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Abstract

Background: Inference of gene-regulatory networks (GRNs) is important for understanding behaviour and potential
treatment of biological systems. Knowledge about GRNs gained from transcriptome analysis can be increased by
multiple experiments and/or multiple stimuli. Since GRNs are complex and dynamical, appropriate methods and
algorithms are needed for constructing models describing these dynamics. Algorithms based on heuristic approaches
reduce the effort in parameter identification and computation time.

Results: The NetGenerator V2.0 algorithm, a heuristic for network inference, is proposed and described. It
automatically generates a system of differential equations modelling structure and dynamics of the network based on
time-resolved gene expression data. In contrast to a previous version, the inference considers multi-stimuli
multi-experiment data and contains different methods for integrating prior knowledge. The resulting significant
changes in the algorithmic procedures are explained in detail. NetGenerator is applied to relevant benchmark
examples evaluating the inference for data from experiments with different stimuli. Also, the underlying GRN of
chondrogenic differentiation, a real-world multi-stimulus problem, is inferred and analysed.

Conclusions: NetGenerator is able to determine the structure and parameters of GRNs and their dynamics. The new
features of the algorithm extend the range of possible experimental set-ups, results and biological interpretations.
Based upon benchmarks, the algorithm provides good results in terms of specificity, sensitivity, efficiency andmodel fit.
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Background
For the adaptation of biological systems towards external
and environmental stimuli usually a complex interaction
network of intracellular biochemical components is trig-
gered. That includes changes in the gene expression at
both the mRNA and protein level. Considering a certain
stimulus as an input signal to the system and mRNA or
protein levels as outputs, the connecting network may
include interactions between signal transduction interme-
diates: transcription factors and target genes. Generally,
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the term “gene-regulatory network” (GRN) summarises
genetic dependencies, which describe the influence of
gene expression by transcriptional regulation, [1].
The inference (elucidation) of GRNs is important for

understanding intracellular processes and for potential
manipulation of the system either by specific gene muta-
tions, knock-downs or by treatment of the cells with
drugs, e.g. for medical purposes. Towards a full under-
standing in terms of a complete network, partial models
of the network give intermediate results which help to
refine the knowledge and to design new experiments.
Still, many gene-regulated cellular functions, e.g. stem
cell differentiation, depend on more than one stimulus
and the cross-talk within the GRN, e.g. [2]. On the other
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hand, the stimuli might influence distinct components of
a GRN. Such biologically relevant dependencies can be
investigated by applying two or more stimuli and mea-
suring the influenced genes. This approach can be called
multi-stimuli experiment. If this is carried out in two
or more separate experiments, one derives multi-stimuli
multi-experiment data. Only algorithms with the ability to
consider those data can infer such dependencies.
As shown in review articles, e.g. [1,3,4], there are dif-

ferent inference methods using various sources of infor-
mation thus leading to different results. Amongst the
typically mathematical models the application of differ-
ential equations describing time-resolved gene expression
data (“time series”) has been proven successful. Unfortu-
nately the potential complexity of the networks leads to
a high number of structural connections and parameters
in contrast to the comparably small number of available
measurement data. Apart from the problem of identifi-
ability, the number of possible parameter combinations
is very large, thus resulting in high computational costs.
Therefore, appropriate heuristic approaches can reduce
this amount while providing comparably good inference
results. NetGenerator is a heuristic algorithm, which con-
siders time series data to automatically infer GRNs influ-
enced by an external stimulus, [5] and [6]. The approach
combines a structure (network topology) and parame-
ter optimisation. The final result in form of a differential
equations model can be simulated and displayed graphi-
cally. An earlier version with less functionality was applied
successfully to biological problems, e.g. the regulatory net-
work of iron acquisition in Candida albicans and the
analysis of the Aspergillus fumigatus infection process, [7]
and [8].
In the present article, we propose NetGenerator V2.0,

an extended version of the algorithm which enables the
use of multi-stimuli multi-experiment data, thus increas-
ing the number of addressable biological questions. This
causes significant changes in the algorithmic procedures,
especially the processing of this kind of data as well as the
structure and parameter optimisation. Also, some other
updated features will be outlined, for example the different
modes of prior knowledge integration, further knowledge-
based procedures, options of graphical outputs, changed
non-linear modelling and re-implementation in the pro-
gramming language / statistical computing environment
R, [9]. Further, in comparison to the previous version,
some of the algorithmic procedures will be explained in
more detail, because they are important for understanding
the overall method.
The successful application of the novel NetGenera-

tor will be shown by inference of relevant multi-stimuli
multi-experiment benchmark examples, namely systems
with a different degree of cross-talk. Two aspects will be
assessed: (i) reproduction of the benchmark systems (data

and structure) and (ii) refinement / extension of a net-
work structure by combination of different experimental
data. Furthermore, the applicability of NetGenerator to
a real-world problem is presented: after describing nec-
essary data pre-processing steps, the underlying GRN
of chondrogenic differentiation of human mesenchymal
stem cells, a process influenced by the two stimuli TGF-
beta1 and BMP2, is inferred.

Methods
In the following subsections the necessary background
knowledge and methodology of the NetGenerator algo-
rithm is described. In comparison to previous publi-
cations this includes new, updated and more detailed
algorithmic procedures. First, the motivation and the
goals are defined by considering the biological data. Nec-
essary steps of data pre-processing are also explained
within this subsection. Subsequently, ordinary differential
equations and some of their properties are presented as
a means for modelling the dynamics of gene regulatory
networks. Then the heuristic approach of the algorithm
is explained including the structure and parameter iden-
tification (here: optimisation-based determination). The
next important topic will be the consideration of prior
knowledge, followed by a subsection about the numeri-
cal simulation as well as the representation of modelling
and graphical results. Finally, some important options and
their influence to the algorithm are presented.

