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Abstract

Background: Cell segmentation is a critical step for quantification and monitoring of cell cycle progression, cell
migration, and growth control to investigate cellular immune response, embryonic development, tumorigenesis, and
drug effects on live cells in time-lapse microscopy images.

Methods: In this study, we propose a joint spatio-temporal diffusion and region-based level-set optimization
approach for moving cell segmentation. Moving regions are initially detected in each set of three consecutive
sequence images by numerically solving a system of coupled spatio-temporal partial differential equations. In order to
standardize intensities of each frame, we apply a histogram transformation approach to match the pixel intensities of
each processed frame with an intensity distribution model learned from all frames of the sequence during the training
stage. After the spatio-temporal diffusion stage is completed, we compute the edge map by nonparametric density
estimation using Parzen kernels. This process is followed by watershed-based segmentation and moving cell
detection. We use this result as an initial level-set function to evolve the cell boundaries, refine the delineation, and
optimize the final segmentation result.

Results: We applied this method to several datasets of fluorescence microscopy images with varying levels of
difficulty with respect to cell density, resolution, contrast, and signal-to-noise ratio. We compared the results with
those produced by Chan and Vese segmentation, a temporally linked level-set technique, and nonlinear diffusion-based
segmentation. We validated all segmentation techniques against reference masks provided by the international Cell
Tracking Challenge consortium. The proposed approach delineated cells with an average Dice similarity coefficient of
89 % over a variety of simulated and real fluorescent image sequences. It yielded average improvements of 11 % in
segmentation accuracy compared to both strictly spatial and temporally linked Chan-Vese techniques, and 4 %
compared to the nonlinear spatio-temporal diffusion method.

Conclusions: Despite the wide variation in cell shape, density, mitotic events, and image quality among the datasets,
our proposed method produced promising segmentation results. These results indicate the efficiency and robustness
of this method especially for mitotic events and low SNR imaging, enabling the application of subsequent
quantification tasks.

Keywords: Cell sesgmentation, Level sets, Nonlinear diffusion, Density estimation

*Correspondence: smakrogiannis@desu.edu
Department of Physics and Engineering, Delaware State Univ., 1200 N. DuPont
Hwy, Dover, DE 19901, USA

- © 2016 The Author(s). Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
() B.oMed Central International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.


http://crossmark.crossref.org/dialog/?doi=10.1186/s12920-016-0206-5-x&domain=pdf
mailto: smakrogiannis@desu.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Boukari and Makrogiannis BMC Medical Genomics 2016, 9(Suppl 2):49

Background

Cell identification, quantification and characterization
using imaging techniques are emerging research areas
that are systematically integrated in biological and med-
ical studies [1]. Recent developments in time-lapse
microscopy enable the observation and quantification of
cell-cycle progression, cell migration, and growth control
[2]. The tasks of detecting and tracking individual cells or
particles in a time series of images are key elements in this
process. More importantly, the large volume of data pro-
duced by fluorescence microscopy and imaging modalities
emphasizes the need for automated and robust techniques
that can address the challenges in accurate detection and
segmentation as well as tracking.

Cell tracking methodologies involve the tasks of pre-
processing, cell segmentation and motion tracking [3-9].
In this context, segmentation of cells is a particularly
challenging task that has a direct impact on the overall
quantification process. Image segmentation is a popular
field in the domain of image analysis. More specifically,
parametric [10] and nonparametric active contour models
[11-14] have been widely used in development of bio-
imaging and biomedical image analysis techniques. An
interesting aspect in cell analysis methods is the relation
between image quality and segmentation accuracy. Many
segmentation methods address certain types of datasets;
however, for low-quality images and different cell types
and shapes, the same methods may yield varying levels of
performance.

