization, and analysis method for each dataset is shown

in Supplementary Table 1.

DEGs from each transcriptome dataset were individually

selected as described by Pyo et al. (29). Briefly, after

normalization of each gene expression value, the fold change

and Benjamini–Hochberg adjusted p-value were calculated

between the normal and NASH groups. Up-regulated DEGs

were determined if the fold change (NASH/Normal) was greater

than 1.7 and p-value was lower than 0.05. Down-regulated DEGs

were determined if the fold change was lower than 0.7 and p-

value was lower than 0.05. In the case of GSE49541, the normal

group cohort was not available; hence, the fold change and p-

value were determined by comparing the advanced NAFLD

group with the mild NAFLD group. Although raw data were

not available for the study published by Dali-Youcef et al. (30), a

complete list of up-regulated and down-regulated DEGs was

available in the manuscript. The DEGs were extracted and used

for further analysis, affording a total of 10 human NASH

transcriptome datasets that were used in this study.
Proteome dataset processing

Raw data (.RAW files) of the NASH mouse model liver

proteome study PXD013423 (31) were downloaded from

ProteomeXchange. Proteome Discoverer 2.3 (Thermo Fisher

Scientific, Hanover Park, IL, USA) was used for the precursor

quantification and label-free quantitative analyses. The UniProt

mouse proteome reference (https://www.uniprot.org, March

2021 version) was used for MS2 peptide spectral matching.

The assignment of MS2 spectra was carried out using the

SEQUEST algorithm, and peptide hits were filtered at a

maximum of 1% FDR using the Percolator algorithm.

Carbamidomethylation of cysteine was set as static

modification, whereas methionine oxidation and N-terminal

acetylation were set as dynamic modifications. Full trypsin

specificity with up to two missed cleavage sites was applied.

Mass tolerance for precursor and fragment ions were set at 10

ppm and 0.02 Da, respectively.
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Differentially expressed proteins (DEPs) were determined

using the SEQUEST search parameters. Valid up-regulated

DEPs were determined when SEQUEST HT score ≥ 30,

protein coverage ≥ 20, and protein abundance of NASH/

control ≥ 1.7. Down-regulated DEPs were determined when

SEQUEST HT score ≥ 30, protein coverage ≥ 20, and protein

abundance of NASH/control ≤ 0.7.
Establishing key common human and
mouse hepatic NASH signatures

First, the selected up-regulated and down-regulated DEGs

from the 10 human NASH datasets were merged based on the

gene symbols. In this process, DEGs showing different

dysregulation pattern between studies were excluded. Then,

the frequency score (how many times a certain gene was listed

as a DEG among the 10 datasets) of each DEG was calculated.

Only the DEGs with frequency ≥ 3 constituted the human

NASH signature (described in Section 2.6). Next, to compare

the human NASH signature with that of mice, dysregulated

DEGs from 10 NASH mouse model datasets were merged as

described for the human datasets, and the frequency of each

DEG was calculated. DEGs with a frequency ≥ 4 comprised the

mouse NASH signature. Finally, NASH signatures of both

humans and mice were integrated using BioMart orthologous

gene annotation. Genes showing a consistent dysregulation

pattern between the two species constituted a common hepatic

NASH signature. To validate the NASH signatures at the protein

level, the UniProt accession numbers of selected DEPs from

PXD013423 were converted into gene symbols, and both profiles

were combined. The final common NASH signature comprised

the DEG frequency from human and mouse transcriptome

datasets and fold change values from a mouse proteome

dataset (Supplementary Data).
Degree of confidence of DEGs in
multiple transcriptome dataset
meta-analysis

The selection of DEGs from individual transcriptome

datasets involved a fold change cutoff and statistical

significance validation. Nevertheless, DEG lists from different

cohorts of the same disease showed significant discrepancies.

This may be due to heterogeneous patient groups (e.g.,

ethnicity), variability in disease diagnosis, assay platform

differences, technical bias, instrumental error, or inherent

limitations in statistical assumptions. Such problems can be

partly overcome by identifying consistent gene dysregulation

patterns across multiple independent cohort studies.

Furthermore, when analyzing multiple datasets, the DEG
frontiersin.org
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frequency score can be added as statistical dimension to evaluate

the confidence of the DEGs.