Time series data and pre-processing
Gene expression time series data as required by Net-
Generator are typically derived from microarray mea-
surements. Before starting the network inference, raw
microarray data have to be processed comprising a series
of steps. The three main steps are displayed in Figure 1:
(i) microarray pre-processing, (ii) gene selection and
(iii) time series scaling.
Microarray pre-processing applies multiple procedures

to remove non-biological noise from the data and to
estimate gene expression levels. Custom probe-sets,
as assembled by [10], reduce the number of cross-
hybridising probes. This initial reduction accomplishes a
one-to-one correspondence between probe-set and gene.
Background correction, normalisation and summarisa-
tion are provided by the RMA package, [11], resulting
in logarithmised gene expression estimates, which can be
used for the next processing step.
Gene selection (“filtering”) is the important second

step of processing, since reliable network inference is
only feasible for a sufficient number of measurements
per gene [1]. This number is often limited and therefore
a selection of genes for modelling is inevitable. Candi-
date genes should show pronounced temporal dynam-
ics and significant differences compared to the control
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Microarray Pre-Processing
(1) Custom Probe Sets (2) Background Correction
(3) Normalisation (4) Summarisation

Gene Selection (Gene Filtering)
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Inference
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Knowledge

Figure 1 Data pre-processing work flow. This work flow illustrates
inputs and outputs of NetGenerator as well as recommended data
pre-processing steps: pre-processing of microarray data, selection of
genes, standardisation of gene expression time series.

group. Statistical methods for identification of differen-
tially expressed genes are widely used for gene selection.
We use the LIMMA tool, which can operate on time
series data determining significance of gene expression
changes over time [12]. The statistical test (moderated
t-statistics) operates on contrast terms, defined by sub-
tracting the control group at each time point. LIMMA
returns a ranked table for all genes containing columns
for gene name, fold-change and adjusted p-values. Differ-
entially expressed genes are selected by a combination of
adjusted p-value cut-off and fold-change criterion.
Time series standardisation is the last processing step

including centering and scaling of each time series. The
centering procedure subtracts the original initial value at
the starting time point from all values such that the trans-
formed time series starts from zero. In the subsequent
scaling procedure each time series is divided by its max-
imum (absolute value) across all provided experimental
data. This leads to gene-wise scaled data and gene expres-
sion time series varying within −1 and 1. The resulting
data provided to the NetGenerator algorithm are stored
in Xe and U

e
, i.e. matrices for the time series (output)

and stimuli (input) data, respectively, for all experiments
e = 1, . . . , E. Therefore, the dimensions are Xe : Te × N

and U
e

: Te × M with Te being the number of experi-
mental time points,N being the number of time series and
M being the number of inputs. Furthermore, NetGenera-
tor provides the option of introducing additional artificial
data points by cubic spline interpolation.

GRNs considered as linear time-invariant systems
The NetGenerator algorithm infers dynamical models
of GRNs. Their general non-linear dynamics can be
described by a set of first-order time-invariant ordinary
differential equations (ODEs), initial conditions, and time
range (validity period)

ẋ(t) = f
(
x(t), u(t), θ

)
x0 = x(t0)
t ≥ t0

(1)

with the vector of state variables x and their changes ẋ as
a function f of state variables, input vector u and param-
eter vector θ . The state variables and inputs depend on
time t, the independent variable, that is dropped in fur-
ther equations. The description is valid for a certain time
range starting at t0 from the initial conditions for the state
variables x0. If not stated otherwise each of the state vari-
ables corresponds to one specific output variable, i.e. one
time series. The dimensions of the variables are x : N ×1,
u : M × 1, and θ : P × 1, with N being the number of
state variables,M the number of inputs and P the number
of parameters.
Even though NetGenerator has a non-linear modelling

option, the core mechanisms are based on linear mod-
elling. Under the assumption that most networks can
be considered linear and time-invariant, the differential
equation system in (1) can be modified resulting in the
linear state-space equation system

ẋ = Ax + Bu (2)

with the system or interaction matrix A : N × N and
the input matrix B : N × M. Most important for the
understanding of the biological systems properties and the
heuristic approach of the NetGenerator algorithm is the
systemmatrixA and its elements ai,j, i, j ∈ N , because they
describe the dynamics and the coupling of state variables.
Under the assumption, that the behaviour of a GRN

is described sufficiently by indirect transcriptional events
and not by a conversion of material, activation (ai,j > 0)
or inhibition (ai,j < 0) of state variable xi is not changing
the value of the originating state variable xj .
Without any further assumptions all elements of A and

B, adding up toN2+M·N , had to be determined. Typically,
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in GRNs there are far less connections than theoretically
possible leading to a sparse matrixA. Regarding this prop-
erty and avoiding problems occurring by the number of
usually available measurement data (parameter identifia-
bility, local or unique solutions, computational effort) the
NetGenerator algorithm applies a heuristic approach as
described in the next subsection.

Heuristicmulti-stimuli multi-experiment approach
The novel NetGenerator algorithm is a heuristic multi-
stimuli and multi-experiment approach. The heuristic
is based on the observation that in GRNs the number
of connections is much lower than all possible connec-
tions. Further, since the applied stimulus is the cause
of the observed dynamical changes, the network can be
considered as a hierarchical structure originating from
the input. The NetGenerator algorithm implements both
observations by an iterative development of the state-
space system (2) by including coupled sub-models for each
time series based on a structure optimisation iteratively
increasing the number of connections. Structural changes
are taking place only if they result in a better adaptation

of simulated to measured behaviour. The terms multi-
stimuli and multi-experiment mean that the extended
algorithm can handle more than one changed input and
data of several experiments, respectively.
In Figure 2 (A) the main work flow of the algorithm

is displayed. One outer loop, starting with empty A and
B, iterates over all sub-models (state variables) to which
the measured time series should be linked. At the ith
iteration step of the outer loop already i − 1 time series
have been included in the model as sub-models. There are
N − i + 1 remaining time series to be included. The ith
state equation (sub-model) would be described by

ẋi =
∑
n∈Ni

ai,nxn +
∑
m∈Mi

bi,mum (3)

containing connections from state variables, Ni being
the indices of state-state connections including the self-
regulatory term ai,ixi, and connections from inputs with
Mi being the indices of input-state connections for the
considered state variable xi. That means that only the
parameters of sub-models have to be identified.

Iterative Development
of ODE-System
(Coupled Sub-models)

Start

Basic Identification
of Remaining
Time Series

All Time
Series Tested?

Improvement of 
Best Time Series

All Time
Series Included?

