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Unsolved questions in computational visual neuroscience research are whether and how neurons and their connecting cortical
networks can adapt when normal vision is compromised by a neurodevelopmental disorder or damage to the visual system. This
question on neuroplasticity is particularly relevant in the context of rehabilitation therapies that attempt to overcome limitations or
damage, through either perceptual training or retinal and cortical implants. Studies on cortical neuroplasticity have generally made
the assumption that neuronal population properties and the resulting visual field maps are stable in healthy observers.
Consequently, differences in the estimates of these properties between patients and healthy observers have been taken as a
straightforward indication for neuroplasticity. However, recent studies imply that the modeled neuronal properties and the
cortical visual maps vary substantially within healthy participants, e.g., in response to specific stimuli or under the influence of
cognitive factors such as attention. Although notable advances have been made to improve the reliability of stimulus-driven
approaches, the reliance on the visual input remains a challenge for the interpretability of the obtained results. Therefore, we
argue that there is an important role in the study of cortical neuroplasticity for approaches that assess intracortical signal

processing and circuitry models that can link visual cortex anatomy, function, and dynamics.

1. Introduction

Unravelling the organization of the visual cortex is funda-
mental for understanding the foundations of vision in
health and disease. A prominent feature of this organiza-
tion is the presence of a multitude of visual field maps.
These maps are spatially and hierarchically organized rep-
resentations of the retinal image and are often specialized
to encode specific environmental visual attributes. Studying
these cortical visual maps is relevant as it enables the char-
acterization of the structure and function of the visual cor-
tex and therefore the study of the neuroplastic capacity of
the brain. With the latter, we refer to the ability of the brain
to adapt its function and structure in response to either injury
or to a treatment designed to recover visual function.

Over the last two decades, visual field mapping has
been extensively used to infer neuronal reorganization
resulting from visual field defects or neuroophthalmologic
diseases. For a review, see Wandell and Smirnakis [4].
Because of its focus on the analysis of individual partici-
pants and the relative amount of detail provided, the
pRF model seems ideal to study questions on neuroplasti-
city—at least in theory. Some of the hypotheses that can
be tested with pRF mapping are as follows: are the neu-
rons within the lesion projection zone active? Is there a
displacement in position or enlargement of the pRF size
during development, following a retinal or cortical lesion?
Do the pRF properties change in response to monocular
treatments that promote the use of the amblyopic eye,
e.g., patching or blurring therapy?
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Noninvasive measurement of receptive fields.

The visual maps result from a combination of the receptive fields (RF) of individual neurons. In vision, a RF corresponds to the portion
of the visual field that a neuron responds to. A fundamental property of the visual cortex is that visual neurons are retinotopically orga-
nized (neighboring visual neurons respond to nearby portions of the visual field). Currently, it is not possible to measure the activity of
single neurons noninvasively; however, the development of noninvasive neuroimage techniques, such as functional magnetic reso-
nance imaging (fMRI), combined with computational neural models have been used to characterize RF properties at a larger scale.
Briefly, fMRI uses a magnetic field to detect changes in blood oxygenation, a proxy of neural activity. This activity is coupled to oxygen
consumption, which is why fMRI is also called blood oxygen level-dependent (BOLD) imaging. In fMRI, a standard voxel of 3 mm®
captures the aggregate activity of ~1 million neurons [1, 2].

Therefore, the notion of the RF is extended to the collective RF of a population of neurons, the population receptive field (pRF). By
applying biologically plausible models to describe the structure of this collective RF at a recording site, pRF mapping became a popular
technique for the detailed characterization of visual cortical maps at the level of neuronal populations [3]. In essence, this method
models the pRF as a two-dimensional Gaussian, of which the center and width correspond to the pRF’s position and size, respectively.
The model pipeline and description are presented in Figure 1.
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F1GURE 1: The population receptive field (pRF) modeling procedure. A pRF model describes, per voxel, the estimated pRF properties position
(%, y) and size (o). A voxel’s response to the stimulus is calculated as the overlap between the stimulus mask (the binary image of the stimulus
aperture: a moving bar) at each time point and the receptive field model. Following this, the delay in hemodynamic response is accounted for
by convolving the predicted time courses with the hemodynamic response function. Finally, the pRF model parameters are adjusted for each
voxel to minimize the difference between the prediction and the measured BOLD signal. The best fitting parameters are the output of the

analysis. Figure adapted from Dumoulin and Wandell [3].