The previous transcriptome datasets of humans and mice

were used to evaluate the degree of confidence of the DEGs.

However, rather than selecting DEGs based on their fold changes

and p-values in individual datasets, genes were randomly selected

(number of DEGs and randomly selected genes (RSGs) was

matched for each dataset). Subsequently, RSGs were merged

based on the gene symbols, and the frequency score of each

gene was calculated. This process was bootstrapped 1,000 times,

and the results were recorded each time. Finally, the median value

of 1,000 times bootstrap resampling was calculated.

(Supplementary Figure 2). The degree of confidence of DEGs

per frequency score was calculated using the following formula:

Degree of Confidence = 100 −
Number of RSGs=Number of total RSGs
Number of DEGs=Number of total DEGs

� 100

DEGs with a degree of confidence ≤ 50 were classified as

“Not significant,” confidence between 100 and 50 were classified

as “Fair confident,” and confidence of 100 were classified as

“High confident” DEGs.
Gene Ontology biological process
enrichment analyses

Gene Ontology (GO) biological process (BP) enrichment

analysis was performed as described by Pyo et al. (28). Enriched

GO BP for corresponding DEGs was determined by comparing

the frequency of genes annotated by GO BP terms in a group of

DEGs with those in the entire set of genes in the human

reference list. The GO annotation files were downloaded from

the Gene Ontology Consortium webpage (http://www.

geneontology.org), and the March 2021 version of the GO BP

terms was used for the analysis. A 2 × 2 contingency table was

constructed to compare the frequency of DEGs annotated by the

GO BP terms, with the number of genes annotated by these

terms in the total 20,595 human gene reference. The 2 × 2

contingency table was analyzed for the calculation of p-values

using the X^2 test (frequency ≥ 5) or Fisher’s exact test

(frequency< 5).
Software and statistical analyses

Statistical analyses were performed using the GraphPad

Prism 8.0 software (GraphPad Software Inc., San Diego, CA,

USA). Filtration, classification, and integration of transcriptome

and proteome datasets were conducted using R software (version

4.0.3), specifically the packages included in “tidyverse”. The

transcriptome profile datasets were visualized in a heatmap

using the heatmap.2 function in “gplots” package, and the

Venn diagram was produced using the “VennDiagram”
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package. The heatmap and volcano plot for the proteome

dataset were drawn using Proteome Discoverer 2.3.
Results

Description of included datasets

Details on the selection process of human and mouse NASH

transcriptome datasets can be found in the flow diagram

(Figure 1). A total of 10 human (539 patients) and 10 mouse

model (99 mice) studies were included in this study. All the 10

human NASH datasets have been published and represent

patients of multiple ethnicities. All included participants

underwent liver biopsy, and NAFLD was diagnosed

histologically (Table 1). The 10 NASH mouse model datasets

were also previously published, used the wild-type C57BL/6

strain, and comprised multiple dietary intervention methods

including a methionine- and choline-deficient diet with high-fat

diet (MCDHFD), high-fat diet (HFD), NASH-inducing diet

(ND), high-cholesterol high-cholate high-fat diet (CLD), high-

fat high-sugar diet (HFHSD), fat fructose cholesterol diet

(FFCD), choline-deficient L-amino acid-defined high-fat diet

(CDAHFD), and fast food diet (FFD) with varying degrees of

duration. Details of the diet composition and experimental

design are summarized in Table 2.
Hepatic gene signature of human NASH

First, to establish the hepatic gene signature of human

NASH, the selected up-regulated and down-regulated DEGs

from 10 individual NASH studies were merged based on the

gene symbols. Next, 535 DEGs showing heterogeneous

dysregulation patterns between the studies were excluded.

Consequently, a total of 7,070 (2,629 up-regulated and 4,441

down-regulated) DEGs was compiled. The frequency score for

each DEG was calculated. One or two overlapping DEGs were

regarded as statistically insignificant, and only DEGs with a

frequency ≥ 3 were considered as valid, resulting in 254 human

NASH gene signatures (Figure 2A). These genes were further

divided into “Fair confident” and “High confident” gene groups

according to the degree of confidence per each frequency score.

