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Abstract

Insects have been key players in the assessments of biodiversity impacts of anthropogenically driven environmental change, 
including the evolutionary and ecological impacts of climate change. Populations of Edith’s Checkerspot Butterfly 
(Euphydryas editha) adapt rapidly to diverse environmental conditions, with numerous high-impact studies documenting 
these dynamics over several decades. However, studies of the underlying genetic bases of these responses have been ham-
pered by missing genomic resources, limiting the ability to connect genomic responses to environmental change. Using a 
combination of Oxford Nanopore long reads, haplotype merging, HiC scaffolding followed by Illumina polishing, we gener-
ated a highly contiguous and complete assembly (contigs n = 142, N50 = 21.2 Mb, total length = 607.8 Mb; BUSCOs n = 
5,286, single copy complete = 97.8%, duplicated = 0.9%, fragmented = 0.3%, missing = 1.0%). A total of 98% of the as-
sembled genome was placed into 31 chromosomes, which displayed large-scale synteny with other well-characterized lepi-
dopteran genomes. The E. editha genome, annotation, and functional descriptions now fill a missing gap for one of the 
leading field-based ecological model systems in North America.
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Significance
Edith’s checkerspot, Euphydryas editha, is a nonmigratory butterfly that exhibits a remarkably high degree of phenotypic 
variation among populations and ecotypes. For this reason, it has become a model system for understanding how spe-
cies and populations can rapidly adapt to changes in their local environment. However, the lack of genomic resources 
has made investigating both the genomic basis of these traits as well as the genetic consequences of this rapid adap-
tation impossible. Here we present a high-quality, chromosome level reference that will aid researchers pursuing these 
questions.
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Introduction
Despite the prominence of insects in studies of human im-
pacts on nature, there is surprising disagreement over the 
extent and importance of anthropogenic influences 
(Gonzalez et al. 2016; Macgregor et al. 2019). Two recent 
papers exemplify this debate in the community. On the one 
hand, Sánchez-Bayo and Wyckhuys (2019) report “insecta-
geddon,” catastrophic global-scale declines in insect bio-
mass, abundance, and diversity that predict extinction of 
40% of species in the coming decades. On the other 
hand, Deutsch et al. (2018) predict that insects will profit 
from climate warming. In general, scientific community 
seems to be struggling, both to determine what human ac-
tivities have already done to insects and to predict what 
their future impacts will be (Parmesan et al. 2022). One fun-
damental question is: how should impacts be assessed? The 
level at which biodiversity loss is measured (e.g., species, 
subspecies, ecotypes, or genotypes), and the metric by 
which loss is measured (e.g., changes in abundance, total 
area occupied, or population extinctions of particular eco-
types and associated genotypes) both impact our ability 
to identify and respond to biodiversity loss. Given this com-
plexity, one way forward to assess these impacts is to focus 
upon species representing different patterns of geograph-
ical variation and local adaptation. Additionally, an ideal 
species would also exhibit extensive ecotypic variation 
that shows a mix of endangered and unthreatened popula-
tions. Within this category, it would be useful that the tar-
get species is well-studied, with known variation in 
population dynamics, local adaptation, and ecological in-
teractions. To this end, we present a chromosome level 
genome assembly for Edith’s Checkerspot Butterfly, 
Euphydryas editha.

Euphydryas editha is a nonpestiferous, nonmigratory 
species, distributed across the western USA and from Baja 
California to central Alberta. It has evolved a geographic 
mosaic of ecotypes differing in adult size, phenology, habi-
tat choice, and host preference (McBride and Singer 2010; 
Singer and McBride 2010, 2012), with these ecotypes exhi-
biting such strong local adaptation that populations can 
differ significantly in these heritable traits over distances 
as short as 20 km. Some of these ecotypes have stable po-
pulations, whereas others show a dynamic of extinctions 
and recolonization (Ehrlich et al. 1980). Populations can 
be small and isolated, occupying one or two hectares, or 
they can exist as components of meta-populations extend-
ing over 20–100 km2 (Harrison et al. 1988; Thomas et al. 
1996: 19). Individual populations of E. editha have repeat-
edly demonstrated their ability to evolve rapidly in response 
to local environmental change (Singer and Parmesan 2018, 
2019). Several ecotypes are sensitive to climate change 
(Parmesan and Singer 2022), as a result of which E. editha 
at the species level was already showing the expected 

latitudinal and altitudinal range shifts in the early 1990s 
(Parmesan 1996). Many subspecies of E. editha have been 
named, for which the principal (usually the only) criterion 
has been wing-pattern phenotype of adults. Some subspe-
cies are congruent with ecotypic variation, and some 
are not. Three of these subspecies, the Bay Checkerspot, 
the Quino Checkerspot, and Taylor’s Checkerspot, are fed-
erally endangered and currently subjects of conservation 
efforts.