Given that visual neuroplasticity is greatest during early
stages of development (childhood), the characterization
of the pRF properties has special relevance to determine,
in vivo, the presence of atypical properties of the visual cor-
tex during development and plasticity. In particular, changes
in pRF size have been reported in a series of studies on devel-
opmental disorders. Clavagnier and colleagues measured
enlarged pRF sizes in primary visual areas (V1-V3) in the
cortical projection from the amblyopic eye as compared to
the fellow eye [5]. Schwarzkopf and colleagues reported that
individuals with autism spectrum disorder (ASD) have larger
pRFs as compared to controls [6]. Anderson and colleagues
found smaller pRF sizes in the early visual cortex of indi-
viduals with schizophrenia compared to controls, using a
specific pRF model that takes into account the center
surround structure of the RF [7].

In the case of congenital visual pathway abnormalities
that affect the optic nerve crossing at the chiasm, e.g,
achiasma, albinism, and hemi-hydranencephaly, several
studies revealed overlapping visual fields and bilateral vertical
symmetric pRF representations [8-12]. This contrasts with
the case of a single patient that had her left hemisphere
removed at the age of three, who did show the expected right
hemifield blindness, even though she had larger representa-
tions of the central visual field in extrastriate visual maps,
which was particularly apparent in area LO1 in the right
hemisphere [13].

Hence, the pRF modeling approach has been applied
with at least some degree of success to reveal neuroplastic
changes at the level of the visual cortex. Nevertheless, in
the present paper, we will briefly indicate issues with the cur-
rent pRF approach as it relates to neuroplasticity and ways to
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improve the methods. Finally, we will argue that we should also
look beyond it to fully address questions on neuroplasticity.

2. Limitations of Current Stimulus-Driven
Approaches When Studying Neuroplasticity

We address the question to what extent population receptive
field mapping is actually a suitable tool to capture cortical
plasticity. We point out various limitations. The most impor-
tant one is that the assumption of the receptive field and
map stability in healthy controls is largely untenable.

The most common and straightforward manner in
which the pRF approach has been applied is to compare
model parameters between either two groups of partici-
pants—usually a patient group and matched controls [8, 14],
or between the affected eye and the normal fellow eye,
which can be done in the case of monocular developmen-
tal conditions such as amblyopia [5]. In both types of
studies, it is commonly assumed that the differences in
pRF estimates are caused by differences in brain organiza-
tion and eye-brain connectivity of the two groups or the
two eyes. However, there are various issues that complicate
the interpretation of pRF differences in health and disease.
A number of these limitations were recently discussed by
Dumoulin and Knapen [15], and for this reason, we will
only reiterate the most critical ones.

2.1. Changes at the Level of the Eye Limit the Use of pRF
Mapping to Study Neuroplasticity in Both Ophthalmic and
Neurological Diseases. Estimates of pRFs are based on the
stimulus input. In numerous ophthalmic diseases, changes
at the level of the eye—such as cataract or retinal
lesions—strongly modify the visual input. This could be a
decrease in visual acuity, contrast sensitivity, or the entire
loss of vision in part of the visual field. Consequently, in
many of such diseases, the stimulus-driven input to the
brain will be different and usually deteriorated. In neuro-
logical conditions such as in hemianopia, retrograde
degeneration of the retina [16, 17] gives rise to a similar
concern. As changes in the visual input have a direct effect
on the signal amplitude, straightforward differences in BOLD
signal cannot be taken as an indicator of neuroplasticity or
degeneration at the level of the cortex.

The retinotopic maps of healthy adults with normal or
corrected to normal vision are stable over time when mea-
sured under similar environmental and cognitive factors
[18, 19]. Hence, it would appear that changes in maps or
population properties should be a good indication for the
presence of neuroplasticity. Indeed, it was found that in
patients with long-term visual impairment due to macular
degeneration, the pRF of voxels representing both the sco-
tomatic area and neighboring regions are displaced and
changed in size [20].

However, there is mounting evidence that simple stimu-
lus manipulations, e.g., masks mimicking retinal lesions,
can have a large effect on the population-receptive field esti-
mates in healthy participants. Estimated pRF properties
(position shift and scaled size), similar to those in patients
with retinal lesions, were observed in healthy adults in whom

a visual field defect was simulated [20-22]. Comparable shifts
in pRF position and scaling of pRF size were also found in an
experiment that used scotopic illumination levels to examine
the “rod scotoma” in the central visual field [23]. In other
words, changes in visual input can mimic the consequences
of lesions due to ophthalmic disease in healthy observers.
This implies that observed differences in pRF properties in
patients relative to controls may simply reflect normal
responses to a lack in visual input rather than a reorganiza-
tion of the visual cortex. Therefore, just by themselves,
changes in pRF measures are insufficient to decide on the
presence of neuroplasticity.