(Supplementary Figure 2A). Accordingly, 28 genes were

identified as dysregulated in human NASH with high

confidence (Supplementary Table 2).
Functional enrichment analysis on 254
human NASH signatures

To gain a holistic view of the biological processes associated

with the 254 human NASH signatures, GO BP enrichment
frontiersin.org
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analysis was performed. As a result, 125 up-regulated genes were

significantly associated with inflammation (GO:0007155;

0050900; 0006954; 0034097), steatosis (GO:0071396),

apoptosis (GO:1903034), and extracellular matrix (ECM)

organization (GO:0030198) (Figure 2B and Supplementary

Table 3). Not surprisingly, hepatic steatosis, inflammation, and

apoptosis are the three main histological hallmarks of NASH,

and the upregulation of ECM synthesis is a sign of NASH with

fibrosis. Thus, we concluded that the up-regulated signature of

human NASH fairly represents the overall histological features

of NASH. In the analysis of the 129 down-regulated signatures,

biological processes related to cellular response to metal ions

(GO:0071280; 0071276; 0071294), l ipid metabolism

(GO:0008202; 0006629), and amino acid metabolism

(GO:0009063; 1901605) were significantly enriched (Figure 2B

and Supplementary Table 4).
Frontiers in Endocrinology 06
Comparative analysis of gene expression
profiles of different NASH mouse models

Next, to establish the hepatic gene signature of mouse NASH,

up-regulated and down-regulated DEGs from 10 mouse model

studies were merged, and the frequency of each DEG was

calculated. For the mouse datasets, DEGs with a frequency ≥ 4

were statistically significant, resulting in 1,917 mouse NASH gene

signatures (Supplementary Figure 3). These genes were divided

into “Fair confident” and “High confident” genes as well

(Supplementary Figure 2B). Since NASH model studies

consisted of multiple dietary intervention methods of varying

durations, we first compared the gene expression profiles of

different dietary model studies. As expected, we observed

considerable disparities between different NASH models

(Figure 3). Two HFD models from independent studies
TABLE 1 Study characteristics of human NASH transcriptome datasets used in this study.

Study Country Patient group Disease
assessment

Platform Data availability

Starmann et al., 2012 (10) Germany Normal 13
Steatosis 19
NASH 12

Biopsy Illumina Human WG-6 v3.0
expression beadchip

GEO GSE33814

López-Vicario et al., 2014 (11) Spain Normal 7
NASH 8

Biopsy Affymetrix Human Genome
U133
Plus 2.0 Array

GEO GSE37031

Ahrens et al., 2013 (12) Germany Normal 14
Obese 27
Steatosis 14
NASH 18

Biopsy Affymetrix Human
Gene 1.1 ST Array

GEO GSE48452

Moylan et al., 2014 (13) USA Mild NAFLD 40
Advanced NAFLD 33

Biopsy Affymetrix Human
Genome U133
Plus 2.0 Array

GEO GSE49541

Horvath et al., 2014 (14) USA Normal 38
Obese 24
NAFLD 23
NASH 24

Biopsy Affymetrix Human
Gene 1.1 ST Array

GEO GSE61260

Frades et al., 2015 (15) Sweden Normal 7
Steatosis 2
NASH 9

Biopsy Affymetrix Human
Genome U133
Plus 2.0 Array

GEO GSE63067

Xanthakos et al., 2015 (16) USA Normal 34
Steatosis 26
Borderline NASH 5
NASH 2

Biopsy Affymetrix Human
Gene 1.0 ST Array

GEO GSE66676

Suppli et al., 2019 (17) Denmark Normal 14
Obese 12
NAFLD 15
NASH 16

US,
Biopsy

Illumina NextSeq 500 GEO GSE126848

Lake et al., 2015 (18) USA Normal 19
Steatosis 10
NASH 16

Biopsy Affymetrix Human
Gene 1.0 ST Array

ArrayExpress
E-MEXP-3291

Dali-Youcef et al., 2019 (30) France Normal 10
Obese 10
Steatosis 10
NASH 8

Biopsy Agilent Human
GE 8x60K

N/A
NASH, nonalcoholic steatohepatitis; NAFLD, nonalcoholic fatty liver disease; US, ultrasonography; N/A, not available.
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(GSE43106 and GSE145665) showed noticeable differences in the