Inner Loop

Outer Loop

Yes

Yes

No

No

“Pruning”
=

Remove Connections

“Growing”
=

Add Connections

“Higher Order”
=

Increase
Sub-model Order

“Pruning”
=

Remove Connections

A B

Improvement of
Best Time Series

Figure 2 NetGenerator work flow. NetGenerator work flow displaying the main steps of the algorithm (A) and the improvement of best time
series (B). In the main work flow, the outer loop iterates over all state variables (sub-models), while in the inner loop the remaining time series are
tested, i.e. a basic structure and parameters are identified. The best time series is improved further (“Growing”, “Higher Order”, “Pruning”) and
included into the model as a state variable.
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Since the algorithm aims at a low number of parameters,
i.e. small |Ni| ≤ N and |Mi| ≤ M, the inner loop starts
with basicmodels for the remaining time series containing
only self-regulation, one input term as well as connections
from “fix” prior knowledge if available, see respective sub-
section. Those basic structures can be extended by further
incoming connections (“growing”) from already included
sub-models and further inputs. Every structural change
requires a parameter identification of the active connec-
tions with respect to the considered time series, as will be
explained later in the corresponding subsection. For every
different set of parameters the resulting model needs to
be simulated, that is the numerical solution of an initial
value problem has to be found, as will be described later
in another subsection.
The basic sub-model which reproduces one of the

remaining time series best, is chosen for further improve-
ment, for details see Figure 2 (B), and included into the
model as a state variable. The most important structural
improvements are

• “Growing”: further connections added
• “Higher Order”: increase sub-model order
• “Pruning”: connections removed

In the improvement step “growing” is not restricted to
connections from time series that are already included
in the model. For describing the influence of time series
that have not yet been included as sub-models, the cor-
responding measured and interpolated data are used as
inputs. Those connections form global feedbacks in the
final model.
The increase of the dynamical order within the descrip-

tion of a time series is realised by r − 1 additional
equations or intermediate state variables leading to the
following form:

ẋi = ai,ixi +
∑

n∈Ni\{i}
ai,nxn +

∑
m∈Mi\{i}

bi,mum

ẋi+1 = ai,ixi+1 + xi
...

ẋi+r−1 = ai,ixi+r−1 + xi+r−2

(4)

In this way the dynamics of a certain sub-model are
described by an rth order integrator chain allowing
for reproduction of processes with more complex time
courses. It should be emphasised that by applying this
approach the number of parameters is not increased but
on the other hand the number of state variables becomes
larger than the number of time series data. In that case
only the state variable with the highest order in such a sub-
model is to be compared to time series data. Still, for the
sake of simplicity all following algorithmic procedures are
described for first-order sub-models.

In terms of the iterative process of including sub-models
the different elements of the final system matrix

A =

⎡
⎢⎢⎢⎢⎢⎣

a1,1 a1,2 · · · a1,Ns

a2,1 a2,2
...

. . .
aNs ,1 aNs ,Ns

⎤
⎥⎥⎥⎥⎥⎦

(5)

describe forward, local feedback and global feed-
back connections. Elements below the main diagonal
become forward connections, whereas the main diagonal
elements a1,1, . . . , aNs,Ns describe local feedbacks or self-
regulations, while the elements above the main diagonal
represent global feedbacks. From a biological point of
view the local feedbacks describe different mechanisms
including not only feedback regulation, but also the
important process of mRNA-degradation.
All the previously described structural procedures and

the corresponding parameter identification are controlled
by a-priori defined settings and options of the algorithm.
Some of them are balancing network complexity and
error between measurement and simulation. For example,
additional connections are rejected if they are not improv-
ing the objective function value to a significant extent
while on the other hand connections are removed only
if they are not worsening the result significantly. Further
important options of the algorithm are explained in the
respective subsection.

Parameter identification
The parameter values of an active sub-model are iden-
tified by a non-linear optimisation, minimising the error
between simulated and measured time series data of mul-
tiple experiments. The initial parameters required for this
optimisation are obtained by a linear regression. For one
specific first order state variable xi equation (3) can be
rewritten as

ẋi = [
u1, . . . , uMi , x1, . . . , xNi

] · θ i,init (6)

with

θ i,init = [
b1, . . . , bMi , a1, . . . , aNi

]T (7)

being the parameter vector of some of the elements of B
and A, respectively, as determined by structural optimi-
sation using only a subset of inputs and state variables
influencing the considered ith state variable. Satisfying the
measured data in an optimal way the unknown parame-
ters can be determined by the following equation of linear
regression, see e.g. [13],

θ i,init =
([

U X
]T

W
[
U X

])−1

×
([

U X
]T

W ẋi,num

) (8)
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with the weight matrix W and the state variable deriva-
tives ẋi,num. The latter are calculated by numeric differ-
entiation of the respective time series (output) data. This
means the vector ẋi,num is not the vector of state variables
but the vector of time points of the considered time series
derivatives. Its length (T = K + Kinterp) equals the sum of
the number ofmeasurement time points and interpolation
time points, as outlined in the subsection on data pre-
processing. The reason for the use of interpolated data
is the avoidance of over-fitting. The different influence of
measured and interpolated values is considered in the ele-
ments of the weight matrix W possessing the dimensions
T×T . Since themodel must be valid for all E experiments,
the respective input and time series data are concate-
nated, indeed resulting in T = ∑

Te, e = 1, . . . , E. This
becomes possible because the regression approach implic-
itly assumes a “dynamic independence” of data points. The
dimensions of the other variables are U : T × |Mi| and
X : T × |Ni|, with the number of rows of each matrix also
equalling to the total number of time points. Both dimen-
sions of U reflect necessary algorithmic changes due to
the consideration of multi-input multi-experiment data in
this NetGenerator version, because |Mi| > 1 represents
multiple inputs while the concatenated data of length T
considers multiple experiments. For the sake of complete-
ness it should be mentioned that higher-order sub-models
are initialised first by their first-order equation and then
adapted such that total time constant and static gain
remain the same.
The non-linear optimisation of the parameters for the

ith sub-model, initialised by the solution of the linear
regression (8), is based on the minimisation of the objec-
tive function (model error)

Ji,output =
E∑

e=1

Te,i∑
k=1

[
w(tk) · (

xe,i(tk) − x̂e,i(tk , θ i)
)2] (9)

describing the deviation between measured xe,i and simu-
lated x̂e,i time series at different time points tk depending
on the parameter vector θ i. The minimisation following
(9) is an optimisation problem of the least squares type
featuring a double sum of experiments e = 1, . . . , E and
time points k = 1, . . . ,Te,i. In contrast to the objective
function applied in former NetGenerator versions, now E
multiple experiments are considered. The simulated time
series are compared to measured and also interpolated
data weighed by different w(tk) avoiding over-fitting. A
further weighing based on properties of the data, like for
example the maximal range, is not necessary since the
described pre-processing normalises and scales the data.
For the optimisation problem, the new NetGenerator
implementation applies the “L-BFGS-B” algorithm, [14],

of the optim R-function, which has the ability to solve
bounded non-linear optimisation problems.