The feasibility to use pRF estimates to topographically
map visual field defects in the cortex, particularly in early-
stage disease, is further complicated by two aspects. First,
neurons near the border of either the scotoma or the edge
of the visual stimulus field may be partially stimulated. In
such cases, the stimulus aperture partially activates receptive
fields that belong to voxels whose pRF center would ordinar-
ily be outside the stimulus presentation zone [21, 24]. Second,
the presence or absence of a scotoma affects mostly the signal
amplitude while the temporal dynamics of the modulation
pattern are not affected. As pRF estimates are mostly invari-
ant to the BOLD amplitude, the pRF model does not properly
capture the effect of the scotoma. These two factors induce
biases in the pRF estimates that can be wrongly interpreted
as signs of neuroplasticity (see Box 2).

Nevertheless, changes in the BOLD signal may be used as
an alternative assessment for nonfunctional parts of the
visual system in patients that are unable to perform standard
ophthalmic examinations, e.g., infants or patients with
nystagmus [25-27]. However, because of the above aspects,
caution is warranted when interpreting such data. Eye move-
ments may affect the pRF estimates substantially, resulting in
noisy maps and increased pRF sizes [28-30]. This is particu-
larly relevant for developmental disorders such as amblyopia
[5, 31-33]. In addition, pRF mapping is most accurate at an
advanced stage of ophthalmologic disease where the visual
field defects are relatively large and the scotomatic edge
(i.e., the transition between healthy visual cortex and
damaged visual cortex) is sharp [34, 35]. Overall, this
inability to accurately detect small visual field defects
implies that the sensitivity of the pRF approach is too
limited to monitor the effects of slow retinal degeneration
or slow cortical changes that would presumably be associ-
ated with rehabilitation therapies or other procedures to
restore visual functioning.

2.2. Different Stimulus Properties Result in Distinct pRF
Properties in Healthy Human Observers. An additional factor
to be considered when interpreting pRF estimates is that the
PREF represents the cumulative response across all neuronal
subpopulations within a voxel. These subpopulations are
selectively sensitive to spatial properties, such as orientation,
color, luminance, and temporal and spatial frequencies.
Hence, their activity can be driven by specific stimuli. In
pRF mapping, manipulating the carrier—the stimulus aper-
ture which drives the neuronal activity—elicits responses
from a particular neuronal population. By selectively
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A bias in pRF estimates induced by the presence of real and simulated scotomas.

To show how the presence of a scotoma may affect the pRF estimates, we simulated the pRF behavior in healthy vision (absence of
scotoma) and in the presence of a scotoma (either due to a retinal or cortical lesion). The simulated circular scotoma is located in
the horizontal meridian at 5 degrees of eccentricity, and it has a 3-degree radius. Figures 2(a) and 2(d) depict the overlap between
the pRF model (in red) and the stimulus in the absence and presence of a scotoma (circular region within the bar aperture), respec-
tively. Figures 2(b) and 2(e) show the respective simulations of the predicted pRF response resulting from convolving the stimulus with
the pRF model (first part in Figure 1) and subsequent addition of noise. A similar level of noise was added to both simulations. The
noise simulates any nonbiological signals captured with MRI. Note that the modulation pattern of the time series only differs between
both conditions on the basis of the artificial noise added. The difference is mostly visible in the signal amplitude (note the different
scales of the y-axes). When applying the pRF model, we need to define a stimulus mask which, ideally, should match the stimulus dis-
played during retinotopic mapping. Figure 2(c) shows the pRF-estimated properties in the absence of scotoma. Figures 2(f) and 2(g)
depict the pRF estimates in the presence of a scotoma, using a stimulus mask that does not (Figure 2(f)) and that does (Figure 2(g)) take
the scotoma into account. When we model the stimulus mask without taking the scotoma into account, this results in a bias, as pRF are
enlarged and displaced towards the artificial lesion projection zone border (Figure 2(f)).When the presence of the scotoma is taken into
account in the pRF model, the estimated properties of the pRF closely match the simulated ones. Note that the variance explained of
PRE estimates in the three situations (normal vision (Figure 2(c)), lesion modelled without scotoma (Figure 2(f)), and lesion modelled
with a scotoma (Figure 2(g))) is very similar. This shows that the pRF mapping approach is invariant to the BOLD amplitude, which
hinders the detection of small scotomas. Additionally, in clinical cases where the extent of the scotoma is not fully established, it is thus
impossible to accurately account for the presence of a scotoma in the pRF mapping.
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FiGuURE 2: Simulated pRF time series and the associated estimated pRF properties: (a) simulation of a pRF (red) located at a specific region of the
visual field (x =5,y =0) and with a size of 0 =0.5 deg assuming normal vision (i.e., no scotoma); (b) simulated fMRI response given the
retinotopic stimulus (a) modelled with added noise (signal to noise ratio of 1:1); (c) estimated pRF using the normal vision simulated time
series (b). The mask used in the pRF model is presented in the upper left corner. The estimated properties were identical to the simulated
ones: x =5, y=0, 0 =0.5 deg, and a variance explained of 0.46. (d, e) are analogues to (a, b), but for a simulated pRF located in the lesion
projection zone (thus inside the simulated scotoma); (f) estimated pRF based of the scotoma simulated time series (e) using a mask that
assumes normal vision. The estimated pRF shifted in position and increased in size (estimated position shifted towards x =4 and y = -1 and
the size was enlarged, 0 = 1 deg). The variance explained obtained was 0.45; (f) estimated pRF based of the scotoma simulated time series (e)
and taking into account the lesion by using a mask that includes the scotoma (upper left corner). The estimated pRF properties are now
again identical to the simulated ones (x =5, y =0, 0 = 0.5 deg, and variance explained = 0.44).
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stimulating these neuronal populations, a number of recent
studies have shown that compared to the standard
stimulus (flickering luminance contrast checkerboard bar),
pRE estimates shift in position and change their size
[36-39]. These studies indicate that the recruitment of
neural resources depends on the task and that there is a
dependency of the retinotopic maps on the task or stimu-
lus. This type of stimulus selectivity captures the neuronal
population characteristics for features such as luminance,
orientation, or words. In contrast, Welbourne and col-
leagues [40] found no difference in pRF estimates when using
chromatic and achromatic stimuli. This implies that for
color, there may be a decoupling between the pRF measure-
ment and the underlying neuronal populations [40].