DEG patterns, which may be attributed to the difference in dietary

intervention duration (3 weeks vs. 24 weeks) or slightly different

diet compositions (Table 2). However, two CDAHFD model

studies (GSE120977 and GSE137449) showed relatively similar

DEG patterns and were clustered together on the heatmap,

indicating that upon comparable dietary intervention methods,

correlative gene dysregulation patterns can be observed.
Comparative analysis of hepatic gene
signatures of human and mouse NASH

We coalesced the NASH signatures of humans and mice using

BioMart orthologous gene annotation. Combining the NASH

signatures of humans and mice yielded a pattern that is similar

to that observed by Teufel et al. (32). Profound differences were
Frontiers in Endocrinology 07
observed between the two signatures. Amongst the 254 human

and 1,917 mouse NASH signatures, 66 genes were concordantly

dysregulated between the two species (Figure 4).While comparing

the NASH signatures, we prioritized genes that were significantly

dysregulated in humans to derive clinically relevant results.

Among the 28 “High confident” human NASH signatures, 8

genes were shown to be co-dysregulated inmice, whereas 20 genes

did not match or showed no statistical significance in the mouse

signature. In detail, CYP2C19 was excluded from the combined

signature because humans and mice have different isoform

variations. In mice, 10 genes (CDH23, CMYA5, EFHD1, ENO3,

GPR88, PI6K3, P4HA1, PDE11A, STMN2, and VIL1) showed no

evidence of dysregulation, and 7 genes (ABCB11, ACSL4, APOF,

FAT1, LEPR, SOCS2, and TMEM154) showed some evidence of

dysregulation, but were not statistically significant. Interestingly,

ME1 and TSPAN13 showed distinctively opposite dysregulation

patterns in the two species. (Supplementary Figure 4).
TABLE 2 Study characteristics of mouse NASH model transcriptome datasets used in this study.

Study Diet model Diet composition Group Platform Data availability

Kita et al., 2012 (19) MCDHFD,
8 weeks

Methionine- and choline-
deficient diet with 60% fat

Normal 4
NASH 4

Affymetrix
Mouse Genome
430 2.0 Array

GEO GSE35961

Kahle et al., 2013 (20) HFD,
3 weeks

15% calories from casein,
27% calories from starch,
maltose dextrin, cellulose
58% calories from soybean oil,
safflower oil

Normal 8
NASH 7

Affymetrix
Mouse Gene
1.0 ST Array

GEO GSE43106

Dorn et al., 2014 (21) ND,
12 weeks

15% pork lard,
15% beef tallow,
4% palmitic acid,
4% stearic acid,
0.2% cholesterol,
30% sucrose

Normal 4
NASH 4

Affymetrix
Mouse Gene
1.1 ST Array

GEO GSE52748

Kobori et al., 2017 (22) CLD,
12 weeks

60% calories from fat,
1.25% cholesterol,
0.5% sodium cholate

Normal 5
NASH 5

Affymetrix
Mouse Genome
430 2.0 Array

GEO GSE93819

Maradana et al., 2018 (23) HFHSD,
14 weeks

N/A Normal 3
NASH 3

Illumina
HiSeq 4000

GEO GSE94593

Xiong et al., 2019 (24) FFCD,
25 weeks

40% fat,
22% fructose,
2% cholesterol

Normal 3
NASH 3

Illumina
HiSeq 2500

GEO GSE119340

Min-DeBartolo et al., 2019 (25) CDAHFD,
12 weeks

L-amino acid diet with 45 kcal%fat
with 0.1% methionine
and no added choline

Normal 5
NASH 5

Illumina
HiSeq 4000

GEO GSE120977

Heintz et al., 2020 (26) CDAHFD,
8 weeks

18% protein,
62% fat,
20% carbohydrates,
0.1% methionine

Normal 4
NASH 4

Illumina
NovaSeq 6000

GEO GSE137449

Lu et al., 2020 (27) HFD,
24 weeks

60% fat,
20% carbohydrate,
20% protein

Normal 5
NASH 5

Illumina
HiSeq 4000

GEO GSE145665

Bates et al., 2020 (28) FFD,
21 weeks

17% kcal protein,
40% kcal fat,
43% kcal carbohydrate

Normal 8
NASH 10

Illumina
HiSeq 2500

GEO GSE148849
NASH, non-alcoholic steatohepatitis; MCDHFD, Methionine- and choline-deficient diet with high-fat diet; HFD, high-fat diet; ND, NASH-inducing diet; CLD, high-cholesterol high-cholate
high-fat diet; HFHSD, high-fat high-sugar diet; FFCD, fat fructose cholesterol diet; CDAHFD, choline-deficient L-amino acid defined high fat diet; FFD, fast food diet; N/A, not available.
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Key common NASH signatures and
protein level validation