Earlier published works propose to use partial differ-
ential equation (PDE) models for heat diffusion to detect
motion with applications to moving edge detection [15],
and human assistive technologies [16]. Building upon
previous ideas for estimating motion activity using spatio-
temporal diffusion [16], in this work we develop and uti-
lize a heat flow analogy model in the joint spatio-temporal
domain and combine this process with a region-based
level-set optimization approach for cell segmentation of
images obtained by fluorescence microscopy. Spatial and
temporal motion parameters of our model are estimated
for each dataset and an optimal Parzen bandwidth param-
eter is experimentally determined for density estimation
of edges and outliers in each dataset. High activity regions
are initially detected by solving numerically a system of
coupled spatio-temporal nonlinear partial differential dif-
fusion equations on three consecutive frames. In order
to obtain more stability in parameter choice, we apply a
histogram transformation approach to match the refer-
ence background threshold from the intensity distribution
of each three consecutive frames to an intensity distribu-
tion model learned from all frames of the sequence during
the training stage. After this step, each video sequence
frame is scaled and transformed into a sequence with
background with same order of magnitude for a more
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robust and a less sensitive parameter choice method. Then
spatial and temporal motion parameters of our model
are estimated for each dataset and an optimal Parzen
bandwidth parameter is experimentally estimated for den-
sity estimation for edges and outliers for each dataset.
After the spatio-temporal diffusion stage is completed,
we compute the edge map by nonparametric density esti-
mation using Parzen kernels. This process is followed
by watershed-based segmentation to detect the moving
cells. Next, adjacent regions with motion are merged to
form a moving cell by mean intensity thresholding of
these regions. Thresholding determines the boundary of
each cell. Finally, the moving delineation curve is used
as an initial level-set to be refined using a region-based
process for final segmentation. We validated the joint
approach denoted by ST-Diff-TCV over a set of sequences
against reference data and compared the segmentation
accuracy of the joint spatio-temporal and level-set tech-
nique with results derived from Chan-Vese (CV) segmen-
tation [17], a temporally linked level set method that we
have recently presented [18] denoted by TCV, and spatio-
temporal diffusion based segmentation only (ST-Diff).
Our method can accurately detect fluorescent cells at
an average Dice coefficient rate of 89% showing a
clear improvement over region-based level set segmen-
tation with and without temporal linking, and nonlinear
diffusion-based segmentation. In addition, it can detect
and segment newly appearing cells. Another feature of
this method is it can detect cells hardly detectable by
means of mean intensity and produces accurate results
for high or low cell density images. This method allows
to detect cells that were impossible to detect using the
region based CV segmentation because the optimization
criterion is defined by the mean intensity inside and out-
side the level set defined moving curve. Hence, cell regions
with low intensity values are considered as part of the
background, and the region competition process fails to
delineate these cells. However, these regions are detected
by the spatio-temporal motion detection method because
they are rather detected by their high activity process
than by their intensity value, then refined by CV model to
detect the cell boundaries more accurately.

The structure of this paper is organized as follows:
In Section ‘Methods’ we introduce the frame intensity
standardization approach by histogram transformation,
the spatio-temporal diffusion-based technique, followed
by the detection of spatio-temporal discontinuities by
Parzen density estimation, cell delineation and identifi-
cation from background, followed by the region-based
level-set model with temporal linking, and finally the
joint spatio-temporal diffusion and temporal level-set
region-based method. Section ‘Results and discussion’
describes the dataset properties, image quality assess-
ment, performance validation with comparisons between
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CV, TCV, ST-Diff, and ST-Diff-TCV, followed by discus-
sion of results. Finally, in the conclusion we summarize the
main observations about the advantages of this method
and perspectives for future work.

Methods

Frame intensity standardization by histogram
transformation

PDE-based techniques calculate differential approxima-
tions; therefore they are sensitive to variations in pixel
intensity ranges. The main objective of this stage is first
to reduce intensity variations between frames of each
sequence, and second, to obtain a robust intensity prior
for the cell delineation process. We apply a histogram
transformation approach to match the intensity distribu-
tion of each three consecutive frames defined by (1) to an
intensity distribution model learned from all frames of the
sequence during the training stage.

Psyr() = lim N@

Niotar—00 Niotal

k
) FSF(k):/OPBF(I)dI (1)

The general idea is to transform the frame intensities
so that the reference cell/background threshold /.. deter-
mined from the F4r as expressed in (2) matches the global
CDF reference Far (Iyef) corresponding to the /,¢¢ value (2)
indicating the tail of background intensity distribution of
the complete sequence as displayed in Fig. 1 (top).
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We aim to find a transformation so that the output
image is a similar image that has a background value with
the same order of brightness of the input image. Figure 1
(bottom) displays how we can determine the Iz value
from the PDF of each three consecutive frames at the
training stage using the prior value Far(J,¢r) as expressed
by (3).

Tiest = arg min |F3p(I(w)) — Far ()|, 3)

where w € Qsp, I : 72 — RT. Using these values, the
resulting images are scaled and defined over the [0 — 255]
range and with respect to the global minimum and global
maximum intensities of all the frames of the dataset
sequence after applying Eqs. 4, (5) and (6).

L.t — Gupi

i) = LM 1 Gugin) + Gt (4)
Itest - LMin
255 - (I — Gy

Tyl = 222 U= Gnmin) 5)

GMax - GMin

Is(w) =TU(@) = (Tro T (w), w€Q3r  (6)
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We experimentally found that the matched frames are
less sensitive to the temporal, spatial diffusion parameters
and Parzen kernel bandwidth values than the raw frames.
In our experiments we used 256 bins for all datasets.

The following steps define the two algorithms that
learn the CDF reference value for background intensity
FaF(Iyer) at the training stage (Algorithm 1) and transform
every source image at the testing stage (Algorithm 2) so as
to make its testing background as close as possible to the
reference intensity.