Consideration of prior knowledge
For improving the results, prior knowledge about the
network connections can be integrated into the network
inference. This version of NetGenerator provides two
modes for integration of prior knowledge about connec-
tions of stimuli on time series as well as between the
time series: (i) “fix” and (ii) “flexible”. For both modes the
knowledge can be provided in form of connection matri-
ces Afix|flexible and Bfix|flexible resembling the systemmatrix
and input matrix, respectively, as well as additional matri-
ces containing reliability scores of the connections. The
connection matrices can contain single-valued informa-
tion about connection (1), no connection (0), activation
(10) and inhibition (−10). Fix integration represents rigid
model requirements that cannot be ignored by the heuris-
tic. Therefore fix connections are always included in the
model structure.
Flexible integration allows the inference heuristic to

ignore prior knowledge when the model fit is substantially
worsened. This is represented by an additional term in the
objective function (model error) now resulting in

Ji = Ji,output + λ

⎡
⎣∑
j∈Ni

sAi,jd
A
i,j +

∑
k∈Mi

sBi,kd
B
i,k

⎤
⎦ . (10)

The term Ji,output corresponds to the previously in (9)
defined evaluation of output deviation, while λ weighs
the overall consideration of prior knowledge, s represent
the score values of the respective prior knowledge and d
describe the distances between the prior knowledge and
the modelled structure (incoming connections) evaluated
by comparison of signs. Thatmeans the resulting elements
of A and B are converted into the described notation of
0, 1, 10, and −10, thus permitting a comparison with ele-
ments of flexible prior knowledge connection matrices.
Here we consider two types of prior knowledge origin:
(i) gene interactions automatically extracted from pub-
lished literature and (ii) predicted transcription factor
binding sites (TFBS) in the proximal promoter region of
target genes.
For the extraction from published literature the soft-

ware Pathway Studio V9 provides a gene relation database
termed ResNet Mammalian, which has been compiled
by automatic extraction of interactions from PubMed, as
evaluated by [15]. As shown in the latter publication, gene
relations derived from Pathway Studio V9 can be consid-
ered of high quality, since in general scientific literature is
a reliable resource and the false positive rate is reported to
be about 10 %.



Weber et al. BMC Systems Biology 2013, 7:1 Page 7 of 16
http://www.biomedcentral.com/1752-0509/7/1

Further, the tool matrix-scan from the RSAT toolbox
determines putative TFBS in the promoter regions of
target genes, which might be involved in transcriptional
regulation [16]. This approach requires known sequence
motifs of the investigated transcription factors as well
as promoter sequences. Sequence motifs are stored in
form of position weight matrices (PWM), which describe
relative nucleotide frequencies for each motif position,
as can be obtained from the Transfac database (Version
2010) [17]. Gene promoter sequences are available from
Ensembl using biomaRt, [18].
Additional prior knowledge about the regulatory poten-

tial of the individual genes can be obtained by exam-
ining the known molecular functions. For example, the
interaction between genes coding for non-regulatory pro-
teins, such as structural proteins, and target genes can be
assigned “no connection”.

Simulation and graphical output
For every comparison of measurement and simulation as
well as the generation of results the model equations (2)
must be integrated. This corresponds to an initial value
problem that is solved numerically. Since the recent imple-
mentation of the NetGenerator algorithm is in R, repeated
operations of certain types take a long time. Therefore,
the model itself is implemented in C, created iteratively
and simulated applying the implicit method “impAdams”
of the R-package deSolve, [19]. The necessary initial
conditions x0 = x(t0) are either measurement data or
extrapolated measurement data typically at t0 = 0 of the
respective time scale.
The final result of the NetGenerator algorithm is

a parametrised model of the considered GRN. More-
over, the new implementation of the algorithm con-
tains important graphical output facilities which have
been extended to meet the needs of displaying multi-
input multi-experiment data as well as different results
concerning prior knowledge. First, there is a graphical
comparison of measurements and simulations, showing
the single measured data points and the corresponding
simulated trajectory. This can be done either by com-
parison of each component (gene) over all experiments
or by displaying the data for each experiment indepen-
dently. Second the resulting network structure can be
displayed as a directed graph applying the language DOT
and the software collection Graphviz, [20]. Nodes denote
the biochemical components, e.g. genes, and edges dis-
play connections of either activation or inhibition. In
case of applying prior knowledge (see respective subsec-
tion), a comparison between the inferred network and this
knowledge is displayed with a colour code. Black edges
denote inferred connections without prior knowledge,
green edges present an agreement, red edges could either
have a wrong sign (e.g. activation instead of inhibition) or

be connections that do not comply with prior knowledge,
while grey dashed edges stand for prior knowledge not
reproduced in the inferred network.

Further settings and updatedmethods
The NetGenerator algorithm itself can be controlled by
parameters (settings) and also contains further methods
that will be summarised in the following. An important
setting is the “allowedError” that controls the structure
optimisation. If the objective function value of a cer-
tain sub-model structure is worse than this value the
model structure must be extended as described. Therefore
smaller values of “allowedError” are indirectly leading to
more complex structures. Further important settings are
themaximal number of connections and sub-model order.
Additional updated or new methods, not described

extensively here, include non-linear modelling and
knowledge-based methods. The optional non-linear
modelling approach contains an additional sigmoid trans-
formation of the linear combination described in this
publication. This transformation has its biological back-
ground in the saturating behaviour of gene expression.
The additional non-linear parameters of each sub-model
are determined by the described non-linear parame-
ter identification, too. Amongst further knowledge-based
methods, the most important presents the possibility of
retrieving network information from databases and com-
bining this information with the inferred model in a
directed graph. In that way, the biological interpretation
can be extended by introducing unmeasured components
into the network structure.