A list of 66 genes co-dysregulated in human and mouse

NASH is provided in the Supplementary Data. Notably, the

gene corresponding to glycine-N-methyltransferase (GNMT)

was classified as a “High confident” gene in both the human

and mouse signatures. Subsequently, to validate the 66 NASH

signatures at the protein expression level, we performed a meta-

analysis of proteome studies of human and mouse NASH. A

systematic dataset search revealed one dataset, PXD013423, which

analyzed whole-liver proteome expressions from a mouse fed with

fructose palmitate cholesterol (FPC) diet (31). Using the

SEQUEST algorithm for MS2 level peptide spectral matching,

we identified 4,679 proteins with FDR ≤ 1%. A total of 617

proteins (232 up-regulated and 385 down-regulated) was selected

as the NASH DEPs (Supplementary Figure 5). Finally, when 66

genes were validated using the DEPs, 14 genes were confirmed to

be dysregulated at the protein level (Table 3). At the biological

process level, these 14 validated NASH signatures were strongly

associated with amino acid metabolism (Table 4). Particularly, six

enzymes involved in amino acid metabolism were significantly

down-regulated in both human andmouse NASH (Figure 5). This

dysregulation was more prominent in the mouse datasets, and

NAFLD progression-dependent down-regulation was observed in

human datasets.
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Discussion

Principal findings and corresponding
interpretations

In this study, we performed a systematic meta-analysis of

transcriptome studies of liver tissues from NASH patients and

mouse models. As a result, we constructed 254 human and 1,917

mouse NASH gene signatures. According to the GO BP

enrichment analysis, the up-regulated genes of the 254 human

NASH signatures were associated with inflammation, steatosis,

apoptosis, and ECM organization, which are the most significant

hepatic perturbations in the pathogenesis of NASH. Down-

regulated NASH signatures were associated with cellular

response to metal ions, lipid metabolism, and amino acid

metabolism. Interestingly, cellular responses to copper,

cadmium, and zinc ions were found to be the most

significantly enriched biological processes among the down-

regulated gene signatures. This result was due to the consistent

down-regulation of metallothionein genes– MT1E, MT1F,

MT1M, MT1X, and MT2A. Metallothionein is a family of

cysteine-rich, low molecular weight proteins with metal-

binding capacity, thus protecting the cells from metal toxicity

and oxidative stress (33). Its expression is believed to be

dependent on the cellular environment of stress and mineral

availability. Accordingly, accumulated evidence suggests a zinc
A B

FIGURE 2

Establishment of human NASH signature and functional enrichment analysis. (A) Individually selected DEGs from 10 human NASH datasets were
merged based on the gene symbols and the frequency score of each DEG was calculated. Total 254 genes (125 up-regulated and 129 down-
regulated) were consistently dysregulated in at least three datasets. DEGs with frequency scores of 3 and 4 were classified as “Fair confident”,
and frequency scores of 5 to 7 were classified as “High confident” genes. (B) GO BP enrichment analysis result for 254 human NASH signatures.
NASH, nonalcoholic steatohepatitis; GO BP, gene ontology biological process.
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and copper deficiency in the serum and/or hepatic tissue of

NAFLD patients (34, 35). Mechanistic studies using rats also

showed the causative role of zinc and copper deficiency in the

pathogenesis of NAFLD (35, 36). However, despite these reports,

metallothionein gene (mouse isoforms Mt1 and Mt2)

dysregulation was not statistically significant in our mouse

NASH signature. This may be explained by the fact that

almost all experimental NASH models supply the same

amounts of micronutrients (e.g., minerals) to both control and

NASH-inducing groups. Although the intake of individual

dietary minerals varies in clinical circumstances, mineral

intake in NASH mouse models is tightly controlled. To

confirm the effect of mineral deficiency and metallothionein

dysregulation in the pathogenesis of NASH, dietary models with
Frontiers in Endocrinology 09
varying amounts of minerals should be used (36). Although

mineral deficiencies may not be the primary cause of NAFLD,

our results and those of others strongly suggest that these

deficiencies are involved in the disease pathogenesis.