Algorithm 1 Histogram transform training stage
Require: dataset D = {D1,D»,...,Dyn}

1. DAF < Concatenate Dy, k=1,...,N

2. Globalps, <— Maximum pixel intensity of DAE

3: Globalyi, < Minimum pixel intensity of DAF

4: Plot Pap(I) = limy,,, 00 gt

5: Choose (reference value) I,,r in P4r at beginning of

histogram tail for background distribution

6 Fap(k) < [¥Pap(Ddl

7: Fap(Iyef) < Closest percentile of I,

8: return Far(lyef), Globalp,y, Globalpin, Lyef,

Algorithm 2 Histogram transform testing stage
Require: dataset D = {Di,D,...,Dn},
I,ef,‘ Global,,,y, Global,,;,
1: D™ « Mirror the frames at borders {D,, D1, Do, ...,
Dn-1,Dn, Dn-1}
2. for each three consecutive frames {D;_1,D;,D;+1} €
Dmir do
3: Il.?’F < Concatenate {D;_1 U D; U D;;1} vectors
4. Localyy < Minimum pixel intensity of IL?’F
3F
5. Compute P?F (Il.gF ) = limy,, 500 A]i[(:’ml)
bins
6 FFk) « [fPF(TF (0)do
7. I — min|FX (T3 (0)) — Fap(Ler)| where o €
Qgp, I: ZZ — RT
s forall Bf € Dy || D; || Dita
9 Ti(I}H) = [Uyer — Globalyin) /(11" — Localygin) |
([?F — GlObdlMin) + GlObdlM,'y,
0. To(IPF) = 255-(IF — Globalyin),/ (Globalpax
—Globale)
1. Tpr = (To 0 T1)IPF (w))wherew € Q3
12: end for
13: return DTonl

Far(ref),

using 255

Figure 2 displays an intensity standardization exam-
ple applied on three consecutive frames. The top row
displays the histogram of the complete dataset and
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Fig. 1 (Training stage) Probability density function of 48 frames of C2DL—MSC02 dataset and cumulative distribution function. (Testing stage)
Normalized PDF and CDF of three consecutive frames of C2DL—MSCO02 dataset

transformations 77 and T, given by (4) and (5) respec-
tively. The bottom row shows the histogram of 3 frames
used to determine Iy, the original histogram of cur-
rently processed frame and transformed histogram after
applying (6).

We note that after the histogram transformation and
scaling, all frames of the same sequence are going to have
similar pixel intensity ranges.

Spatio-temporal diffusion

Perona-Malik anisotropic diffusion

Diffusion algorithms perform image restoration by find-
ing numerical solutions of the heat diffusion PDE [19, 20].
In this framework, the linear diffusion model is equiva-
lent to applying Gaussian filtering to the image. To avoid
the blurring and localization problems of linear diffusion
filtering, Perona and Malik [21] proposed to replace the

classic isotropic diffusion equation with the nonlinear
diffusion model, which is based on the following PDE:

ol
— =div

55 = [ (V.9 - Vi ,9)]

(7)
where [ is the image intensity, s the scale variable for 2D
case, and g(-) a function that determines the amount of
diffusion, also known as diffusivity function. This function
is chosen to satisfy limy ,0og(¥) — O so that diffu-
sion is attenuated across edges. This function controls
the amount of diffusion according to the edgestrength.
Common options for g(-) are the sigmoid and exponential
functions also reported by Perona and Malik in [21]:

1
gx) = @ (8)
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Fig. 2 Histogram of all concatenated images of the C2DL-MSCO02 dataset, and linear transformations and scaling of each pixel of the image (top row,
left to right). The histogram of three consecutive frames that will be matched to the training dataset, and the histograms of the current frame before
w € Q3 (bottom row, left to right)
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where k denotes the conductance parameter that is a
positive constant. The anisotropic diffusion method has
been extensively used for image restoration as it largely
preserves edge image features.

Moving regions are initially detected in each three
consecutive frames by numerically solving the spatio-
temporal partial-differential diffusion equation [18] where
the diffusivity function is applied to the gradient magni-
tude of the image /. In this work we used the function (9)
that is more suitable for region oriented applications [22].
This nonlinear diffusion is bound to the gradient magni-
tude [23]. It applies more diffusion in uniform regions and
slows down at edges, therefore preserves high contrast
edges over low contrast ones.

Spatio-temporal nonlinear diffusion

Partial differential equation model Here we propose
to simulate nonlinear heat flow through the processed
frames in both spatial and temporal dimensions.
This operation smooths-out the background regions
and simultaneously preserves the spatio-temporal
discontinuities corresponding to cells. More specifically,

given 3 consecutive frames of the sequence at times
{t — 1,t,t + 1}, we define a system of three coupled PDEs
for each frame.