Availability
The algorithm has been implemented as a package in the
programming language / statistical computing environ-
ment R, [9]. It is available in form of a testing bundle
containing both the algorithm and the examples at
www.biocontrol-jena.com/NetGenerator/NetGeneratorB
undle.zip.

Results
Example networks
We applied the NetGenerator algorithm, which has been
described extensively in the Methods section, to 3 bench-
mark examples and 1 real-world example to examine the
performance of our approach. At first, we consider the
three benchmark systems, their corresponding artificial
data and inferred networks in order to test the reliability
and performance of our algorithm. Particularly, we inves-
tigated whether network inference from multiple data
sets, originating from different stimulation experiments, is
beneficial. Finally, we applied NetGenerator to microarray
time series data gained from human mesenchymal stem
cells. We focussed on the modelling of gene regulation

http://www.biocontrol-jena.com/NetGenerator/NetGeneratorBundle.zip
http://www.biocontrol-jena.com/NetGenerator/NetGeneratorBundle.zip


Weber et al. BMC Systems Biology 2013, 7:1 Page 8 of 16
http://www.biomedcentral.com/1752-0509/7/1

that occurs during in vitro stimulation of chondrogenic
differentiation of these cells, with emphasis on the differ-
ent effects triggered by multiple stimuli in the inferred
model.

Benchmark examples
We constructed three fully parametrised benchmark sys-
tems based on linear time-invariant descriptions, i.e. they
are composed of differential equations representing the
time series of genes and two external stimuli (u1 and u2).
The systems are characterised by a different degree of
cross-talk between the components with respect to the
external stimuli, that is “full cross-talk” (FCT): all com-
ponents are influenced by all stimuli, “limited or low
cross-talk” (LCT): some of the components are influ-
enced by more than one stimulus, and “no cross-talk”
(NCT): the stimuli influence distinct components result-
ing in separate networks. They also differ in the number
of genes (FCT: 5, LCT: 4, NCT: 7) and the parameters.
The artificial data were generated exhibiting characteris-
tics of real microarray time series data, i.e. low number of
time points (six), exponentially increasing time intervals,
and additional normally distributed noise N (0, 0.052). In
summary, this procedure led to sample data sets contain-
ing matrices with number of rows equalling number of
genes and six columns (time points).
Evaluation measures. The network inference of bench-

mark systems can be evaluated by determining the final
objective function value (model error) J according to
equation (10), the computation time tC, and statisti-
cal measures that quantify the performance of the net-
work inference by comparing the known structure with
the inferred structure. The indicated computation times
resulted from running the examples on a x86-PC with a
2.33GHz CPU. The measures comprise sensitivity (SE),
specificity (SP), precision (PR) and F-measure (FM). The
definitions of the measures take into account the correctly
integrated edges (true positives, TP), the falsely integrated
edges (false positives, FP), the truly missing edges (true
negatives, TN) and true edges that are not contained in
the model result (FN). False positives (FP) were further
grouped into FPs, connections integrated with wrong sign
and FPn, modelled interactions which are not present in
the real network. This leads to the following definitions:

SE = TP/(TP + FN + FPs)
SP = TN/(TN + FPn)
PR = TP/(TP + FPn + FPs)
FM = 2 · PR · SE/(PR + SE)

For all three benchmark examples, we evaluated the
inference by those statistical measures showing the repro-
duction of the system structure and time series by the
model.

FCT scenarios and network inference evaluation. For
FCT, artificial data generation and subsequent network
inference was performed within three scenarios: (i) “S1”:
single experiment applying only u1, (ii) “S2”: single exper-
iment applying only u2 and (iii) “M”: multiple experiment
integrating experiments “S1” and “S2”. For the special case
of FCT, the scenarios allowed us to directly compare the
inference of multiple stimuli data sets with the inferences
of single stimulus data sets.
We applied the network inference to each of the three

scenarios (“M”, “S1”, “S2”) for a series of 10 different set-
tings varying the previously described “allowedError”=
0.001, 0.002, . . . , 0.01 resulting in 10models, see Figure 3.
Results for all statistical measures are depicted as con-
nected points in individual boxes. The three scenar-
ios are plotted in distinct colours (“M”: blue, “S1”: red,
“S2”: green) in each box. With regard to sensitivity, M
models performs best, showing gradually decreasing val-
ues. Specificity obtains highest values for the first and
secondmodel. F-measure results, which benefit from high
sensitivity values, display good performance for all M
models. The resulting model error increases gradually as
expected, due to the increased “allowedError”, which is
defined per time series. Analysing these results, we found
“M 1” (TP = 18, TN = 15, FPn = 2, FPs = 0, FN = 0)
to be optimal with respect to the evaluation measures
(SE = 1, SP = 0.88, FM = 0.94, J = 0.004). For this
model, the computation time was tC = 92 s.
Dynamics of this model are displayed in Figure 4 show-

ing a good reproduction of all time series for each of the
two experiments. In Figure 5, the corresponding regula-
tory network is presented in form of a directed graph.
Here, the colour code is not denoting a reproduction
of prior knowledge but a graphical means displaying TP
(green), FP (red) and FN (grey/dashed) connections.
LCT and NCT network inference evaluation. In order to

test whether NetGenerator is capable of inferring different
cross-talk structures, we generated benchmark systems
LCT and NCT. Both contain biologically motivated types
of cross-talk, such as cross-talk of downstream compo-
nents or separate sub-networks (no cross-talk). Inference
of both networks was successful, shown by high statis-
tical measures (SELCT = 1, SPLCT = 1, FMLCT = 1,
JLCT = 0.0007, SENCT = 0.9, SPNCT = 0.98, FMNCT =
0.92, JNCT = 0.003), the inferred network structures in
Figure 6 and Figure 7, and the good reproduction of the
time courses (Additional file 1 and Additional file 2). The
computation time for inference of LCT and NCT was
tC = 28 s and tC = 33 s, respectively.