Mouse models are integral to the studies of NASH

pathogenesis, and many different dietary methods have been

developed. However, no single model has been established to

represent the full spectrum of human NASH, and each model

reflects different aspects of the disease. Since the transcriptome

profile is believed to represent the overall biological status of cells

or tissues, we hypothesized that a mouse model exhibiting the

most similar gene expression profile to the 254 human NASH

signatures would best represent the hepatic conditions of human

NASH. Upon comparison, models with FFCD and FFD showed
FIGURE 3

Heatmap of gene expression profiles of different NASH mouse models. DEGs from 10 mouse NASH datasets were merged based on the gene
symbols, and the fold change values of dysregulated genes were normalized. Gradient of red color represents high expression of genes,
whereas gradient of blue color represents low expression of genes in mouse NASH group. MCDHFD, methionine- and choline-deficient diet
with high-fat diet; HFD, high-fat diet; HFHSD, high-fat high-sugar diet; ND, NASH-inducing diet; FFD, fast food diet; CLD, high-cholesterol
high-cholate high-fat diet; FFCD, fat fructose cholesterol diet; CDAHFD, choline-deficient L-amino acid defined high fat diet.
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the strongest resemblance to the human NASH signature, each

reflecting 90 of the 254 genes. Im et al. recently carried out a

systematic literature review of 3,920 NAFLD mouse models and

concluded that dietary models with high fat and high fructose

most closely resembled the metabolic and histological features of

human NAFLD (37). This is in line with our results, considering

that FFCD and FFD both have large amounts of fat and fructose/

sucrose as the main diet composition. These two models were

followed by the models, CDAHFD-12 week (85 genes),

CDAHFD-8 week (73 genes), and MCDHFD (73 genes), in

terms of human NASH resemblance. Choline-deficient diet

models showed the highest mean liver histology scores in a
Frontiers in Endocrinology 10
systematic review study, but had relatively poor metabolic

features compared to high-fat high-fructose diet models (37).

Taken together, these results indicate that our transcriptome

signature is in good correlation with the metabolic and

histological features of NASH. On the contrary, high-fat diets

with no added fructose exhibited the least gene expression

features of human NASH in our study, which also highlights

the importance of fructose in the pathogenesis of NASH.

Transcriptomics is a powerful tool that can measure

genome-scale mRNA expression levels with high accuracy, and

thus infer protein abundances within a biological system.

However, microarray or RNA-seq experimental results still
TABLE 3 List of 14 common NASH signatures validated at the protein expression level.

Gene symbol Gene title Dysregulation Human frequency
score (# out of 10)

Mouse frequency
score (# out of 10)

Mouse protein
fold change

AASS Alpha-aminoadipic semialdehyde synthase Down 4 4 0.41

AMDHD1 Amidohydrolase Domain
Containing 1

Down 4 5 0.56

ANXA2 Annexin A2 Up 3 8 3.55

CYP1A2 Cytochrome P450 Family 1
Subfamily A Member 2

Down 4 5 0.39

FABP4 Fatty Acid Binding Protein 4 Up 4 7 1.83

GCAT Glycine C-Acetyltransferase Down 3 4 0.35

GNMT Glycine N-Methyltransferase Down 6 7 0.12

GSN Gelsolin Up 3 6 1.76

HAL Histidine Ammonia-Lyase Down 3 8 0.24

KRT19 Keratin 19 Up 3 5 1.82

LGALS3 Galectin 3 Up 3 7 7.17

LUM Lumican Up 4 6 2.39

OAT Ornithine Aminotransferase Down 4 6 0.36

SDS Serine Dehydratase Down 4 4 0.34
#, number.
FIGURE 4

Key common hepatic signatures of human and mouse NASH. NASH signatures of humans and mice were coalesced using the BioMart
orthologous gene annotation. Amongst the 254 human and 1,917 mouse NASH signatures, 66 genes (boxed with bold lines) were concordantly
dysregulated between the two species.
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require follow-up validation. Hence, we performed a meta-

analysis of proteomic studies of human and mouse NASH,

and derived liver tissue DEPs from the FPC NASH mouse

model. When 66 common NASH signatures were validated

using the DEPs, 14 genes were confirmed as dysregulated at

the protein level. Among the 14 genes, those such as FABP4,

GNMT, and LUM are well-known to be associated with NASH

(38–40), and galectin-3 encoded by LGALS3 is currently being

tested as a therapeutic target in a phase 2b/3 clinical trial (41).