At time pointst = {t — 1,t,t + 1}

da1(i,j, t,s) L. ..
TELEY o (VIG ) T 9)) - Al 7,8)

0s (10)
+ Vg(IVI(,j,,9)|) - VI(,j, T,s)
Initial condition
1(3,),7,0) = Ip(i, ), T) (11)
Boundary condition
ol
Pri 0 ond2 x aT x (0,S). (12)
n

Numerical solution We used the Finite Difference
method to solve the system of (10) on a 2D square grid
lattice. We applied padding by replicating the pixel inten-
sities at the image borders to obtain a zero gradient at the
boundaries. This will enable the detection and localization
of motion within each 3 consecutive frames.
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Att+1
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+¢g (|Vlzi+1,t+1|> “Ern1 (15)
T (|V[t§,i*1,t+1|> : Wt—H]
= 2MNF - V4 - NF
where
Ne=TI_yj,—Ljp St =1L — Iy (16)
Wi = Iis’f—l’t - Iisvi:t’ E = If,j+1,t - If,j,t (17)
PF =TIy~ iy NE=1D,q 1, (18)

In (13), (14), and (15) As, As Aepr, Aene denote the
numerical “time” steps for spatial, temporal, next frame
temporal, and previous frame temporal terms respec-
tively. In our implementation we set A; = TSpasio - As
and A;pr = Agnp, Where TSggusi is a fixed parameter for
the ratio of temporal to spatial diffusion. The diffusiv-
ity function is applied to the gradient magnitude of the
image 1.

Detection of spatio-temporal discontinuities by Parzen
density estimation

The idea is to estimate the likelihood of mean inten-
sity in the neighborhood of each pixel in the diffused
frame. Assuming a model of unimodal probability den-
sity function (PDF) for region interiors and bimodal PDF
for edges, we use the likelihood of mean intensity as an
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index of edge occurrence. Low values of this index corre-
spond to a bimodal PDF indicating an edge. We estimate
this likelihood by the nonparametric technique of Parzen
kernels [24—26].

The Parzen density estimation belongs to the nonpara-
metric density methods [23] i.e. methods to estimate the
probability density function of a random variable that do
not impose any initial assumptions about the shape of the
probability density functions. Its operation is based on
placing at each observation sample a probability mass and
producing a potential according to a Gaussian kernel. The
contributions of all the sample points are averaged to esti-
mate the density value at every point of the image [25].

n
fal®) = 1/(n- W) Y " K((x — ;) /) (19)
i=1
where (x1,x2,,xn) is an independent and identically dis-
tributed sample drawn from some distribution with an
unknown density P, K(-) is the kernel and # > 0 is a
smoothing parameter called the bandwidth. We can see
in (19) that the kernel-bandwidth % can strongly affect
the PDF estimate, especially when the number of observa-
tions # is finite. Very small / values will produce a ragged
density estimate, while very large values will smooth the
structure of the PDF. An optimal /4 value is usually exper-
imentally determined to find a compromise between the
variability and accuracy and converge towards the true
PDF. Figure 3 shows three density estimates: the green
solid line corresponds to a small bandwidth, the black
line corresponds to a large bandwidth, while the blue line
represents a bandwidth selection that produces a more
accurate estimate of the underlying bimodal distribution.

Cell delineation and identification

The edge map can be interpreted as a topographic surface
consisting of valleys corresponding to spatio-temporally
homogeneous areas and peaks denoting spatio-temporal
discontinuities. The next step is to apply watershed seg-
mentation. Watershed analysis has emerged from math-
ematical morphology and was implemented by a series
of morphology operators in its early versions. Since then,
several implementations have appeared, proposing itera-
tive, sequential, arrowing, flow line oriented and flooding
techniques [27]. Regional minima of the topographic relief
are selected and flooded to form the moving regions. We
obtain a watershed region in the resulting segmentation
for each minimum. We first find the watershed ridges
of the stochastic map of spatio-temporal discontinuities.
The watershed transform divides a multivalued image into
separate regions by identifying the regional minima and
applying flooding operations to each minimum to fill the
watershed basins. Each basin corresponds to a region. We
first invert the stochastic map produced by Parzen density
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estimation to form regions separated by spatio-temporal
discontinuities.

To separate the cells we calculate intensities and areas
of watershed regions and classify them into cells or back-
ground using area and intensity prior information and
likelihoods p(arealc;), p(Ilc;) in Gaussian form, where
¢; = {background, cell}. Adjacent watershed regions with
coherent motion should be merged together to form a
moving object. We compute mean intensity over the

watershed regions and classify into foreground or back-
ground using as threshold value the standardized refer-
ence value 7'(I,¢r) calculated by (6).