The spatial distribution of the receptive fields can
also be modelled by attention. A series of studies manip-
ulating spatial and feature-based attention found that the
neuronal resources are shifted towards the attended posi-
tions [30, 41, 42].

These findings imply one of two things: (1) the topog-
raphy of the visual cortex is flexible and may change in
response to environmental (stimulus, task) as well as cog-
nitive factors such as attention or (2) pRF measures are
inaccurate and may change in response to spatial and cog-
nitive factors. Either of these explanations limits the ability
of the pRF approach to provide a straightforward assess-
ment of neuroplasticity.

3. Improving Stimulus-Driven Approaches

We consider various ways in which the pRF method might be
improved to study neuroplasticity. Of note are models that
provide information on the reliability of the pRF-estimated
properties. As a further incentive, we propose a new pRF
model that incorporates cortical temporal dynamics and
which integrates connectivity and topography.

Given the limitations mentioned above, this raises the
question whether and how the pRF approach can be modi-
fied to render it more suitable to track neuroplastic changes.
As was indicated, mimicking visual field defects can alter pRF
properties in a similar manner to patients. At the mini-
mum, this requires creating elaborated control stimulus
conditions (simulations) that exactly mimic patient condi-
tions. Unfortunately, this is often impossible to achieve.
Deviations of parameter estimates in the patient group from
those control values could be an indication of neuroplasti-
city. However, obtaining good simulations is not trivial.
Thus far, the simulations that have been used have generally
been quite simple, i.e., mimicking scotomas in which no light
sensitivity remained—usually simulated as a region without
signal modulation. However, the perceptual awareness of
natural scotomas may be substantially different from that
of artificial ones. For example, when the visual input is
incomplete, the visual system appears to fill in any missing
features (through prediction and interpolation) in order
to build a stable percept. Moreover, scotomas in patients
are usually more complex than simulated ones, both in
their shape and their depth (reduced sensitivity). Finally,
the scotoma may also change the attentional deployment

by the patient, potentially affecting the estimated pRF
properties [30, 41, 42].

In order to accurately measure neuronal reorganization, it
is crucial to overcome the abovementioned limitations. A sig-
nificant amount of work has been directed towards the devel-
opment of more reliable models of retinotopic mapping. The
methodological advances serve three different goals, which
may be useful in studying neuroplasticity: (1) improve the
reliability of the estimates using more informative pRF shapes
and more complex computational models, (2) measure
stimulus-selective maps, which allow to capture the reorgani-
zation of specific neuronal populations, and (3) measure spa-
tial modulation and dynamics of neuronal populations,
potentially reflecting short-term neuroplastic changes.

3.1. Computational and Model Advances. Computational and
model advances have been made to (a) improve the pRF
shape so that it better reflects the biological structure of
the RF, e.g., using a difference of Gaussian model allows
to account for surround suppression [43], and (b) account
for nonlinearities, provide distributions of property magni-
tudes, and capture neuronal characteristics, such as tuning
curves. Such models add new pRF features which may be
important to infer functional reorganization and provide
a measure of the reliability of the estimates.