Inclusion of these prominent drug targets motivated us to

investigate other relatively less-studied genes.

Notably, among the 14 genes, down-regulation of AASS,

AMDHD1, GCAT, HAL, OAT, and SDS was associated with

amino acid metabolism in the GO BP enrichment analysis. In
Frontiers in Endocrinology 11
particular, histidine and threonine catabolic processes and a-
amino acid anabolic processes were prominently enriched.

Several previous studies have corroborated our findings. Lake

et al. performed metabolome analyses on liver tissues from

NAFLD patients and reported an increased level of lysine in

NASH patients (18). Alpha-aminoadipic semialdehyde synthase

encoded by AASS is involved in the first two steps of lysine

degradation via the saccharopine pathway within the

mitochondria, and down-regulation of AASS may lead to

elevated levels of lysine in the liver. Eriksen et al. assessed the

expression of urea cycle-related genes in NAFLD patients and

reported the down-regulation of hepatic genes governing

ureagenesis as well as impaired amino acid metabolism (42).

Down-regulation of hepatic a-amino acid metabolism was
FIGURE 5

Relative gene and protein expression values of down-regulated amino acid metabolism enzymes across human and mouse datasets. Blue boxes
indicate data from human transcriptome studies, green boxes indicate data from mouse transcriptome studies, and yellow boxes indicate data
from mouse proteome studies. Graphs show the mean values with SD. For every dataset, p-value< 0.05 for normal versus NASH group. AASS,
alpha-aminoadipic semialdehyde synthase; AMDHD1, amidohydrolase domain containing 1; GCAT, glycine C-acetyltransferase; HAL, histidine
ammonia-lyase; OAT, ornithine aminotransferase; SDS, serine dehydratase.
TABLE 4 GO BP enrichment analysis on 14 validated NASH signatures.

GO BP ID Enriched GO BP terms in DEGs p-value # of DEGs in GO BP # of genes in reference DEGs

GO:0019557 histidine catabolic process to glutamate
and formate

6.42E-06 2 4 AMDHD1, HAL

GO:0006567 threonine catabolic process 8.98E-06 2 5 GCAT, SDS

GO:1901607 alpha-amino acid biosynthetic process 1.22E-05 3 64 AASS, OAT, SDS
GO BP, gene ontology biological process; NASH, nonalcoholic steatohepatitis; DEGs, differentially expressed genes; #, number.
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manifested by higher blood concentration of a-amino nitrogen

levels in NAFLD patients (42). In our study, down-regulation of

AMDHD1 and HAL, which are involved in the catabolic

pathway of histidine to glutamate conversion, and down-

regulation of AASS, which also produces glutamate along the

saccharopine pathway, may be presumed to result in glutamate

level alteration in NASH. Accordingly, a metabonomic study by

Garcıá-Cañaveras et al. reported decreased levels of glutamate in

human NAFLD liver tissues (43). Glutamate plays a critical role

in hepatic amino acid metabolism, acting as a key intermediate

between the urea cycle and citric acid cycle, and it is a major

substrate for glutathione (GSH) synthesis (44). Decreased level

of glutamate in the liver can compromise the replenishment of

GSH and make the liver more susceptible to pathological

environment. In short, our results of gene dysregulation

analysis reflect the metabolic status of the NAFLD liver.

Interestingly, the down-regulation of amino acid metabolism

enzymes was associated with NAFLD progression in human

datasets. To the best of our knowledge, this is the first study to

report six significant enzymes responsible for the dysregulation

of amino acid metabolism in the pathogenesis of NASH.
Effect of the number of included
datasets in meta-analysis