Region-based level-set model with temporal linking

In contrast to edge based methods like classical snakes
[10] and early level-set methods [11], where an edge
detector is used to stop the evolving curve, region-based
methods tend to be less sensitive to noise. The use
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of region-based statistics may prove advantageous for
images characterized by edge discontinuity and higher
level of noise. Chan-Vese (CV) method [17] is a region-
based active contour model for energy minimization.
Here, we shortly describe the theoretical background of
Chan-Vese model and its minimization framework. This
model is a special case of the Mumford-Shah functional
[28] for segmentation using piecewise constant approxi-
mation.

This model segments an input scalar image I(x,y) with
I:Q — Rand (x,y) € Q C R2 into two discon-
nected regions 1 and 23 representing the foreground
and background respectively of low intra-region variance
and separated by a smooth closed contour C such that
Q = Q; UQy U C. Chan and Vese proposed to use level-
set functions to solve this optimization problem. In the
level-set method, the contour is represented as the zero
level-set of a Lipschitz function ¢ : @ — R, where ¢ is
positive inside C and negative outside C. Segmentation is
obtained by minimizing the following energy functional in
terms of level-set:

F(¢,c1,¢2) =p - length{¢ = 0} + v - area{p > 0}

+ A / I — cllzdxdy
¢>0

+ )»2[ I — czlzdxdy
<0
(20)

where C is the evolving curve, ¢; and ¢; are the aver-
age intensity levels inside and outside the contour C, and
U, v, A1, A2 > 0 are energy weights. The length and area of
C are regularizing terms are formulated using the Heavi-
side H and Dirac § functions. In [17] the Euler-Lagrange
equations and the gradient-descent method were used to
derive the following evolution equation for the level-set
function ¢ that minimizes the fitting energy using time to
parametrize the gradient descent:

209 (¢, x, . Vo (x,
R (R (e
=0l = )P + hal — 2] € (0,00) x @
(21)
with initial and Neumann boundary conditions
#(0,%,5) = ¢o(x,y) € Q (22)
% . % =0¢€0Q (23)

Temporally linked level-set segmentation

This approach makes use of temporal connection between
consecutive level-set results [17]. That is, when segment-
ing an image, which is a part of a temporal sequence, we
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Algorithm 3 Temporally linked Chan-Vese segmentation

Require: frame D;, curve C of spatio-temporal mask
result Rg7as
1. ¢° < Initial level-set signed distance (C)
2. repeat
3. Each iteration n Update average intensites ¢ and ¢
4 ¢1(¢") <« Mean intensity of image pixels of D;
inside the contour C”
5. ¢2(¢") < Mean intensity of image pixels of D;
outside the contour C”
6.  F(¢", c1,c2) < Normalized energy of image D;
7. Solve PDE W = 0 in ¢" to obtain ¢"*! from
(21) with ¢ (¢™) and ¢ (¢")
8 Reinitialize ¢ locally to the signed distance function
to the curve
9: until Convergence or # > 1,
10: Apply morphological operations to the segmented
regions
11: Ry < Thresholding ¢gu
12: return Binary mask Rg

make use of the level-set results reached from minimiza-
tion of the global energy associated with the contours of
the segmented cells found in the previous time point

Gnt1(%, %5 0) = Gn (X, ¥ ifina1), V%, 9) € €2, (24)

where 7 is the frame number in the time-lapse sequence,
and if,4 is the number of iterations required to converge
for frame n. We take the contour result of each frame
as the initial contour for the following one. These results
are utilized to minimize the energy functional of the next
image. If the segmentation in frame # is accurate, then this
initialization will correspond to a point close to the global
optimum of the energy functional in frame n+1. The main
steps of this technique are summarized in Algorithm 3.

Joint spatio-temporal diffusion and temporally linked
level-set approach (ST-Diff-TCV)

We propose a joint method combining the S-T differen-
tial information with the high delineation accuracy that
characterizes level set-based segmentation [15, 17]. More
specifically, we use S-T Diffusion to delineate the cells
first, then initialize TCV with the S-T Diffusion result to
refine the cell segmentation. We apply the S-T Diffusion
technique on each modulo k frame to address cell events
that may not be handled by TCV such as cell mitosis, cell
division, new cells entering the field of view, and other
cases.

This strategy may also reduce the computational cost by
applying the S-T Diffusion technique to a limited num-
ber of frames. We apply these methods on several datasets
of fluorescence microscopy images with varying levels of
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difficulty with respect to cell density, resolution, contrast,
and signal-to-noise ratio. The flowchart in Fig. 4 outlines
the main stages of our proposed technique. Furthermore,
in Fig. 5 we display intermediate results from each stage
on a test frame and its temporal neighbors for the C2DL-
MSCO02 and N2DH-SIMO04 sequences.