A different pRF shape can be an indication of neuroplas-
ticity. Several models have been developed to account for var-
ious possible receptive field shapes: circular symmetric
difference of Gaussian (DoG) functions [43], bilateral pRF
[10], elliptic shape [34], Gabor wavelet pyramids [34, 44],
and compressive spatial summation [45]. Some reviews have
discussed these methods in detail [15, 46]. However, the
above models all assume some form of symmetry. Recently,
data-driven models were developed that do not assume any
a priori shape [47-49]. These model-free approaches are par-
ticularly relevant to measure the functioning of the visual sys-
tem in patients, as plasticity may manifest as a differently
shaped pRF without affecting its position or size. An example
is that asymmetrical shapes capture best the pRF properties of
any skewed distributions of RF within a voxel. However, even
in these data-driven approaches, the estimated shape of the
receptive fields remains dependent on the stimulus used.

Extending the pRF model to account for more complex
RF shapes will improve its explanatory power—the model
can better predict the BOLD response. However, this will
not remove the issue of model bias, mentioned in Box 2. In
various attempts to resolve this, computational advances
were made which can be categorized into four different clas-
ses. The first class comprises nonlinear pRF models, such as a
compressive spatial summation model and convex optimized
pRF, which substantially increases the range of shapes that
the model can describe [45]. The second class is the develop-
ment of Bayesian models. For each property, these models do
not only estimate the best fitting value but a full posterior
distribution as well [50, 51]. This serves several needs: (a) it
indicates the uncertainty associated with each estimate
(Figure 3). Such uncertainty maps are of particular impor-
tance when a visual field defect is present, as higher uncer-
tainty will most likely be associated with model biases, (b)
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FIGURE 3: Mapping the uncertainty of model estimates: (a) maps obtained using conventional pRF mapping [3] and a custom implementation
of the Monte Carlo Markov chain Bayesian pRF approach [50, 51]. Both methods result in similar visual field maps. However, the latter
method also enables the estimation of the uncertainty associated with each parameter; (b) eccentricity, phase, and pRF size uncertainty
maps obtained for the left hemisphere of a single healthy participant. The uncertainty maps describe how reliable each estimate is. For
example, we see that the polar angle estimates for the central fovea (near fixation) are less reliable than those measured in the periphery. The
uncertainty associated for each estimate was calculated as the difference between the 75% and 25% quantiles of the Bayesian Markov

chain pRF distribution.

it facilitates the statistical analysis, and (c) it allows one to
incorporate additional biological knowledge by providing
prior information. An example of such a biologically based
prior is that the density of cortical neurons is higher in the
fovea than in the periphery [50, 51]. In combination, the
above-referred three factors improve the interpretability
of pRF estimates. The third class comprises the develop-
ment of the feature-weighted receptive field (fwRF) models
that allow capturing additional pRF parameters—such as
neuronal tuning curves (e.g., the spatial frequency
tuning)—through the combination of measured neural
activity and visual features [52]. Finally, the fourth class
relates to methods that allow to enhance the resolution at
which we can detail RF properties. Of relevance are the
approaches that allow to estimate the average single-unit
RF size (suRF) [49, 53] or multiunit RF (muRF) properties
that can without restriction uncover the size, position, and
shape of neuronal subpopulations, also when these are
fragmented and dispersed in visual space [49, 53].

3.2. Models of Perception: Spatial Modulation and Dynamics.
Specific models have been developed to capture short-term
plasticity. Such models take into account cognitive and/or
perceptual factors such as attention [30, 54] or crowding
[55, 56] to understand changes in observed spatial properties
or perception. Recently, Dumoulin and Knapen proposed a
more complex pRF model that relates pRF changes to the
underlying neural mechanisms [15]. This very general model
allows modeling and predicting dynamic changes that result
from changes in the visual input. In particular, they proposed

an extension of the pRF model to account for multiple neural
subpopulations responding to different properties of the
stimulus. Their expectation is that this will enable unravelling
of the different sources of pRF plasticity.

Although there have been significant improvements in
pRF models which may be able to aid in charting neuroplastic
changes, in our view, this is still insufficient. There are still
many constraints to be addressed, in particular, the fact that
a voxel may contain a mixture of neurons with spatially dis-
tinct receptive fields. This is particularly relevant in develop-
mental disorders such as albinism and achiasma [9, 10] or for
voxels located in sulci. In those cases, the measured pRF
properties will either represent the strongest contributing
RF or be erroneously large.

In our view, the neuronal spatiotemporal dynamics can
be better captured if we would take into account the interac-
tions with nearby linked populations. The connectivity-
weighted pRF, described next, is a first attempt to integrate
models of cortical organization with cortical connectivity.
This further encourages the development of new models that
integrate stimulus- and cortex-referred methods.