Despite the decades of ecological and evolutionary field 
studies briefly reviewed above, there has been relatively lit-
tle genetic work done on this species, and it has been lim-
ited to mitochondrial, microsatellite, and Amplified 
Fragment Length Polymorphism (AFLP) studies (Mikheyev 
et al. 2013; Parmesan et al. 2015; Singer and Parmesan 
2021). The nonexistence of genomic resources has meant 
that E. editha, whereas being a promising model for the 
study of the genomic architecture of adaptation and de-
cline, has not been used as such. Here we remedy this tech-
nical gap by providing a high-quality genome for future 
investigations.

Results and Discussion

Assembly

Using 27.2 Gb of ONT long-read data (after filtering Qscore 
of 9, R9.4.1 flowcell N50 read length = 31,968 of 10.6 Gb 
data, R10.3 N50 of 22,648 of 16.6 Gb), we assembled a 
moderately contiguous E. editha draft assembly using 
Flye, with purged haplotypes (N50 = 1,388,817 bp, con-
tigs = 1,747, total = 801 Mb), which had a high content 
of complete BUSCOs, albeit with a very high duplication 
rate (fig. 1A). After haplomerging this genome, we 
significantly increased N50, whereas reducing the number 
of contigs, genome size, and BUSCO duplication levels 
(N50 = 1,752,737 bp, contigs = 994, total = 608 Mb; 
fig. 1A), indicating a much improved, haploid version of the 
genome that was much closer in size to our k-mer based es-
timate (fig. 1B). The genome was then scaffolded to chromo-
some scale using Hi-C data, which corrected a few assembly 
errors and placed 98% of the assembly (597,781,036/ 
607,788,004) onto 31 chromosomes (fig. 2A), which is 
close to other species in the genus, which vary from 
30 to 31 (Robinson 1971). This chromosome was then po-
lished using 133× coverage of 10× Illumina sequencing 
data, resulting in a final high-quality genome assembly 
(N50 = 21,225,494 bp, contigs = 142, total = 607.8 Mb; 
fig. 1A). Red detected and masked 41% repetitive content.

Annotation

Our annotation identified 23,870 genes producing 26,018 
transcripts (25,611 of which started and ended with start- 
and stop-codon and had no internal stop-codons). The 
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annotation contained 97.5% of expected BUSCO genes, 
which had a high number of duplicates due to isoforms 
(fig. 1A). Filtering of the annotation to removed overlap-
ping genes and retain only the longest isoforms of each 
gene, reduced the number of duplications from 12.9% to 
2.1% (fig. 1A). Functional annotation of the assembly 
was performed using EggNOG-mapper (v2.1.7) comparing 
it against the EggNOG database v5 and integrated into the 
annotation GFF.

Synteny Assessment

To assess the accuracy of our genome assembly and chromo-
somal assignment, we conducted a whole genome alignment 
to the closest relative with assembly at the chromosome scale, 
which was Melitaea cinxia (Nymphalidae, Lepidoptera) 
(fig. 2B). Between the two species, which last shared a com-
mon ancestor ∼27 Ma, there do not appear to be any 
large-scale structural rearrangements (Chazot et al. 2021). 
Importantly, in our alignment, the naming of the M. cinxia 
chromosomes also indicates their orthologs in another 
nymphalid butterfly, Heliconius melpomene, as well as the 
moth, Bombyx mori, further highlighting the standard nature 
of the chromosomal organization in E. editha (fig. 2B).

Conclusion
Here we present our assembly for E. editha, an established 
model system for studying geographic mosaics of 

ecological adaptation and rapid evolutionary responses to 
anthropogenically driven environmental change. Our as-
sembly placed 98% of the 608 Mb genome into a chromo-
somal framework and exhibited exceptionally high and 
accurate gene content as measured using BUSCO, placing 
this species among the best assembled Lepidopteran gen-
omes to date (Ellis et al. 2021). We were able to annotate 
23,870 high-quality genes and provide functional informa-
tion for 20,771 of these. In comparison to another 
chromosome-scale butterfly genome, we verify that our as-
sembly is not only highly contiguous but accurately as-
sembled as there is high synteny across all of the 31 
chromosomes shared between these species (Hill et al. 
2019; Smolander et al. 2022). This work provides the foun-
dation upon which detailed study of the eco-evolutionary 
dynamics of this focal species and its endangered subspe-
cies can now develop. Further, given the extensive literature 
documenting multi-trait hostplant adaptations in this spe-
cies, identification of the genomic regions involved can 
now progress using a wide range of population genomic 
tools. In sum, this genome will serve as a valuable resource 
to a diverse community of researchers.