Results and discussion

Data description

The datasets consist of 2D fluorescent microscope time-
lapse image sequences. We used 12 time-lapse video
sequences; 6 real microscopy time-lapse sequences and
6 computer simulated videos with various cell densities
and noise levels. We obtained the training and chal-
lenge data sets from the cell tracking challenge web-
site [29]. Simulated videos: The 6 simulated videos
displayed fluorescently labeled nuclei of the HL60 (human
promyelocytic leukemia) cell line migrating on a flat
2D surface (N2DH-SIMO01, N2DH-SIM02, N2DH-SIM03,
N2DH-SIM04, N2DH-SIM05, N2DH-SIMO06). They differ
in the level of noise, cell density of the initial popula-
tion, the number of cells leaving and entering the field of
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view and the number of simulated mitotic events, yield-
ing up to 70 cells in the field of view [29]. Real videos: We
used 3 datasets each containing 2 time-lapse sequences.
Two video sequences named Fluo-C2DL-MSCO01 and
Fluo-C2DL-MSC02 with rat mesenchymal stem cells, 2
video sequences named N2DH-GOWT101 and N2DH-
GOWT102 of mouse embryonic stem cells and N2DL-
HeLa01 and N2DL-HeLa02 expressing HeLa cells. These
datasets are considered to have high level of difficulty
[29] because of the high cell density and low resolution
and intensity. Summarized information on our test data
is listed in Table 1, including the image matrix size, num-
ber of frames and level of difficulty. Furthermore, a sample
frame of each dataset is displayed in Fig. 6.

Image quality assessment of the datasets

In our first experiment, we measured the image qual-
ity of our datasets and then evaluated the segmentation
accuracy. We utilized the available reference data for this
purpose. The reference data consist of manually anno-
tated videos for segmentation and tracking along with a
short description and links to the raw datasets obtained
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segmentation mask (left to right)

Fig. 5 Intermediate results produced by ST-Diff-TCV on sample frames of a C2DL-MSC02 and b N2DH-SIM04 data sequences. First row: center,
previous and next frames in the temporal space (left to right) Second row: S-T diffused frame, kernel density estimation of edge-moving regions then
the inverted probability density map. Third row: watershed result, cell identification after foreground/background separation, and the reference

from [29]. We first used the reference data to estimate
the average Signal-to-Noise Ratio (SNR) and Contrast-to-
Noise Ratio (CNR) of each dataset. The SNR and CNR
measures are defined as follows:

SNR = 20log;, =€ (25)
up

CNR = [%c = 8l (26)

oB
where uc is the average image intensity over the cell
regions, up is the average intensity over the background
and op is the standard deviation of the background pixels.
In Table 1 we list the average SNR (in dB) and average
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Table 1 Image sequence properties and quality using Signal-to-Noise Ratio (SNR) and Contrast-to-Noise Ratio (CNR)

Dataset name Average SNR std Average CNR std Level of difficulty
N2DH-SIMO1 21.53 £0.69 7.96 £ 0.95
N2DH-SIM02 2221 +£065 835+£096 Medium:different noise levels
N2DH-SIMO03 1859 £+ 047 421 +£047 cell density of the initial
N2DH-SIM04 1897 £ 047 4.09 + 049 population and number of
N2DH-SIMO05 1949 £ 0.54 422 £060 simulated mitotic events.
N2DH-SIM06 2192 £ 054 790+ 0.78
C2DL-MSCO1 14.67 £ 0.67 2.11£036 High:low SNR, cell strectching appear
C2DL-MSC02 15.09 £ 231 447 £149 as discontinuous extensions of the cells.
N2DL-Hela01 26.60 4+ 341 1923+ 767 High:high cell density, low resolution,
N2DL-HelLa02 16.02 £ 167 5.4041.08 frequent mitoses (normal and abnormal).
N2DH-GOWT101 2247 £049 12.62 £0.77 Medium:heterogeneous staining, prominent nuclei,
N2DH-GOWT102 1891 £0.92 8324091 mitoses, cells entering and leaving the field of view
GOWT101 GOWT102 HeLa01

_ MSCO1 MSC02

SiMo1 SiMo02 SIM03

SIM04 SIMO05 SiMo6

Fig. 6 The 6 real and 6 simulated time-lapse sequences used for validation
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CNR that are means over all frames in each sequence using
(25) and (26) and corresponding standard deviations of
each dataset over cell regions. A comparison between the
qualitative level of difficulty and the image quality met-
rics in Table 1 shows that the simulated sequences have
higher SNR and CNR, therefore being more amenable to
segmentation than the real sequences.

Comparison of CV, TCV, ST-Diff, and ST-Diff-TCV methods
We applied the standard CV, TCV, ST-Diff, and ST-Diff-
TCV methods on 12 time-lapse fluorescent microscopy
datasets listed in Table 1. Fluorescent microscopy imag-
ing is often times subjected to a mixture of different types
of noise. The main goal of a preprocessing step is to
reduce the corruption caused by noise and to improve the
image quality [28]. To facilitate data analysis, a combina-
tion of filters and histogram enhancement is applied to the
datasets to obtain better delineation accuracy.