In this study, we used 10 human transcriptome datasets to

establish NASH signatures. To determine whether the number of

included datasets affects the overall NASH signatures, we

randomly selected five human datasets (GSE37031, GSE49541,

GSE63067, GSE126848, MEXP-3291) and repeated the meta-

analysis. This time, the human NASH signatures consisted of

328 DEGs (DEGs with frequency ≥ 2). When 328 NASH

signatures were compared with the previous 254 NASH

signatures , 171 DEGs were found to be common

(Supplementary Figure 6). Interestingly, there were some

discrepancies between the two signatures. To explain this

discrepancy, we provide examples of two DEGs, ABCC4 and

AMDHD1, which were unique in each NASH signature. When

we analyzed the transcriptional profile for ABCC4 and AMDHD1

across the 10 human datasets, ABCC4 was upregulated in the

GSE126848 and MEXP-3291 datasets, whereas AMDHD1 was

downregulated in the GSE33814, GSE48452, GSE61260, and

GSE126848 datasets. Therefore, ABCC4 could be selected as

NASH signatures when only five datasets were used (DEGs with

frequency ≥ 2), but lacked statistical significance when all 10

datasets were used (DEGs with frequency ≥ 3). In contrast,

AMDHD1 was selected as a NASH signature when 10 datasets

were used, but the frequency score decreased to 1 when five

datasets were randomly selected (GSE33814, GSE48452, and

GSE61260 were not selected in this case). This result strongly

supports the importance of using a comprehensive dataset when
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performing a meta-analysis. In our study, at least six datasets were

required to obtain a threshold DEG frequency score of 3, but this

result may vary according to the characteristics of each included

dataset and the number of DEGs selected.
Comparison with other studies

We identified two studies that performed a large-scale

systematic meta-analysis of human NASH transcription

profiles and which they derived NASH gene signatures. The

study by Ryaboshapkina and Hammar performed meta-

analysis of seven microarray datasets and extracted 218 gene

signature that are affected during the NAFLD progression (45).

Jia and Zhai integrated six microarray datasets and established

96 significant DEGs between healthy people and NAFLD

patients, using the robust rank aggregation method (46). In

our study, we performed a comprehensive meta-analysis of 10

microarray and RNA sequencing datasets, and derived 254

statistically confident human NASH signatures. While

comparing our NASH signature with those of the other two

studies, we found five genes–FABP4, GNMT, IL32, TP53I3,

and VIL1–to be common (Supplementary Figure 7). However,

the overall signatures of each study were relatively different,

and 181 genes (37.1%) were unique to our study. The

differences in inclusion criteria during the dataset selection

process, number of included datasets, types of included assay

platforms, and different statistical approaches may all

contribute to the diversity of individual gene signatures.
Limitations

Our study had several inherent limitations. First, while

analyzing human transcriptome studies, disease progression

variables were not considered. Although all study participants

were diagnosed histologically, inter-observer variation exists in

NASH diagnosis, and each study used different patient

classifications. To minimize the effect of disparity on disease

assessment between study cohorts and to systematically compare

gene expression profiles from multifarious datasets, DEGs were

selected by comparing normal subjects and well-defined NASH

patient groups. Second, participant baseline characteristics and

clinical biochemical data analyses were not possible due to

limitations in data acquisition. Third, while combining human

and mouse NASH signatures, genes with no reported orthologs

and isoforms of genes that are unique to either species were

excluded during the process. Finally, protein-level validation of

NASH signatures was only performed using the mouse

proteome dataset. Datasets of the whole liver proteome from

NASH patients were not available, which strongly suggests a

need for further studies.
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Conclusions

We performed a meta-analysis of NASH transcriptome

datasets and established the most comprehensive 254 human

and 1,917 mouse NASH signatures to date. Based on

comparison of different dietary models with the human

NASH signature, our results add to the existing body of

literature suggesting that dietary models with high fat and

high fructose most closely resemble the genetic, metabolic, and

histological features of human NAFLD. Cross-species analysis

revealed 66 genes to be concordantly dysregulated between

human and mouse NASH. Among these, 14 genes were further

validated to be dysregulated at the protein level. The resulting

14 genes included some well-established NASH-associated

genes and a promising NASH drug target. Functional

enrichment analysis demonstrated that dysregulation of

amino acid metabolism was the most significant hepatic

perturbation in both human and mouse NASH. Moreover,

down-regulation of six amino acid metabolism enzymes, AASS,

AMDHD1, GCAT, HAL, OAT, and SDS, was associated with

NAFLD progression in humans. Further studies are needed to

unravel the link between dysregulation of hepatic amino acid

metabolism and NAFLD pathogenesis.
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