Materials and Methods

Genome Sequencing

Euphydryas editha individuals were collected from Rabbit 
Meadow, CA (lat. 36.710, long. −118.373, elev. 

FIG. 1.—Genome assembly assessment for the E. editha butterfly, showing improvements during genome refinement steps, the annotation, and an 
estimate of genome size. (A) Assessment of the content and quality of 5,286 single copy orthologs within Lepidoptera, beginning with the initial genome 
assembly (fly29_purged), the result of merging the genome down to a haploid copy (fly29_purged_hap; note the decrease in the number of duplicated 
genes D), the HiC scaffolded genome, and the final polished version (HiC_scaff_polished). After these are the BUSCO results upon the protein sets generated 
from the genome annotation, for all proteins including isoforms (protein_annotation), as using only the longest isoform per locus in the annotation 
(protein_longest_isoform). (B) Genome size estimate using k-mer counting of Illumina sequence data, showing the estimated genome size, heterozygosity, 
k-mer coverage, and duplication rate.
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2380 m). The female individual used for assembly was 
stored in 95% ethanol and kept frozen until extraction. 
High-molecular weight genomic DNA was extracted from 
the front half of the thorax with most of the cuticle re-
moved using standard protocol for paramagnetic nanodiscs 
(Nanobind Tissue Big DNA kit, Circulomics). Before extrac-
tion, the ethanol was removed, and the tissue was rehy-
drated by soaking it in ethanol removal buffer (400 mM 
NaCl, 20 mM Tris, pH 7.5, and 30 mM EDTA). The isolated 
DNA was split into two aliquots and prepared for sequencing 

separately. Each aliquot was individually treated with Short 
Read Eliminator (SRE) or SRE XL (both from Circulomics), to 
selectively precipitate high-molecular weight DNA (>10 
and >20 kb fragments, respectively). Isolated and size se-
lected DNA were sequenced on MinION platform using 
two flowcells (R9.4.1 for the SRE XL size selected sample, 
and one R10.3 for the SRE treated sample) using ligation- 
based library prep LSK110. Once sequencing was finished, 
the raw reads were base-called using Super High Accuracy 
base-calling mode in GUPPY (v.5.0.2) software.

FIG. 2.—Assessment of genome contiguity, showing Hi-C scaffolding results and whole genome alignment to related species. (A) Hi-C interaction matrix 
of the ordered scaffolds along the 31 chromosomes (B) Circos plot of whole genome alignment between M. cinxia chromosomes (colored blocks along outer 
edge) to E. editha chromosomes (noncolored blocks), with regions of inferred orthology indicated as colored lines between them. For example, M01_B01_H21 
in maroon is M. cinxia chromosome 1, which corresponds to B. mori chromosome 1, and H. melpomene chromosome 21. These are all Z chromosomes in 
these species. This corresponds to E. editha scaffold 4 (Eedi_4). Each of the maroon lines connecting these two is a genomic region of alignment. This harmonic 
plot, of all colored lines primarily extending between single chromosomes of both species is consistent with the highly conserved nature of chromosome evo-
lution in the Lepidoptera. The small discrepancies are likely repetitive content (or low frequency translocation events). (C) Example of phenotypic variation 
between a female E. editha from Rabbit meadow (left) and a male E. editha from Tamarack (right). (D) Table of sequencing and assembly summary statistics.
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Assembly

From the base-called reads, we assembled a draft genome 
assembly using Flye v2.9 using the default settings for nano-
pore reads base-called with super high accuracy mode 
(nano-hq) followed by two iterations of polishing with Flye 
(Kolmogorov et al. 2019). Haplotype redundancies were 
identified and purged from the draft assembly using 
Purge_dups v1.2.5, default settings (Guan et al. 2020), fol-
lowed by Haplomerger2 v.20180603 (Huang et al. 2017). 
Contiguity and completeness of the assembly were evalu-
ated after each step using stats utility in bbtools and 
BUSCO v.4.1.2 and the lepidoptera_odb10 database 
(Seppey et al. 2019). Genome size was estimated using 
GenomeScope (Vurture et al. 2017), with Jellyfish v. 2.2.10 
(Marçais and Kingsford 2011) for k-mer counting (k-mer cut-
off of 10,000), using Illumina paired end sequenced data 
(150 bp read length), prepared using chromium-linked reads 
technology from a separate individual. Note that linking 
adapters were trimmed using longranger basic before use 
v.2.2.2 (Marks et al. 2019).