We segmented each dataset using each method and
evaluated the segmentation performance against refer-
ence masks. The main purpose is to evaluate how well
the segmented cells match the cell regions of the refer-
ence mask. We quantify the accuracy of the segmentation
performance by computing the DICE similarity coefficient
denoted by DSC. This is defined as:

[Rs N Rpef|
IRs| + | Rpef|

DSC =2 x e[o,1], (27)

where Rp,s is the set of all pixels that belong to cell regions
in the reference image, Ry is the set of all binary regions
delineated by the tested segmentation technique. The
DICE coefficient measures the relative similarity between
two binary images over their cardinalities. It is frequently
used for image segmentation validation. The value of 1
indicates perfect matching.

We computed the DICE coefficient between the auto-
mated and reference segmentations for each method and
for each dataset. Further, we computed the means and
the standard deviations of the DICE similarity coefficients
over all frames for each dataset sequence. Figure 7 and
Table 2 report the DSC estimates and their variations for
each sequence. In addition, the last row in Table 2 lists the
overall DSC values for all datasets. In Fig. 7 and Table 2 we
observe that ST-Diff-TCV yields higher DSC values for 11
out of the 12 test sequences. ST-Diff-TCV yields an aver-
age Dice coefficient of 0.89 over all datasets, while both
CV and TCV yield 0.78, and ST-Diff yields 0.85 (Table 2).
Furthermore, the standard deviation values in Table 2
show more robustness and stability. That is, the stan-
dard deviations obtained from ST-Diff and ST-Diff-TCV
(0.01-0.03) are significantly smaller than those derived
from the CV method (0.01-0.4) and even TCV (0.02-0.08)
indicating better convergence and stability.
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To illustrate the performance comparison among the
three tested methods in more detail, we show in Fig. 8 the
results derived from CV, TCV, ST-Diff, and ST-Diff-TCV
methods on N2DH-SIM02 and N2DH-SIM04 datasets. In
the N2DH-SIMO02 sequence (Fig. 8(a)) we observe that
because of the non-convexity of the energy functional
(allowing therefore many local minima), the CV method
reached several local minima of energy. In contrast, the
TCV method led to a global minimum of the energy.
ST-Diff-TCV method yields accurate delineation of the
cells with fewer fluctuations in the Dice coefficient than
the other methods. We note that ST-Diff-TCV yields an
average Dice coefficient of 0.94, while CV yields 0.78, TCV
yields 0.86, and ST-Diff yields 0.88. In the N2DH-SIM04
dataset as displayed in Fig. 8(b) we observe that ST-Diff-
TCV produces the highest accuracy at a DSC value of 0.93,
followed by ST-Diff, CV and TCV with Dice coefficients
of 0.91, 0.88 and 0.86 respectively.

Furthermore, Fig. 9 displays cell delineations repre-
sented by yellow contour maps for one frame of the
sequence N2DL-Hela2 including the manual reference,
and automated segmentation produced by all tested
methods. This sequence has an increased level of diffi-
culty because of the high cell density and low contrast
between some cells and the background. Because CV
and TCV methods use piecewise constant approximations
for object and background as can be seen in (21), the
low contrast cells are likely to be falsely identified as
background therefore reducing DSC (CV: 0.84, TCV:
0.67). On the other hand, both ST-Diff and ST-Diff-TCV
identify the spatio-temporal discontinuities and detect
the cells that are missed by CT and TCV as outlined
by white rectangles in Fig. 9. In the magnified local
regions of the test image we note that ST-Diff-TCV
yields more accurate cell separation for adjacent cells than
ST-Diff.

In some of our datasets, the fluorescent images contain
low intensity nuclei where there is absorption rather than
fluorescence in local parts of the same image resulting in
heterogeneous cell intensity levels. These darker regions
have low intensity that can be mis-detected as back-
ground. As a result the region competition process would
fail to delineate them. However, these cells are identified
by the spatio-temporal motion analysis method because
of their high temporal activity, which is proven to be more
efficient in these cases. For example, we observed that CV
was not able to detect some cells with very low intensity
in both N2DL-Hela and N2DH-GOW'T sequences. Con-
versely, those cells were very well delineated using the
temporal differences between frames, i.e., by ST-Diff-
TCV, thus significantly improving the segmentation accu-
racy from 0.72 to 0.82 for N2DL-Hela01, and from 0.68 to
0.92 for N2DH-GOWT102 leading to DSC improvements
up to 24 %.
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Fig. 7 Dice similarity coefficients (DSC) produced by standard Chan—Vese model (CV), temporally linked Chan—Vese technique (TCV), spatio—temporal
diffusion (ST—Diff), and the joint ST—Diff—TCV methods over all 12 datasets
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On the other hand, the proposed technique involves
some motion diffusion — i.e., TSgru0, A¢, and Parzen ker-
nel parameters — which are experimentally determined for
each sequence. ST-Diff-TCV performance exhibits mod-
erate sensitivity to the parameter values. In this work we
performed exhaustive grid search in the parameter space
to identify the optimal settings. Alternate parameter opti-
mization techniques may be required to achieve more
accurate segmentation in sequences with significantly dif-
ferent quality levels and cell types. In summary, our
experiments suggest that the joint ST-Diff-TCV method
improves the segmentation accuracy compared to CV,
TCV, and ST-Diff, especially when applied to simulated

and real microscopy images with cells characterized by
wide intensity variations and undergoing mitotic events,
changes in density, and low SNR.