Chondrogenesismodel
Background of chondrogenic data. Human mesenchymal
stem cells (hMSC) are multi-potent adult stem cells that
have the capacity to differentiate into a variety of cell
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Figure 5 “Full cross-talk” example: inferred network. Network
structure of the “full cross-talk” (FCT) model containing two simulated
inputs (Input1, Input2) and five gene nodes. Inferred connections are
highlighted in green (TP=18), red (FPn = 2) and dashed grey
(FN=0).

types depending on the external stimulus, [2]. Regula-
tion of lineage-specific genes is crucial in this temporal
process, [21]. Transforming growth factor (TGF)-beta1 is
essential for induction of chondrocyte differentiation of
hMSC, a process which is strongly enhanced by the addi-
tional presence of bone morphogenetic protein (BMP)2,
[22] and [23]. In this section, we describe the comple-
mentary effects of TGF-beta1 and BMP2 by multi-stimuli
multi-experiment inference applying the NetGenerator
algorithm.
Microarray time series data. hMSC from bone mar-

row were commercially obtained (Lonza) and cultured
as described in [2]. To induce chondrogenic differenti-
ation trypsinised hMSC were pelleted and subsequently
incubated in culture medium supplemented with 100 nM
dexamethasone, 10 ng/mL TGF-beta1 and, if applica-
ble, 50 ng/mL BMP2. Time-dependent gene expres-
sion was studied under three experimental conditions:
(i) following treatment with TGF-beta1 (“T”), (ii) fol-
lowing treatment with TGF-beta1 + BMP2 (“TB”) and
(iii) untreated hMSC as a control. At 10 different time
points (0, 3, 6, 12, 24, 48, 72, 128, 256, 384) h after addi-
tion of the stimuli, RNA was isolated from three technical
replicates per time point and measured on Affymetrix
HG-U133a microarrays.
Pre-processing and filtering. Raw microarray data was

pre-processed as described in the corresponding sub-

section. This included the use of custom chip defini-
tion files provided by [10] and application of the RMA
method [11]. This procedure resulted in logarithmised
gene expression estimates for 12 095 genes.
Modelling a small-scale GRN using microarray data

requires adequate filtering of genes. We tested all genes
for differential expression, used functional annotation and
expert knowledge. Differentially expressed genes were
identified for both experiments (“T”, “TB”) by comput-
ing adjusted p-values using LIMMA. All genes with an
adjusted p-value less than 10−10 and an absolute fold-
change greater than 2 for any time point were consid-
ered significant. Using those criteria, 192 genes were
found to be differentially expressed compared to con-
trol as well as between “T” and “TB”. Subsequently,
we selected from this group 10 annotated transcrip-
tion factors (GO:0003700, sequence-specific DNA bind-
ing transcription factor activity) and associated 5 of them
(SOX9, MEF2C, MSX1, TRPS1, SATB2) with our inves-
tigated process (GO:0051216, cartilage development).
Those genes may be involved in promoter-dependent reg-
ulation, which is important for binding site predictions.
Furthermore, we added COL2A1, ACAN, COL10A1, all
three essential marker genes of chondrocyte differenti-
ation, which encode essential structural proteins of the
extracellular matrix.

Figure 6 “Limited cross-talk” example: inferred network.
Network structure of the “limited cross-talk” (LCT) model containing
two simulated inputs (Input1, Input2) and four gene nodes. Inferred
connections are highlighted in green (TP = 9), red (FPn=0) and
dashed grey (FN = 0).
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Figure 7 “No cross-talk” example: inferred network. Network structure of the “no cross-talk” (NCT) model containing two simulated inputs
(Input1, Input2) and seven gene nodes. Inferred connections are highlighted in green (TP = 18), red (FPn=1) and dashed grey (FN = 2).

Prior knowledge. Prior knowledge was taken into
account as described in the corresponding sub-section.
Gene interactions were retrieved from the Pathway Studio
ResNet Mammalian database. We obtained 6 gene-gene
and 5 input-gene regulatory interactions. Gene-gene
interactions were passed as flexible prior knowledge to
NetGenerator. Input-gene interactions were not inte-
grated. Additionally, potential gene interactions were
determined by binding site predictions. For this purpose,
we obtained PWMs for SOX9, MEF2C and MSX1 from
the Transfac database and promoter sequences 1000 bp
upstream from the transcription start site. Both PWMs
and sequences were loaded into matrix-scan from RSAT,
which is performed with default options (weight-score >

1, p-value < 10−4) and organism-specific estimation of
background nucleotide frequencies. The resulting signif-
icant binding sites have been listed in the table of Addi-
tional file 3. The observed high significance of all matches
minimises the risk obtaining similar results from random
sequences.
Network inference of multi-stimuli (TGF-beta1 and

BMP2) multi-experiment data. After pre-processing, the
input and time series data of the microarray experiments
were passed to NetGenerator for automatic network
inference. According to the experimental set-up, the avail-
able data sets describe two experiments: only TGF-beta1
stimulation (“T”) and TGF-beta1 + BMP2 stimulation
(“TB”). This is mirrored by the two distinct input data

matrices both describing the respective stimuli by step
functions

U
T

=

⎡
⎢⎢⎢⎢⎢⎣

1 0
1 0
...

...
1 0

⎤
⎥⎥⎥⎥⎥⎦
, U

TB
=

⎡
⎢⎢⎢⎢⎢⎣

1 1
1 1
...

...
1 1

⎤
⎥⎥⎥⎥⎥⎦

Model evaluation and validation. The inference results
of the chondrogenic system, the GRN and the graphi-
cal comparison of time series, are displayed in Figure 8
and Additional file 4, respectively. The resulting network
contains 20 connections: 14 gene-gene connections and
6 input-gene connections. Compared to the prior knowl-
edge, there are 10 green connections (consistent), 1 red
connection (wrong sign) and 3 blue connections (addi-
tional colour code for predicted binding site).
For validation, we performed resampling which is based

on random perturbation of time series data. A Gaus-
sian noise component N (0, 0.052) was added to the time
series data which is used for subsequent model infer-
ence. Repeated performance (100×) led to a series of
inference results as well as relative frequencies for each
of the connections of the nominal model, i.e. the pro-
portion of models containing that specific connection.
Those frequencies imply a reliability ranking of all nom-
inal connections. Most of the connections were inferred
with high frequency, (76±24)%, see Figure 8. Particularly,
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Figure 8 Chondrogenesis system: inferred network. Network of the chondrogenesis system, which contains two inputs (TGF-beta1 and BMP2).
Nodes represent either transcription factor genes (SOX9, MEF2C, MSX1, TRPS1, SATB2) or genes coding for structural proteins (COL2A1, COL10A1,
ACAN). Connections are coloured in green (consistent with prior knowledge), red (contrary to prior knowledge), blue (predicted connection with
existing binding site) and black (predicted interaction). Connection widths and percentage labels illustrate the frequency of occurrence in the
validation procedure.