HiC Scaffolding

Chromatin conformation capture data were generated 
using a Phase Genomics (Seattle, WA, USA) Proximo Hi-C 
2.0 Kit, which is a commercially available version of the 
Hi-C protocol (Lieberman-Aiden et al. 2009). Following 
the manufacturer’s instructions, intact cells from two sam-
ples were crosslinked using a formaldehyde solution, di-
gested using the DPNII restriction enzyme, end repaired 
with biotinylated nucleotides, and proximity ligated to cre-
ate chimeric molecules composed of fragments from differ-
ent regions of the genome that were physically proximal in 
vivo, but not necessarily genomically proximal. Continuing 
with the manufacturer’s protocol, molecules were pulled 
down with streptavidin beads and processed into an 
Illumina-compatible sequencing library. Sequencing was 
performed on an Illumina HiSeq, generating a total of 
465 M PE150 read pairs. Reads were aligned to the draft as-
sembly (fly29_purged_hap), following the manufacturer’s 
recommendations, using BWA–MEM (Li 2013) with the 
-5SP and -t 8 options specified, and all other options de-
fault. SAMBLASTER (Faust and Hall 2014) was used to 
flag PCR duplicates, which were later excluded from ana-
lysis. Alignments were then filtered with Samtools (Li 
et al. 2009), using the -F 2304 filtering flag to remove non-
primary and secondary alignments. Putative misjoined con-
tigs were broken using Juicebox (Durand et al. 2016) based 
on the Hi-C alignments. A total of 13 breaks in 12 contigs 
were introduced, which was then followed by repeating 
the same alignment procedure on the resulting corrected 
assembly. Phase Genomics’ Proximo HiC genome scaffold-
ing platform was then used to create chromosome-scale 
scaffolds from the corrected assembly as described in 

Bickhart et al. (2017). As in the LACHESIS method (Burton 
et al. 2013), this process computes a contact frequency ma-
trix from the aligned Hi-C read pairs, normalized by the 
number of DPNII restriction sites (GATC) on each contig, 
and constructs scaffolds in such a way as to optimize ex-
pected contact frequency and other statistical patterns in 
HiC data. Approximately 60,000 separate Proximo runs 
were performed to optimize the number of scaffolds and 
scaffold construction in order to make the scaffolds as con-
cordant with the observed HiC data as possible.

Short Read Polishing

DNA from a second E. editha female captured at the same lo-
cation (2018) was extracted using KingFisher Cell and Tissue 
DNA Kit from ThermoFisher scientific (N11997) using the ro-
botic Kingfisher Duo Prime purification system. DNA quality 
was assessed using 260/280 ratio (Nanodrop 8000 spectro-
photometer; Thermo Scientific, MA, USA) and the concentra-
tion was quantified on a Qubit 2.0 Fluorometer (dsDNA BR; 
Invitrogen, Carlsbad, CA, USA). 10×-chromium-linked read li-
brary preparation and sequencing were performed by 
SciLifeLab (Stockholm, Sweden). Strand specific barcodes 
were trimmed using Longranger basic and the reads aligned 
to the reference genome using BWA–MEM and polished 
using Polca from MaSuRCA v.4.0.8 (Zimin and Salzberg 
2020). Repetitive content was identified and softmasked 
from the genome using RED v.05/22/2015 (Girgis 2015).

Annotation

We used the Braker2 automated annotation pipeline to 
generate a comprehensive annotation of protein coding 
genes in the final assembly. We ran Braker2 in the genome 
and protein mode, using reference proteins from the 
Arthropoda section of OrthoDB v.10 (Lomsadze et al. 
2005; Stanke et al. 2006, 2008; Gotoh 2008; Iwata and 
Gotoh 2012; Buchfink et al. 2015; Hoff et al. 2016, 
2019; Brůna et al. 2020, 2021). Filtering of genome anno-
tation to the longest isoform used scripts from the AGAT 
suite of tools v.0.5.1 (Dainat et al. 2022), including agat_-
convert_sp_gxf2gxf.pl, agat_sp_keep_longest_isoform.pl, 
and agat_sp_extract_sequences.pl. The resulting annota-
tion was assessed based upon number of complete genes 
and BUSCO scores, for both all proteins and longest iso-
forms per locus. We assigned gene names and function 
to our predicted genes using eggNOG-mapper v.2 
(Huerta-Cepas et al. 2019; Cantalapiedra et al. 2021).

Synteny

We used nucmer (MUMmer4, v.4.0.0beta2) (Marçais et al. 
2018) to align our final assembly to the chromosome level 
assembly of the closely related ecological model species, M. 
cinxia (Smolander et al. 2022), with scaffold naming incorp-
orating chromosomal orthology with B. mori and 
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H. melpomene. Synteny was visualized in R with the 
packages circlize v 0.4.12 (Gu et al. 2014) and 
RColorBrewer v1.1-2, (Neuwirth and Neuwirth 2014), using 
a set of custom bash and R scripts.
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