3.3. The Connectivity-Weighted pRF Integrates Cortical
Organization and Connectivity. Current analytical approaches
to track retinotopic changes are voxel based. This limits their
accuracy, as the visual system is dynamic and the activity of
one population of neurons is influenced by nearby connected
populations. Ideally, a more complete model should reflect
the balance between inhibitory and excitatory processes and
account for various cortico-cortical interactions.
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Here—as an example of such a model—we propose a
stimulus-driven pRF model, in which the estimated parame-
ters, pRF ), depend upon the unique activity of the neuronal

population pRFu; and the activity of interacting cortical neu-

ronal populations, weighted by the strength of their connec-
tions, Cj.. Note that e; is the error associated with voxel j.

pRF]:pRFuj* (chk *pRFk> +e;. (1)

k#j

Depending on the goal of the study and the design of the
experiment, the connectivity (C) can be based either on the
structure (anatomically connected neighbors), on function
(neuronal populations which exhibit specific correlated activ-
ity during the resting state), or on effective connectivity [57].
Here, we treat it as effective connectivity given that it
accounts for dynamic interactions and the model of coupling
between neuronal populations.

Such a model can describe the spatiotemporal dynamics
of neuronal populations. It is sensitive to the recurrent flow
of synchronized activity between connected neurons. Using
such a connectivity-weighted model, we may—in the
future—assess brain plasticity based on both structural reor-
ganization and functional reorganization.

4, Cortical Circuitry Models Look beyond
the Stimulus

We suggest that models that can be estimated without requir-
ing visual stimulation, which we refer to as cortical circuitry
models (CCM), may be highly suitable to measure cortical
reorganization. While not without potential pitfalls them-
selves, such approaches avoid many of the complications asso-
ciated with the stimulus-driven pRF approach. Additionally,
we indicate various other avenues that may improve our
ability to quantitatively assess neuroplastic changes in the
visual cortex.

4.1. Studying Neuroplasticity Using Intrinsic Signals and
Cortical Circuitry Models. The fMRI signal is a mixture of
stimulus-specific and intrinsic signals [57, 58]. As a result, it
is plausible to assume that intrinsic generated signals may
influence stimulus-driven signals [57, 58]. Therefore, the
study of brain plasticity may be ameliorated and/or comple-
mented if the dependence on stimuli is reduced. For this rea-
son, estimates based on intrinsic signals rather than task
responses are potentially a very suitable source of informa-
tion on the presence or absence of cortical plasticity. Intrinsic
signals are commonly obtained in a “resting-state” condition
in which participants are not required to do anything in par-
ticular and usually have their eyes closed. Resting-state fMRI
signal fluctuations have been shown to correlate with ana-
tomically and functionally connected areas of the brain. In
particular, specialized networks have been found in cortical
and subcortical areas in sensory systems [59-64]. Based on
resting-state data, CCMs can be used to infer the integration
of feedback and feedforward information [65]. However, one
important limitation is that currently, the directionality of

information flow cannot be directly inferred from the BOLD
signal. Therefore, primarily because of the limited temporal
resolution of fMRI, it remains to be determined whether
CCMs can be used to assess this aspect.

Nonetheless, CCMs have the potential to capture the
effects of structural reorganization and can inform about
which neural circuits have the potential to reorganize and
which are stable. An example of this type of model is the
connective field (CF) model, which applies the notion of a
receptive field to cortico-cortical connections [66]. Another
example is the connectopic model which combines voxel-
wise connectivity “fingerprints” with spatial statistical infer-
ence to detail multiple overlapping connection topographies
(connectopies) in the human brain [66, 67]. Ultimately, in
our view, it will be essential to combine retinotopic and
neural circuitry models, such that their combination can
be used to fully describe the dynamics of the visual cortex
[68]. To accomplish this, models will have to be developed
that can capture the (dynamic) adaptation of feedback,
feedforward, and lateral connections in the functional net-
works underlying visual processing and cognition. Such
models may be implemented by calculating the correlation
between neuronal populations taking time lags into account
or by using CCM to describe connections across cortical
layers (see also below).

4.2. The Connective Field Defines a Receptive Field in Cortical
Surface Space. Connective field (CF) modeling predicts the
neuronal activity in a target area (e.g., V2) based on the activ-
ity in a source area (e.g., V1). In a similar way that a neuron
has a preferred location and size in visual space (its receptive
field), it also will have a preferred location and size on the
cortical surface of a region that it is connected with [65, 66,
68]. Based on retinotopic mapping, the visual field coordi-
nates of the target area can be inferred from the preferred
locations in the source region. In this way, the connective
field—when combined with pRF mapping—can link a CF’s
position in cortical surface space also to a position in visual
space. The connective field model is briefly described in
Box 3.