Conclusions

In this work, we introduced a local-global co-operative
approach to dynamic cell segmentation. One com-
ponent of this approach performs nonlinear spatio-
temporal diffusion-based motion analysis, Parzen kernel-
based detection of discontinuities, and watershed-based
foreground-background separation. This local-based seg-
mentation part generates a delineation that we use as
the initial level-set in a region-based temporally linked

Table 2 The mean DICE coefficient obtained from segmentation of each sequence by CV, TCV, ST-Diff, and the joint ST-Diff-TCV method

Dataset name Size Frames v TCV ST-Diff ST-Diff-TCV
N2DH-SIMO1 494x534 56 0.92 +£0.02 0.87 £ 0.03 0.92 +£0.02 0.93 £ 0.02
N2DH-SIM02 569x593 100 0.78 031 0.86 &+ 0.03 0.88 £+ 0.02 0.94 + 0.02
N2DH-SIMO03 606x605 100 0.94 + 0.03 0.92 £0.02 0.92 £0.02 0.94 + 0.02
N2DH-SIM04 673x743 56 0.88 £ 0.02 0.86 £ 0.02 091 £0.01 0.93 £+ 0.01
N2DH-SIMO05 597x525 76 0.70 £ 0.40 0.92 £ 0.04 0.88 £ 0.01 0.94 + 0.01
N2DH-SIM06 655x735 76 083 +£0.27 092 +£0.02 0.88 £ 0.01 0.96 + 0.01
C2DL-MSCO1 992x832 48 0.74 £+ 0.08 0.59 £+ 0.02 0.67 +0.03 0.76 + 0.03
C2DL-MSC02 1200x782 48 0.58 £ 0.09 0.74 £+ 0.08 0.62 +0.03 0.81+0.03
N2DL-Hela01 1100x700 92 0.72 £0.01 0.68 £+ 0.02 0.80 £ 0.01 0.82 + 0.01
N2DL-Hela02 1100x700 92 0.84 +0.01 0.67 £ 0.03 0.87 £+ 0.01 0.87 £+ 0.01
N2DH-GOWT101 1024x1024 92 0.77 £0.01 0.71 £0.03 0.91 £ 0.03 0.90 £ 0.02
N2DH-GOWT102 1024x1024 92 0.68 £ 0.02 0.67 £ 0.03 091 £0.02 0.92 + 0.02
Mean DSC 0.78 0.78 0.85 0.89

Boldface denotes the top performing algorithm
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Fig. 8 Dice similarity coefficients (DSC) produced by standard Chan-Vese segmentation (CV), temporally linked Chan-Vese technique (TCV),
spatio-temporal diffusion (ST-Diff), and the joint ST-Diff-TCV methods for each frame of a N2DH-SIM02 and b N2DH-SIM04 datasets

level-set model. The improvement in segmentation accu-
racy is mainly achieved by using both the local motion
and the global statistical information for segmenting cells
with heterogeneous intensity levels. We evaluated the per-
formance of our approach denoted by ST-Diff-TCV, two
level-set based methods denoted by CV and TCV, and
ST-Diff methods on datasets obtained from the online
Cell Tracking challenge [29]. Every dataset addresses a
different type of challenge for segmentation.

In comparison to CV and TCV, both ST-Diff and
ST-Diff-TCV perform more robust cell segmentation,

especially for cells undergoing mitosis, leaving and enter-
ing the field of view, and cells with lower mean intensity
than the background intensity level. ST-Diff-TCV further
improves the segmentation accuracy compared to ST-Diff
by refining the cell delineation. Still, this method is depen-
dent on some parameter retuning to optimize segmen-
tation accuracy for different types of imaging sequences.
This approach is beneficial for quantification of a wide
range of types of image sequences. Future goals are to
compute cell features representing cell morphology for
classification and tracking.
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ST-Diff-TCV

Fig. 9 Cell boundaries produced by the 4 tested methods on N2DL-HeLa02 sequence frame. The spatio-temporal analysis enables the identification
of more moving cells than the level-set models. Furthermore, ST-Diff-TCV produces more accurate cell separation than ST-Diff (magnified regions)
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