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Abstract

Summary: Shotgun metagenomic sequencing provides the capacity to understand microbial community structure and
function at unprecedented resolution; however, the current analytical methods are constrained by a focus on taxonomic
classifications that may obfuscate functional relationships. Here, we present expam, a tree-based, taxonomy agnostic
tool for the identification of biologically relevant clades from shotgun metagenomic sequencing.

Availability and implementation: expam is an open-source Python application released under the GNU General
Public Licence v3.0. expam installation instructions, source code and tutorials can be found at https://github.com/
seansolari/expam.

Contact: sam.forster@hudson.org.au

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Microbial communities perform essential functions in a variety of
ecosystems (Danovaro et al., 2008) including the human body
(Lloyd-Price et al., 2017), where compositional changes have been
correlated with diseases from inflammatory bowel disease (Ni et al.,
2017) to cancers (Frankel et al., 2017) and autoimmune diseases
(Brown et al., 2011). Shotgun metagenomic sequencing now repre-
sents the gold-standard for rapid assessment of the functional cap-
acity and composition of these microbial communities. Applying the
reference-based metagenomic analysis to these datasets (Beghini et
al., 2021; Brady and Salzberg, 2009; LaPierre et al., 2020; Milanese
et al., 2019; Wood et al., 2019), shotgun reads are compared against
sequence collections to ascertain the taxonomic distribution of spe-
cies within the community (Forster et al., 2019; Lloyd-Price et al.,
2017). While taxonomy provides an important standard for describ-
ing and comparing microbes, prokaryotic taxonomic groups do not
necessarily capture precise genomic relationships (Fraser et al.,
2009). Specifying the resolved hierarchical structure between refer-
ence genomes enables clade-specific functional associations, thereby
facilitating an ability to understand phenotypic relationships at a
resolution lost using taxonomy. Here, we implement this concept in
a software tool called expam. expam provides precise phylogenetic
profiling of metagenomic data using highly resolved trees, simultan-
eously analysing shotgun data for signs of novel biological sequence.

2 Materials and methods

2.1 expam database
Construction of the expam database requires two sources of data: a
collection of reference sequences, and a Newick tree specifying their
relationship. Optimal classification performance requires accurate,
high-resolution trees; while tree specification is left at the user’s dis-
cretion, this criterion makes distance-based and phylogenetic trees
primary candidates.

Like many k-mer-based metagenome profilers, the database con-
sists of a key-value store, with each key being a k-mer from some refer-
ence sequence. However, each database value now refers to that node
within the tree which is the lowest common ancestor (LCA) of all ref-
erence sequences containing the corresponding key, rather than the
shared taxonomic ancestor (Fig. 1A). To construct this database,
expam uses Python multiprocessing to concurrently extract and sort k-
mers (Knuth, 1998; Marcais and Kingsford, 2011) from all reference
sequences, before then mapping these k-mers to their LCA. The result-
ing k-mer and LCA NumPy arrays (Harris et al., 2020) are com-
pressed on disk using the PyTables library, and loaded into shared
memory during sample processing for parallel read classification.

2.2 Classification algorithm
Within the highly resolved tree, each read has some k-mer distribu-
tion, or the set of nodes that k-mers from this read are mapped to.
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The k-mer distribution of any sequence present in some reference S
must lie within the root-to-leaf path terminating at S. Metagenomic
reads can therefore present either as single-lineage (SL) reads, or
split-lineage reads (hereafter splits), whose k-mers are distributed
along one or multiple lineages, respectively. In both cases, reads are
assigned to the lowest common node of all lineages (Fig. 1B).
However, high split counts in a particular region of the tree suggest
the presence of microbial isolates lacking reference genomes in the
database. The inclusion of specific reference sequences belonging to
these under-represented clades can therefore enable targeted classifi-
cation improvement. A heuristic a parameter filters low abundance
lineages in the k-mer distribution (Supplementary Equation S1),
such as those arising from sequencing error. The default a parameter
value is suitable for general use cases. Finally, identified clades from
each sample are available as raw counts in standard Kraken output
format and visualized by expam in the reference phylogenetic tree
(Fig. 1C).