There are several advantages of CCMs when compared to
pRF models. First, the ability to assess and compare the fine-
grained topographic organization of cortical areas promotes
the comparison of connectivity patterns between groups of
participants with different health conditions and between
experimental conditions [67, 70]. Second, CCMs can even
be applied to data that was acquired in the absence of any
sensory input, enabling the reconstruction of visuotopic
maps even in the absence of a stimulus and in blind people.
Several studies have shown that cortical connectivity during
the resting state reflects the visuotopic organization of the
visual cortex [65, 67, 70-73]. A comparison between
stimulus-driven and resting-state CCMs may also convey
information on the influence of retinal waves and prior visual
experience in the cortical circuitry. For example, larger CF
sizes were measured with visual stimulation when compared
to the resting state [65, 73, 74]. Third, CCMs provide insight
into the anatomical and functional neuronal circuitry that
enables the visual system to integrate information across
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Connective field modeling.

The CF model, as originally proposed by Haak and colleagues, assumes a circularly symmetric 2D Gaussian model on the surface
of the source region as the integration field from the source to the target [66]. This 2D Gaussian is defined by its position (v0)
and size (o), where d(v,10) is the shortest distance between the voxel v and the connective field center v0 and o is the Gaussian
spread (mm). Distances are calculated across the cortical surface, using Dijkstra’s algorithm [66, 69]. The connective field pipe-

line is described in Figure 4.

Box 3

v0 projection on brain
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————— V1>V2 CF model prediction
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®)

FiGURE 4: (a) CF pipeline as described by Haak and colleagues [66]. The model comprises two steps: (1) predict the fMRI response, p(t), by
multiplying the CF model g(v0, o) with the measured source fMRI signal a(v, t), and (2) the CF position (v) and size (o) are estimated by
varying parameters and selecting the best fit between the predicted time series and the measured BOLD signal y(¢). Then this procedure is
repeated for every voxel in the target region. (b) The V2 response is predicted based on the pRF (stimulus-driven, in blue) and connective
field (cortical-driven, in red) model. The color map on the brain shows the V1>V2 CF model weights for a specific voxel.

different cortical areas. They can reveal the presence or
absence of a change therein following a disease [74-76].
Fourth, CCMs, in particular when assessed in the resting
state, are less affected by various intrinsic and extrinsic fac-
tors such as the type of task and stimulus [37-39], patient
performance, optical properties and health condition of the
eye [77], or stimulus-related model-fitting biases [22, 77].
Despite these important advantages, the current CCM
approaches also have their limitations. First, the reliability
of CCM parameters, such as the CF size, is affected by the
signal-to-noise ratio. Fortunately, the signal-to-noise ratio
does not introduce a systematic bias in the estimated param-
eters [74-76]. Second, the current iteration of CCM models
does not capture causal interactions between different
cortical visual areas. Third, like pRF estimates, it is likely
that the accuracy of the CCM-related estimates depends

on the spatial and temporal resolution, the distortion
and spatial spread of the BOLD signal, and the distribu-
tion of dural venous sinuses and vessel artifacts. Fourth,
although there is no need for stimulus-driven signals,
resting state signals—and thus also any estimated CCM
properties—are influenced by the environmental condi-
tions under which they were acquired. Factors such as eye
movements and exterior luminance may also influence esti-
mates. These limitations demonstrate that although the
CCM approach seems suitable to infer the presence or
absence of plasticity by associating connectivity strength with
cortical degeneration [75], it still requires careful experimen-
tation as well.

Some of the above limitations have recently been
addressed. For example, global search algorithms that help
to avoid local minima have also been applied to CCMs
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[74, 75]. Furthermore, new data-driven methods are able
to measure multiple and even overlapping connectopies
[67]. Although, currently establishing these connectopic
maps requires a very large number of participants, they
hold a promise of being able to reveal cortical and network
reorganization and plasticity one day [67].

4.3. Cortical Circuitry Models in Ophthalmic or Neurological
Diseases. The development of CCMs is a sequel to the classi-
cal pRF mapping. Hence, the available literature is still rela-
tively small. Nonetheless, the existing studies give a good
impression of the possible applications and the type of infor-
mation that these models can provide.