this applies to connections which reflect prior knowledge.
Also, inferred connections which are associated with a
predicted binding site (blue colour) were present in more
than 50% of the models.
Network interpretation. SOX9 exhibits a central role in

this chondrogenic network and is activated by both TGF-
beta1 and BMP2. This indicates a complementary effect
of both stimuli on the expression of SOX9. Activated
SOX9 drives the expression of its target genes COL2A1,
ACAN and COL10A1 [24-26]. This regulation marks the
essential formation of cartilage-specific structural compo-
nents of the extra-cellular matrix and the differentiation of
hMSC towards chondrocytes. Beside this process, SOX9
also activates the repressor gene TRPS1 and vice versa.
Regulatory interactions between both factors has not yet
been addressed in the literature. Additionally, the SOX9
binding motif is present in the proximal promoter of the
TRPS1 gene according to the prior knowledge. There is
also a modelled effect from TRPS1 on MEF2C, which in
turn activates COL10A1 and ACAN, but represses SOX9.
This represents a negative global feedback from MEF2C
on SOX9 in our model. MEF2C also represses the expres-
sion of MSX1, which is solely activated by BMP2 stimulus
and activates COL2A1 according to the prior knowl-
edge [27]. MSX1 also activates the SATB2 gene, which
in turn activates MEF2C expression. Negative regulation
of ACAN by TGF-beta1 is contrary to prior knowledge,

as indicated by the red connection of the network graph.
However, TGF-beta1 can also activate ACAN indirectly
through SOX9, [24]. In summary, the central player SOX9
is influenced by both TGF-beta1 and BMP2. Essential
structural proteins are not solely regulated by SOX9, but
also by other transcription factors (MEFC, MSX1). More-
over, SOX9 and MSX1 are repressed by MEF2C through
negative feedback that involves TRPS1 and SATB2.

Discussion
TheNetGenerator algorithm for automatic network infer-
ence from multi-input multi-experiment time series data
and prior knowledge, described in the methods section,
will be classified and distinguished from other methods
in the next sub-section. Therefore, its properties will be
reviewed and justified showing advantages and disadvan-
tages to other approaches. Our discussion contains a wide
spectrum of other methods, but will only go into detail
for the ones closely related to NetGenerator. Also, fur-
ther specifications of NetGenerator will be summarised
without a detailed comparison to other methods.

Classification of the algorithm
Good review articles on methods for automatic inference
of GRNs can be found in [1,3,4]. The different methods
can be classified by the data type (static or dynamic), the
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mathematical approach (e.g. probabilistic vs. determinis-
tic) and the result (e.g. undirected vs. directed graphs,
algebraic correlation vs. dynamic models) whereby vari-
ous combinations are possible. Mutual information meth-
ods (for a review of ARACNE, CLR and MRNET see
[28]) are based on evaluating the statistical dependen-
cies of large data sets resulting in undirected graphs.
In comparison to NetGenerator they possess far differ-
ent preconditions and purposes, for example they do not
consider a concerted influence of the variables or the
dynamics of the state-space concept, and therefore a more
detailed comparison is set aside. Even though dynami-
cal Boolean networks for gene-regulation, first proposed
by [29], possess some similarities to discrete-valued state-
space models, their rule-based approaches typically lead
to rather qualitative results (for an overview of recent
methods see the aforementioned review articles).
Very often, like in case of the core elements of Net-

Generator, GRNs are based on linear modelling, i.e. the
behaviour of one variable depends on a linear combina-
tion of other variables. Still the method can be a combi-
nation of either probabilistic or deterministic approach as
well as algebraic correlation modelling (equations system)
or dynamic modelling (differential equations system). In
the case of the probabilistic modelling which is especially
covered by static and dynamic Bayesian networks (see
aforementioned review articles) the inference is based on
the application of probability distributions to describe the
uncertainties or noise inherent in GRNs. Beside the differ-
ences in the mathematical approach, probabilistic mod-
elling includes the determination of statistical parameters
and therefore generally more data replicates are required
in comparison to deterministic modelling approaches
such as NetGenerator.
Deterministic linear modelling applied to automatic

network inference, [30], can be distinguished into at
least two types depending on the results: (i) algebraic
equations systems, e.g. [31], and (ii) differential (differ-
ence) equations systems, e.g. [32]. Although they have
different prepositions on the dynamics of time series data,
both types can be solved by linear regression. Still, there
is a disproportion between the number of free parame-
ters and available measurement data on the one hand and
the property of sparsity of GRNs on the other hand. For
the former interpolated data points can be applied under
the assumption that the influence of the chosen interpola-
tion on the results can be neglected. For the reproduction
of sparse networks the regression can be combined with
model reduction, for example using the large group of
LASSO-based algorithms, see e.g. [33-36], on the basis of
PCA (SVD), [37], or a combination of both, [38]. For fur-
ther approaches, see the aforementioned review articles.
In contrast to all these methods, we propose the Net-

Generator algorithm dealing with the problem of data

number and sparsity in a different way. The algorithm is
not inferring the network structure and parameters in one
go. Instead we applied an heuristic approach of explicit
structure optimisation, which iteratively generates a sys-
tem of sparsely coupled sub-models. In that way, the GRN
property of possessing more or less hierarchical input to
output structures is reproduced. Thus, only the param-
eters of sub-models describing one time series have to
be determined. A major drawback of regression-based
solutions of linear differential (difference) equations sys-
tems is the necessity of applying numerical derivatives of
small sample size and noisy data, which have a strong
influence on the resulting network and modelled dynam-
ics. NetGenerator uses a different solution, whereby the
regression just provides initial parameters for a non-linear
optimisation of an objective function of the least squares
type. Overall, the final dynamic network can be obtained
by a lower computational effort, because in comparison to
the total number of parameters (N2 +M ·N) in the model
description (2) only a small number of parameters has to
be determined.