2.3 Converting classifications to NCBI taxonomy
Despite the disadvantages of taxonomy for read classification, it
remains a valuable tool for the communication of findings. To ob-
tain a taxonomic summary of tree-based classifications, expam
maps each point in the reference tree to the LCA of all taxonomic
lineages among reference sequences below this point. These results
are output in the same standardized Kraken output format.

3 Results

We compared expam’s performance to a collection of widely used
metagenomic profilers (Beghini et al., 2021; Gruber-Vodicka et al.,
2020; Marcelino et al., 2020; Müller et al., 2017; Wood et al.,
2019) (Supplementary Table S1) on 140 publicly available simulated

metagenomic communities (Parks et al., 2021), stratified by four dis-
tinct classes: either low or high species diversity, and single or mul-
tiple strains (Supplementary Table S2). To standardize classifier
performance, the RefSeq collection (release 203) of genome sequen-
ces was used as a reference for all software with the capacity to build
a custom database, default databases being used for phyloFlash and
MetaPhlAn3. Read-level analysis of classifier performance was used
to determine the assignment accuracy of each read, and taxonomic
summaries assessed the total set of taxa estimated to be in the sam-
ple (Supplementary Methods).

Our results demonstrate that expam achieves stringent taxonom-
ic and read-level species precisions of 84.0% and 63.9%, respective-
ly, when averaged across the 140 samples (Supplementary Figs S1,
S2, and Table S3) exhibiting a robustness to spurious read classifica-
tions (Anyasi et al., 2020) that contrasted the results of Kraken2
(read-level 74.1%; taxonomic 4.1%) and MetaCache (read-level
86.9%; taxonomic 11.1%). Of all tools using the standardized data-
base, expam achieves the highest average species-level taxonomic F1
score of 0.575, with the next highest score 0.211 achieved by
CCMetagen (Supplementary Figs S3 and S4). Notably, expam
achieved an average taxonomic recall of 55.8%, a 23% decrease
from the top recall score (Kraken2, 72.2%) (Supplementary Figs S5
and S6); however, expam’s taxonomic recall generally depends on
the degree to which the reference tree and NCBI taxonomy align.

To gauge sensitivity of runtime statistics to k-mer length and

number of reference genomes, a collection of six expam databases
were built varying number of reference sequences and k-mer length
(Supplementary Tables S4–S7) before being tested against simulated
metagenomes. While precision and recall increased with references,
build and classification memory also increased with the amount of
reference sequence (Supplementary Fig. S7). Classification time and
memory usage were relatively stable for larger k, being determined
predominantly by number of references (Supplementary Tables
S4–S7); however, a large k-mer length relative to the number of ref-
erence genomes hinders recall (Supplementary Fig. S8). A pre-built
expam database is made publicly available to overcome the com-
paratively large computational resources required for database
indexing (see Data Availability).

The distance tree-based method employed by expam achieves a
resolution that matches existing approaches when translated into

the taxonomic space while increasing the discriminative power of
metagenomic analysis to taxonomy agnostic isolate and clade ana-
lysis. This approach provides the ability for targeted analysis includ-
ing high-resolution assessment and correction of database coverage
and clade-specific functional analysis.
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Fig. 1. Overview of the expam pipeline using two synthetic metagenomes. (A) k-

mers are extracted from each metagenomic read and mapped against an expam

database. (B) The k-mer distribution of this read is analysed and classified within

the reference tree (gold stars). (C) Reads classifications are accumulated, and the

phylogenetic distribution of various samples can be plotted and compared
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Data availability

The data underlying this article are available in Monash Bridges, at https://dx.

doi.org/10.26180/c.5974267.
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