At this point in time, in particular, the CF modeling
approach has been applied in several ophthalmic disorders,
in which visual perception was either impaired or completely
absent. A study by Haak and colleagues found that in macular
degeneration, long-term deprivation of visual input had not
affected the underlying cortical circuitry [75]. This suggests
that the visual cortex retains the ability to process visual
information. In principle, following the restoration of visual
input, i.e., via retinal implants, such patients may thus recu-
perate from vision loss. Papanikolaou and collaborators
applied CF modeling to study the organization of area
hV5/MT+ in five patients with large visual field defects
resulting from either early visual areas or optic radiation
lesions [76]. They showed that in three of the five subjects,
the CFs between areas V1 and hV5/MT+ covered visual field
locations that overlapped with the scotoma. This indicates
that activity in the lesion projection zone in hV5/MT+ may
originate from spared V1. Bock and collaborators applied
the CF model to resting-state BOLD data acquired from nor-
mally sighted, early blind, and monocular patients in which
one of the eyes had failed to develop [74]. All subjects showed
retinotopic organization between V1 and V2/V3. Butt and
colleagues studied the cortical circuitry of the visual cortex
in blind observers and compared this to that of sighted con-
trols [70, 74]. They found a very minute change in the pattern
of fine-scale striate correlations between hemispheres, in
contrast to the highly similar connectivity pattern within
hemisphere. They concluded that the cortical connections
within a region (which can be a hemisphere) are independent
of visual experience. The above-cited studies show that, in
general, the visuotopic organization of the cortical circuitry
is maintained even after prolonged visual deprivation or
blindness, supporting that the plasticity of the adult visual
brain is limited (see Wandell and Smirnakis for a similar con-
clusion based on stimulus-driven mapping [4]). Moreover,
these studies suggest that CCMs may be able to capture the
integrity of cortical connections using both stimulus-driven
and resting-state data. This encourages the development of
new CCMs that can be applied to study how connected neu-
rons in different layers and columns interact.

4.4. Mesoscale Plasticity: Layer- and Column-Based Cortical
Circuitry Models. Measuring cortical reorganization at a
finer scale might reveal changes that are invisible or
masked at a coarser scale. With the recent advance in
ultra-high field functional MRI, the tools to examine the

human brain at a mesoscale in vivo have become available.
This enables assessing the presence of cortical reorganiza-
tion across cortical depth to measure the flow of informa-
tion across different cortical laminae—in particular feedback
and lateral inputs—and to infer the microcortical circuits by
studying their columnar organization.

Many of the opportunities and challenges in visual neu-
roscience provided by increases in MRI field strength have
been described in a recent review, to which we refer [78].
With respect to the topic of neuroplasticity, a study that
showed that pRF in the input (middle) layer have a smaller
RF than those in superficial and deeper intracortical layers
is of particular interest [79]. Although this study provides
hints about cortical organization, it exclusively relied on
stimulus-based modelling and thus does not truly inform
about the underlying circuitry. In order to bridge this gap,
we propose that the application of CCM-like approaches to
study short-range connections at laminar and columnar
levels is warranted.

The development of methods that reflect the mesoscale
circuitry should be able to answer various outstanding critical
questions in visual neuroscience and contribute with new
fundamental and clinically relevant insights into cortical
functioning and neuroplasticity. For example, following a
visual field defect, is the input/feedforward layer the one that
is most affected? Do neurons in the upper and deepest layers
of the lesion projection zone establish new connections to
healthy neurons in the input layer? At what level of cortical
processing do feedback and feedforward signals modulate
our conscious percepts? Are putative overlapping representa-
tions in ventral areas [38] perhaps encoded in distinct layers
of the visual cortex?

5. Conclusion

In this paper, we discussed (a) the role of pRF mapping to
cortically characterize visual areas and extrinsic and intrinsic
factors that influence the pRF estimates, (b) methodological
advances in retinotopic and connectopic mapping, and (c)
stimulus-driven and cortical circuitry models that can link
visual cortex organization, dynamics, and plasticity.

Although we fully acknowledge the important contribu-
tion of pRF mapping towards understanding the structure
and functioning of the visual cortex, we strongly argue
against a “blind” reliance on this technique when studying
neuroplasticity. The degree to which a change in signal
amplitude or pRF measurements—by themselves—reflects
that cortical reorganization remains to be determined: even
in the presence of a presumed stable cortical organization
in healthy participants, different pRF estimates may be
elicited due to a change in the task at hand, cognitive fac-
tors, and the type of stimulus used. For this reason, we
have stressed that prior to deciding that pRF changes are
the result of reorganization, one has to exclude that these
are due to different inputs, (implicit) task conditions, or
cognitive demands.

To improve the reliability of retinotopic mapping, more
complex models and computational approaches have been
developed with a noticeable trend to move from stimulus-
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driven to data-driven techniques. These efforts have resulted
in a multitude of new methods. Their specific use depends
upon the goal of the study and the neuronal population of
interest. Nevertheless, although these newer techniques pro-
vide clear improvements, they potentially retain the issues
associated with stimulus-driven approaches. Therefore, we
argue in favor of also considering alternative techniques to
study brain plasticity, in particular ones that directly assess
the neural circuitry rather than stimulus-driven responses
to estimate the extent of neuronal reorganization. As an
exemplary incentive, we propose a model that combines con-
nectivity with spatial sampling. In theory, such a model will
not only inform about the spatial sampling but also about
interactions between the linked neuronal populations.
Finally, we encourage the development and application of
models to capture the plasticity of layer-based circuitry at
the mesoscale.
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