Inference frommulti-stimulimulti-experiment time series
data
The concept of inferring from multiple data sets is also
applied by [38], however on the basis of principal com-
ponents of those data sets. The work of [39] provides a
multiple methods framework to integrate distinct types
of data like steady-state and time series data, focussing
mainly on the combination of knock-out and stimulation
data.
The proposed NetGenerator V2.0 algorithm allows for

integrating data sets of multiple experiments with multi-
ple stimuli. In the inferred models, weighed input terms
represent external stimuli and resulting GRNs represent
the merged effects of the diverse experiments. There-
fore, from a biological point of view, the algorithm is able
to handle experiments which investigate the degree of
cross-talk.
We applied and tested this feature for 3 benchmark

examples and 1 real-world example, the gene regulation
during chondrogenic differentiation. The evaluation of the
benchmark examples’ results showed the power of the
algorithm to infer the network structure and to reproduce
the time series. Further, for a special system of “full cross-
talk”, i.e. all components are influenced by all stimuli, we
could show that the simultaneous utilisation of different
data sets leads to higher model quality compared to mod-
elling data sets individually. The reason for this effect is
due to the different stimulation by another external input
which alters the time series data qualitatively and quanti-
tatively, something that could not be achieved by biologi-
cal replicates of a single input experiment. This underlines
the benefit of using our integrated approach. Further, the
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presented examples LCT and NCT are possible outcomes
of GRN investigations. In the first case, there are two
different types of genes: some are induced by one stim-
ulus only and some are induced by multiple stimuli. The
model inferred by NetGenerator contains both the sepa-
rate and common structural elements. The special case of
NCT occurs, if network parts are stimulated that are not
connected at all. In summary, the extended NetGenerator
takes advantage ofmulti-stimuli multi-experiment data by
network refinement and extension.
We further inferred a two-stimulus network for

hMSC differentiating towards chondrocytes. This net-
work model contains gene regulatory events following the
stimulation with two distinct chondrogenic factors, there-
fore providing a view on how genes involved in differenti-
ation might be controlled by external molecules. Applying
a subsequent resampling gives further information about
the connections of this inferred GRN: (i) the majority of
connections, especially the ones of prior knowledge and
predicted binding sites, occur with a high frequency which
can be considered a measure of reliability and (ii) the
ranking of the frequencies can be used in interpreting the
results with regard to biological hypotheses. Overall, this
shows the importance for an extension of NetGenerator
to deal with multiple data sets.

Consideration of prior knowledge
The means to integrate prior knowledge (fix and flexible)
into the network inference is a distinctive feature of the
extended NetGenerator algorithm achieved by modifying
the objective function. This feature can reduce the com-
plexity of the structure optimization, although it strongly
depends on the origin and quality of the given knowledge,
see e.g. [7]. Using prior knowledge for network inference
can also be found in several other algorithms, see [1,3,4].
For our example of chondrogenic differentiation, we

exemplarily showed network inference using flexible prior
knowledge about regulatory interactions extracted from
a database (Pathway Studio). The graphical evaluation of
the inferred network showed very good reproduction of
the proposed prior knowledge. Further predicted con-
nections could be associated with potential regulatory
binding sites generated from sequence data (Transfac,
Ensembl).

Further aspects
Apart from the linear modelling presented in detail, the
ability of NetGenerator to infer a non-linear model has
been mentioned as a further option. The additional sig-
moid function describing saturation in gene-expression
has been proven successful before, e.g. [40-42]. Since the
sigmoid transformation has also been used for neural
network models, those inference methods are sometimes
classified as such.

Besides the many advantages and possible application
areas, there are minor restrictions of NetGenerator: it
should be applied to pre-processed data without high cor-
relations, it infers networks from measured time series
data and due to the heuristic approach it cannot be proven
that the global solution was found. The latter can be
improved by decreasing the influence of noisy data using
a bootstrap (resampling) approach, see chondrogenesis
example and [1]. One feature which might be introduced
in subsequent versions is the application of “interven-
tional” multi-experiment data, i.e. data originating from
perturbations within the system. This can be dealt with
by applying either experiment-wise prior knowledge or an
additional module in the structure optimisation explicitly
dealing with that kind of data.

Conclusions
We presented the novel NetGenerator algorithm for auto-
matic inference of GRNs, which applies multi-stimuli
multi-experiment time series data and biological prior
knowledge resulting in dynamical models of differential
equations systems. This heuristic approach combines net-
work structure and parameter optimisation of coupled
sub-models and takes into account the biological prop-
erties of those networks: indirect transcriptional events
for information propagation, limited number of connec-
tions and mostly hierarchical structures. The analysis
of benchmark examples showed a good reproduction of
the networks and emphasised the biological relevance of
inferred networks with a different degree of cross-talk.
The ability to infer a real-world example based on multi-
stimuli multi-experiment data was shown by application
of NetGenerator to a system of growth factor-induced
chondrogenesis.

Additional files

Additional file 1: Figure: “Limited cross-talk” example, time courses.
Comparison of the “limited cross-talk” (LCT) network time courses. Each
panel displays the results of one gene: the simulated time course (solid
line), interpolated measurements (dashed line) and the measured time
series (dots) for both data sets (Experiment1 and Experiment2).

Additional file 2: Figure: “No cross-talk” example, time courses.
Comparison of the “no cross-talk” (NCT) network time courses. Each panel
displays the results of one gene: the simulated time course (solid line),
interpolated measurements (dashed line) and the measured time series
(dots) for both data sets (Experiment1 and Experiment2).

Additional file 3: Table: Results of RSAT. Results of RSAT matrix-scan
tool using Transfac PWMs and genomic DNA sequences from Ensembl.
Each row represents a predicted binding site with Transfac motif (“PWM”),
target gene, start and end coordinates, the matched sequence, match
score (“Weight”) and associated p-value.

Additional file 4: Figure: Chondrogenesis system, time courses.
Comparison of the chondrogenesis system time courses. Each panel
displays the results of one gene: the simulated time course (solid line),
interpolated measurements (dashed line) and the measured time series
(dots) for both data sets (“T” and “TB”).
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